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SERIES EDITOR'S PREFACE

'Et moi, _~ si favail su commenl en revenir,
jc D'Y scrais poinl eDt.'

Jules V~e

The series is divc:rgcnt; thercCorc we may be:
able: 10 do something with iL

O. Hcavisilk

ODe scniee mathematics has rendered the
human race. II has pUI common sense back
wh~ il belongs, on the lopmosl shelf Deltl
10 the dusty amistcr JabcIlcd 'discarded DOn-

IIDJX'.
Erie T. BcII

Mathc...natics is a tool for thought. A highly necessary tool in a world where both feedback and non­
linearities abound. Similarly, an kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above ODe finds such statements as:
'One service topology has rendered mathematical physics _.'; 'One service logic has rendered com­
puter science ._'; 'One service category theory has rendered mathematics _.'. AD arguably true. And
all statements obtainable this way form part of the raison d'etre of this series.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
volumes have appeared it seems opponune to reexamine its scope. At the ~~! wrote

"Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the 'tree' of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite oflen in fact, that branches which were thought to be completely
disparate are suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lenuna, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystal
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to this there are such new emerging subdisciplines as 'experimental
mathematics', 'CFD', 'completely integrable systems', 'chaos, synergetics and large-scale
order', which are almost impossible to fit into the existing c1assUication schemes. They
.draw upon widely different sections of mathematics."

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit -the deeper underlying interrelations more effort is
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will
continue to try to make such books available.

If anything, the description I gave in 1977 is now an understatement. To the examples of
internction areas one should add string theory where Riemann surfaces, algebraic geometry, modu­
lar functions, knots, quantum field theory, Kac.Moody algebras. monstrous moonshine (and more)
alI come together. And to the examples of things which can be usefully applied let me add the topic
'finite geometry'; a combination of words which sounds like it might not even exist, let alone be
applicable. And yet it is being applied: to statistics via designs, to radar/sonar detection arrays (via
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to
be DO part of (so-called pure) mathematics that is not in immediate danger of being applied. And,
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and
numerics, the traditional workhorses, he may need all kinds of combinatorics, algebra, probability,
and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the
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extra mathematical sophistication that this requires. For that is where the rewards are. Linear
models are honest and a bit sad and depressing: proportional efforts and results. It is in the non­
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appreci­
ate what I am hiDting at: if electronics were linear we would have no fun with transistors and com­
puters; we would have no TV; in fact you would not be reading these lines.

There is also no safet;y in ignoring such outlandish things as nonstandard analysis, superspace
and antitommuting integration, p-adic and ultrametric space. All three have applications in both
electrical engineering and physics. Once. complex numbers were equally outlandish, but they fre­
quently proved the shortest path between crear results. Similarly, the first two topics named have
already provided a number of 'wormhole' palhs. There is no telling where all this is leading ­
fortunately.

Thus the original scope of the series. which for various (sound) reasons now comprises five sub­
series: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (~erything

else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis­
cipline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role in several different mathematical andlor
sciet...:l1ic specialization areas;

- new applications of the results and ideas from one area of scientific endeavour into another;
- inftuences which the results, problems and concepts of one field of enquiry have, and have had,

on the development of another.

Like algebraic geometry differential geometry is a notoriously hard subject to teach and to 'self­
study'. Partly because it is very large and it is not easy to select a coherent basic chunk, partly
because it is weD developed and advanced. On the other hand the subject is of vast importance in
terms of applications especially to modern physics. Indeed it is imposSlole to do or understand
gauge theories for example without a solid differential geometry and topology background. The
authors have some IS years experience in teaching a coherent course on the topic covering all the
essentials. This volume is the distilled essence of their course. It is a pleasure and honour to wel­
come such a Dice text by such eminent authors in this series.

The shortest path between two truths in Ihe

~ domain passes through the complex
domain.

J. Hadamard

La physique ne DOLlS, donne pll5 scu1cmcnt
roccasion de resoudr: des probli:mes _ cUe

nous fail p=tir la solutiolL

Kyoto, August 1990

Never IlCIId books, for no 01lC eve: retW'IIS

them; the only books I have iu my library

an: books that other folk have Icnlmc.

Analole France

The function of an CJ(.pc:t is nol to be more

righl than other peopk, bullO be wrong for

IIlOZ'C sophistit:aled reasons.
David Bul1er

Michiel Ha.zewinkel



Preface

For a number of years, beginning with the early 70's, the authors have been
delivering lectures On the fundamentals of geometry and topology in the Faculty of
Mechanics and Mathematics of Moscow State University. This text·book is the result
of this work. We shall recall that for a long period of time the basic elements of
modem geometry and topology were not included, even by departments and faculties
of mathematics, as compulsory subjects in a university-level mathematical education.
The standard courses in classical differential geometry have gradually become
outdated, and there has been, hitherto, no unanimous standpoint as to which parts of
modem geometry should be viewed as abolutely essential to a modem mathematical
education. In view of the necessity of using a large number of geometric concepts
and methods, a modernized courSe in geometry was begun in 1971 in the Mechanics
division of the Faculty of Mechanics and Mathematics of Moscow State University.
In addition to the traditional geometry ofcurves and surfaces, the course included the
fundamental priniciples of tensor analysis, Riemannian geometry and topology.
Some time later this course was also introduced in the division of mathematics. On
the basis of these lecture courses, the following text-books appeared:

S.P. Novikov: Differential Geometry, Pans I and II, Research Institute of
Mechanics of Moscow State University, 1972.

S.P. Novikov and A.T. Fomenko: Differential Geometry, Pan III, Research
Institute of Mechanics of Moscow State University, 1974.

The present book is the outcome of a revision and updating of the
above-mentioned lecture noteS. The book is intended for the mathematical, physical
and mechanical education of second and third year university students. The
minimum abstraciedness of the language and style of presentation" of the milterial,
consistency with the language of mechanics and physics, and the preference for the
material imponant for natural sciences were the basic principles of the presentation.

At the end of the book are several Appendices which may serve to diversify
the material presented in the main text So, for the purposes of mechanical and
physical education the information On elementary groups of transformations and
geometric elements of variational calculus can be extended using these Appendices.
For mathematicians, the Appendices may serve to enrich their knowledge of
Lobachevsky geometry and homology theory. We believe that Appendices 2 and 3
are very instructive for those who wish to become acquainted with the simplest
geometric ideas fundamental to physics. Appendix 7 includes selected problems and
exercises for the course.

The list of references may assist in further independent study. A more detailed
text-book which provides deeper insight into geometry and its applications is Modern
Geometry [1].

vii
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PART I

BASIC CONCEPTS OF DIFFERENTIAL GEOMETRY

1.1 General Concepts of Geometry

Let us turn to the subject matter of geometry. Our fIrst acquaintance with geometry
goes back to school years. School geometry (the geometry of the ancient Greeks)
studies the various metrical properties of the simplest geometric figures. that is,
basically finds relationships between lengths and angles in triangles and other
polygons. Such relationships provide the basis for the calculations of the surface
areas and volumes of solids. We would like to pay attention to the fact that the
central concepts underlying school geometry are the .following: the length of a
straight line (or a curve) segment and the angle between two intersecting straight lines
(or curves). The angle was always measured at the point of intersection of these
lines.

In me university we are given a course in analytic geometr)'. whose chief aim is
to describe geometric figures by means of algebraic fonnulae referred to a Cartesian
system ofcoordinates of a plane or of a three·dirnensional space (e.g. an ellipse in a
plane is described by the equation illa2 +y./b2 =1). The words "analytic geometry"
are obviously indicative of the method. whereas the objects under study are the same
as in elementary Euclidean geometry. Differential geometry is also the same old
subject except that here the subtler techniques of analytic geometry. differential
calculus and linear algebra are widely used.

We shall systematize our basic concepts of geometry as follows.
First. our geometry develops in a cenain space <:onsisting of points p. Q• ....
Second. as in analytic geometry. we introduce a system of Cartesian

coordinates xl•...• XZ for the space. that is. associate with each point of the space, a
set of numbers (xl, .,. ,XZ) which are the coordinates of the point The number of
coordinates n is called the dimension ofthe space.

It is required that distinct points be assigned distinct n-sets. Two points P and
Q with coordinates (xl, ...• XZ) =P and (yl..... y") =Q coincide if and only if
Xi = yi for all i.

Conversely. each set of numbers (xl..... XZ) must be assigned to some point
P of the space. Then, such a space is called a Cartesian space - points of the space
are identified with all sets of numbers (xl•...• XZ). where -OOl <~ < +- and the
integer n is the dimension of the space.
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Third, geometry requires that we can define the concept of the length of a
segment in space and the concept of the angle between two intersecting curves at a
point where they intersect.

To a certain approximation we may say that we live in an Euclidean
three-dimensional space in which we have introduced Cartesian coordinates with
special properties:

a) each point P is assigned three coordinates (xl, Xl, r);
b) if the coordinates of a point P are (,r., Xl, r) and the coordinates of a

point Q are (yl, y2, y3) then the square of the length of the rectilinear segment joining
the points P and Q is equal to P. =(xl - yl)2 + (Xl-Ii + cr _Y)2.

In the case where conditions a) and b) are fulfilled. the space is called
Euclidean, and the Cartesian coordinates with such properties are called Euclidean
coordinates.

From the course in linear algebra we know that it is convenient that points of a
Euclidean space can be associated with vectors. We have a point 0 as the origin.
The vector going from the point 0 to a given point P will be called the radius vector·
of the point P. The Cartesian coordinates (,r., •.. , XZ) of the point P will be called
the coordinates of the vector. We can make a coordinate-wise summation of two
vectors; = (xl, ..• ,XZ), 1) = (yl, ... ,y"), which join the point 0, respectively, with

the points P and Q, to obtain the vector; + 1) with the coordinates (xl + yl, ... ,

xR+ yR). We can also multiply a vector by a number. Vectors el' e2' e3
coordinatized, respectively, by el = (1,0,0), e2 = (0, 1,0) and e3 = (0,0, 1) clearly

have length 1. It is shown below that they are mutually perpendicular and that any
vector; with coordinates (,r., Xl,;) can be expressed as ; =xlel + Xle2 +reJ.
The space is here three-dimensional and n =3. The definition is, of course, similar
for any n. Thus, a Euclidean space may be regarded as a linear space (or a vector
space), for which the square of the distance between any two points (end-points of

radius vectors) ; =(xl, ... ,Xt) and 1) =(yl, ... ,y") is measured as P= i (i _y~2.
i=l

In the Euclidean 3-space we have n = 3, for the Euclidean plane n= 2, and the case
n > 3 is simply an extension to higher dimensions.

In the Euclidean space there exists an operation called the scalar product of
vectors, which is of fundamental importance.

DEFINITION 1. Ifwe take a vector; =(xl,.... ,XZ) and a vector 1) =(yl, a •• ,yR),
R

then their Euclidean scalar prodw::t is the number;1) = 1); =~ it =xlyl +ill + .

a. +JI!Y; in the literature, the scalar product ;1) is often denoted by (;,1) or

(~, 11).
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Making use of this concept we can say that the square of the length of the
straight line segment going from a point P with the radius vector ~ =(xl, ... • ,X'l) to a

point Q with the radius vector T) =(yl, ..• ,Y') is the scalar product of the vector
~ - T) by itself, and the length of any vector 'Y = (zl, ... , z'Z) is equal to (yy)1/2,

where yy is a scalar square of the vector 'Y.
The length of the vector 'Y is often denoted by tyI =(yy)lf},.

From analytic geometry we know that the angle between two vectors ~ =
(xl, ... ,,X'l) and T) = (yl, ... ,yft) is also expressed in terms of the scalar product
of these vectors, namely;

_ ~T)---.
I~I hll

Thus, the concepts of length and angle are closely related with the concept of
the scalar product of vectors. Subsequently, it is just the concept of a scalar product
that we take as the basic concept of geometry.

Now let there exist a segment of a curve in a Euclidean space given in the
paranletric form:

Xl = !(t), •.. ,,X'l = ret),

where I(t) are differentiable functions of the parameter t, and the parameter t runs a
segment from a to b. The tangent or velocity vector of the curve at the instant of time
t is the vector:

vet) = (~', ~, ... , ! ).
A curve is called regular if its velocity vector is nonzero at each point of the

curve.

DEFINITION 2. The length of the curve segment is the number:

b b

l = J(v(t) v(t))lfl dt = JIv(t)1 dt.
Q Q

In other words, the length ofa curved segment is defined as the integral of the
length ofits velocity vector.
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If a curve;, =j(t), i = 1, ... , n, intersects another curve; =gi(t), i =1, '.. ,
n, at t =to. then we can speak of the angle between these two curves at the point

where they intersect Denote the tangent vectors to the curves at t = to, respectively,

by:

.v =

DEFINITION 3. The angle between two curves at the point of their intersection
t =to. is the angle between two vectors v, w. that is an angle cj) such that there holds

the equality:

vw
cos ep = Ivllwl •

The two latter definitions can be regarded as imponant facts to be included in
the course of ~athematicalanalysis. However, they may also be regarded as basic
definitions. Then we should check the consistency of these definitions with the
visual concepts of curve lengths and of angles between any two curves in Euclidean
space. By this verification, we wish to demonstrate once again that, from the modem
point of view, the whole geometry is based on the concept of the scalar product of
tangent vectors.

Why have we preferred here to give definitions rather than to formulate
theorems on the length of a curve segment and the angle between two curve
segments?

The point is that mathematical theorems can be proved only if some definitions
of the basic quantities are given. What was lhe definition of length that we dealt with
earlier? Let us analyze carefully our old concept of length. That was the length of a
straight line in Euclidean space. We could, therefore, define the length of a
polygonal arc (i.e. a broken straight line segment) as the sum of the lengths of the
straight line segments composing it. Next, following the definition of a
circumference, familiar to the reader from secondary school, we may represent a
curve segment as the limit of a sequence of broken lines and define its length as the
limit of the lengths of the broken line segments aproximating our curve. From school
mathematics we know that the circumference of a circle of radius R is 27tR. Next,

analytic geometry teaches us that the lenglh of a straight line segment - a vector ~



GENERAL CONCEPTS OF GEOMETRY 5

with coordinates 0'1, ... , y") - is equal to (0'1)2 + ... + &,)2)1(2 (by Pythagoras'

theorem).
An approximate calculation shows that our definition oflength yields the same

result.
1. The straight line segment. For simplicity we suppose that a segment comes

from the origin. Then it is given by the formula i = It, where 0 ~ t ~ 1. For t = 0
the coordinates xi are all zero, while for t = 1 all the coordinates xi = yi; the
corresponding point is the end-point of the vector~. The length of a straight line
segment is conventionally given by the formula:

1

I = Jm
o

Using our definition of a straight line segment, we have arrived at exactly the same
formula.

2. The circle. The circle (in a plane) is given by the equations:

Xl = R cos t, xz. = R sin t,

where 0 ~ t ~ 2x.
The circumference is equal to:

. 2r . ", '. _ - __

I =J(R2 sin2 t +R2 cos2 t )1(2 dt = 27tR.
o

Thus, for the circle also, our definition of length gives the answer ~t should.

3. Our definition oflength clearly satisfies the requirement that the length of an arc
made up of two pieces be the sum of the lengths of those two pieces.

It is already apparent that our definition of length satisfies all the necessary
requirements to serve our intuitive ideas concerning this quantity.

However, we still have an obstacle in our way;, let us examine carefully our
definition of the length of a curve segment.

The length of the curve (t =j(t)} is calculated by the fonnuIa:
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b

I =f Iv(t)1 dt. vet) =(~ •.... ~ ).
a

PART I

where Ivl = (vv)ll2 =

It should be emphasized that our fonnula for the length of a curve segment
refers to parametrized curves J! =I(t), i =1.2•...• n. a ~ t ~ b. Simply speaking, _
we "run" along the curve with a parameter t. which varies between a and b. at a speed
vet) =(dlldt• .•.• dr/dt). and this speed v of our motion along the curve enters
explicitly into our formula.

What will happen if we trace out the same curve segment with a different
speed? We are moving from the point P = <I(a)• ... ,r(a» to the point Q = (/(b)•
... .r(b». 'Shall we -obtain the same number if we move along the same curve from
P to Q, but at a different speed?

The precise formulation of this question is as follows. Suppose that we have a
new parameter t varing from Q'to b' (a' ~ t ~ b') and that the parameter tis

represented as a function of t: t = let). where tea') = a. t(b') = b and dtldt > O.

The inequality dt/dt > 0 implies that we move along the curve with parameter t
in the same direction as along the curve with parameter t. For what follows we

should remember that dt/dt = Idt/dr.1 > O.
Then our curve can be represented in the following form:

J! = f(t) = I(r(t» = i(t), i = 1.... , n.

With the new parametrization. the speed at which we move along the curve is
given by:

i n

v'et) = (dg .... , dg ). wherea'~t~b'.
dt dt

(The prime here does not indicate differentiation.)
The length of the curve has the form:

b'

I =f Iv'(t) Itit .
tI

We should prove the following equality:
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b' b

f Iv'(t) 'dt ~ f'V(t) ' til.
Q' Q

Let us verify this equality. Since:

7

IV'(t)' = '" (di)2 _L - -
i=l dt

we have:

= I.!!. I =
dt

'" (d!)2 _ ctL - --
i=l a dt

b' S

f Iv'(t) 'dt = f Iv(t(t»' dt dt = f 'vet) Idt.
, d dta a

Thus, we have arrived at the result:

b' b

f Iv'(t) 'dt = f Iv(t) 'dt. = I (the curve length).
a· a

Conclusion. The length of an arc of a curve is independent of the speed at
which the arc is tracedout.

It is even simpler to show that the length of a curve segment does not depend
on the direction in which the segment is traced out, and that the angle between two
curves does not depend on the way in which the parameter on the curves is chosen
(but it does depend on the direction).

If a curve in a plane is given by the equation xl =fll-), then we express xz. in
terms of t to obtain:

dxl _ tf
---,
dt dx2

d:i
dt = 1.

Therefore v = (df , 1), and the length of the curve is calculated by the fonnula:
dx2
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b b

I = JIv(t) I dt = J
Q Q

PART I

(the coordinates are customarily denoted as xl =x, Xl, =y).
In a space with coordinates (xl, x2, x3) = (x, y, z), for a curve Z =j{x),

y = g(x) we obtain the following expression for the length:

b

I =J
Q

if a Sx Sb.

REMARK.. We may dispose of the choice of the parameter t along the curve in a
different way, namely, we may choose the parameter t such that Ivi = c, where c is a
constant; then the length is given by:

b

I =JIvl dt = c(b - a).
Q

A parameter t, such that Iv(t)1 =I, is called a nanual parameter - it is equal to the
segment length which we trace out.

We have discussed the basic, simplest concepts of classical and analytic
geometry such as lengths, angles, Cartesian coordinates, Euclidean space; it has also
been shown that the most convenient basic concept which detennines Euclidean
geometry is the concept of the scalar product of vectors in terms of which we can
express the length of a curve segment and the angle between two curves. We have
given theformulafor calculating the length ofa curve arc in terms of the integral of
the length of the velocity vector and established the correspondence of this fonnula
with the usual intuitive idea of length.

In Euclidean (and general Riemannian) geometry we encounter only a positive
scalar product. We shall adduce an example of a non-positive scalar product of
vectors of a four-dimensional space (xl, Xl,:x3,;> = ct) which plays a fundamental
role in the theory of relativity:

~T\ = ryl +H +:x3y3 -xOy°,

h J:. _ (I 2 3 0) _ ,_J 2 3 0)were ':I - X ,x ,x ,x ,T\ - \Y ,y ,y ,y .
pseudo-Euclidean (Minkowskz) space.

Such a space is called a
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We have here three types of vectors:

~~ > 0 (space-like)

~~ < 0 (time-like)

~~ =0 (light-like).

9

We can readily see that the lengths of the vectors detennined here by the usual
formulae may appear to be imaginary or zero. and the angles may appear to be
complex. For this reason it is more convenient to use a scalar product. Strictly
speaking. this example was given just as an illustration of the general assertion that
the most important basic concept of modem geometry is a scalar product

These concepts are not yet enough for the development of modern geometry.
We shall now discuss such useful. and later on. necessary concepts as function in
Cartesian space (xl • •..• ,tJ). its gradient and directional derivative. the concept of a
region in space and its boundaries. and finally go over to general coordinates in a
region of space. All these concepts are not. of course. new for us; they are familiar
to the reader in this or that measure from the course in mathematical analysis where
they are likely to have been introduced fonnally- axiomatically.

Our goal is to treat these concepts from the point of view of geometry.
The concept of function is clear enough: the majority of physical functions can

be measured by numbers in a cenain system of units. and the value of this quantity is
a function of the position of th"e object (system) in space. The position of a
mechanical system of n material points in a Euclidean three-dimensional space is
described by a set of coordinates of points (xl I. x 12, x 13 ; x 21 • x 22, x 23 ; .,. ;

~1. XZ2. xz3) and velocities of points (x' I I. i 12. i 13; X21 •i 22. i 23; ..• ; i nl. i n2.

i n3), where i ii = dxij/dt (one of the indices. namely. the fIrst one indicates'the

number of the point. Let us put ,; ii = ii; then we see that the state (position) of the
system is described by the point of a 6n-dimensional Cartesian space:

(ii,yii) j =I. 2. 3. i =1, 2•...• n.

-Besides. we often consider constraints on the position of points - especially
holonomic constraints of the fonn:

fq(xll,X12,X13, ••.• xn1 ,,tJ2.,X'l3) = 0, q=I.2, ... ,s,

involving no velocities vii.

(For velocities we shall derive the relation ~(of;ai ) vij = 0.)
IJ
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To describe these constraints imposed on a system, we shall need the concept of
functions f tr

Recall that the holonomic constraints in mechanics are the equationsfq =°
relating the coordinates of a system.

As an example, we shall say that in classical mechanics an ideal rigid body is
understood as a system of n points (n is large) with the following constraints: the
distance between any pair of points is constant

Sometimes it is possible to impose the following constraints:

or

fq (xli, ... ,,td) S; 0, q = 1, 2, ... , s,

which defin~ regions (~th.or \Yithoutboun~) in a Cartesian 3n-dimensional space
of positions in the system. We encounter many such examples in mechanics. Now
we must introduce the general concept of a region.

Suppose we are given an m-dimensional Cartesian space with coordinates
1 m

X , ••• ,x .

DEFINITION 4. A region without boundary is a set of points, in an m-dimensional
space, such that together with each point of this set it also contains all points of the
space sufficiently close to it

In terms of "E - 5" we have: for any point P of a region there exists a small

5 > 0, generally depending on this point, such that all points of the space are

contained in the region provided that their distance from the point P is smaller than 5.
A region with boundary is obtained from a region without boundary by simply

adjoining all boundary points, that is, points that can be reached from within the
region, by sequences of interior points converging to them.

The whole space is, of course, a region. Another simple example of a region
without boundary is a region, in a plane, consisting of points of this plane (xl, ,Xl),
such that (r)2 + (,Xl)2 < 1 (an open disc).

The corresponding region with boundary consists of all points of the plane,
such that (r)2 + (,Xl)2 S; 1 (this can be verified).

This example is in a sense typical.
The following simple theorem holds.
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THEOREM 1. Let in an n-dimensioanl Cartesian space (xl, , ,X'I) there exist a
family of continuous functions hex), ... ,fq(x), where x =(xl, ,x"). Consider
the set ofpoinrs satisfying the inequalities:

fl (x) < 0, ... .fqCx) < o.

Then this set ofpoinrs is a region without boundary.

Proof. Suppose in a space there exists a point P = (xA, ... , x 8) with coordinates

satisfying the inequalities:

1 .
!2(xo, ... x8) < - ~ < 0, ...

... ,fq(xA, ... x8) < - Eq < O.

Since all the functionsJi are continuous, by the defmition of continuous functions,

there exists a small number S > 0 such that the values of all functionsfl' ... ,fq are

still negative at all points Q whose distance to the point P is less than S. (Recall the

liE - S"-defmition of continuous function).

Thus, we choose the number S in such a way that at points Q with the distance

to the point P smaller than S the inequality ~(P) - ~{Q)I < min (El' ... , Eq), j =1, ...

... , q holds. At all such points Q we have IjCQ) < 0, j =1, ... ,q. Therefore in the

space, all sufficiently close points surrounding the point P belong to our set of
points, and the result follows.

Note that when moving along curves from within the region we can, by virtue
of continuity of the functionsfj, reach only those points at which.tj s; 0 (perhaps not

all of them).

EXERCISE. Solutions of the set of inequalitieslj sO may also include, besides a

region with boundary, some extra points. For the case of one inequaltiy fS 0 show
that these extra points are those of the local minimum of the functionj:

Usually in applications, if a region has a smooth boundary, it is given by one
inequality f(x) < 0 (J{x) SO). If the boundary has angles, edges, faces, etc. then it
(the boundary) is given by several equations and the region by several inequalities.

EXAMPLE. A plane (xt , Xl) and a region
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arJ +br- < A, exJ + tJ.Xl < B

(ad-be * 0).

Here a pair of half lines is the boundary of the region (Figure 1).

PART I

Figure 1.

Very important, and frequendy encountered, is the concept of a bounded region
in space, Le. a region such that all points sufficiently far from the origin do not

belong to it. The simplest example is a ball {t (i)2 < R2
} with a sphere as

i=l
boundary.

Having discussed this general, and intuitively obvious, concept of a region in
space, we now proceed to the gradient ofa junction and the directional derivative.

Suppose we are given a smooth (Le. continuously differentiable) function
AxJ, ••• ,XZ) in Euclidean space with Cartesian coordinates. The function may be
given only in a region of space - we now have the right to use the mathematically
rigorous concept of a region.

DEFINITION 5. The gradient of the junctionhI, ." ,XZ) at a point P = (x~, ." ,

... .x8) in a given Cartesian system of coordinates of Euclidean space (or of its

region) is the vector gradfwith coordinates:

gradf1p = (L, ... ,..2:.) .. = i ~e.,
a la n I I i=l a I I

X X %=%0 X

where ej are the basis unit vectors, and all the derivatives iJpiJXj are calculated at the

point P = (rA, ... ,xo)·
If we regard the gradient as a function of the point P, we shall obtain the

so-called vector field, that is, the situation frequendy encountered in mechanics and
physics when at each point of a space or of its region a vector is given which is fixed
to this point - in our case this is the vector gradf at the point P.
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The reader is acquainted with the geometrical meaning of the gradient: if the
motion originates at the point P t then the functionfincreases in the same direction in
which grad f goes from the point P. In mechanicst for examplet for conservative
systems, the forces have the fonn of the gradient of a certain function (called
potennal)t only if taken with a minus sign since the force hampers the motion of the
system up the levels of the constant height of this potential.

Let us ask a question. Suppose we are given the functionit~t ... t XZ) and a

certain curve~ = i(t)t i = It ... t n in space (the parameter t varies between the a and
b values).

If we consider the function ftx) only at the points of this curvet then it will
naturally become the function eIl(t) of the time t. What is the rate with which this

functionf(gl(t)t ... t gn(t)) =eIl(t) varies with varying parameter t? This question can

be easily answered By the differentiation rule of composite function we have:

del> _ Cf dg
l cy dl

- - ---+ ... +--.
tit oxl dt oxn ct

We can readily see that this is a scalar product of the gradientfby the velocity vector
of the curve:

delldi = (gradJ) • v t

where:

.......~f ~ ~"if, . .. _ ~ d/.
oS<Q.U - ~ ---;- e. t v - ~~ e. t"-Ia I 1 U 11- X

ej being the basis unit vectors.

On the basis of this result, we deduce the following definition.

DEFINITION 6. A derivative of the function it~t ... t~) with respect to the
direction of the vector ~ =(yit ... t~) calculated at the point P =(x~ ... t x8) is the

scalar product of the gradient of the functionf (calculated at the point P) by the vector

~. FormallYt we have:
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The derivative with respect to the direction ofthe vector will be denoted by df/~.

EXAMPLE. The directional derivative of the i-th coordinate unit vector is simply a
partial derivative with respect to the i·the coordinate:

tfl CJf i i- = -. (.x = xo)·
tk i P a:i

One of the main properties of differentiation with respect to direction is as
follows.

PRoPosmON 1. If we are given a curve;; =l(t), i =I, ... , n, such that at
points ofthis curve the scalarproduct ofthe gradientfby the velocity vector is equal
to zero, thejunctionfis constant along the curve.

Proof. .If;; ~ ~i(t): i =I, ... , n is our curve and ep(t) =j(gl(b), .,. , gn(t}), then

tf dep
_ = - = (grad/). v ,
dv ct

(at points of the curve), where

is the velocity vector of the curve. Since by the condition (grad/) • v =0, it follows

that depldt =0 and ep(t) = const., and the assertion follpws.
When we begin to study differential equations and we meet the equations of

mechanics and physics, we come across the concept of the "integral of equation"
which is a function constant along the trajectories - the solutions of the equation.



COORDINATES IN EUCLIDEAN SPACE

1.2 Coordinates in Euclidean Space

15

In the preceding section we have defmed the concept of a region in an n-dimensional
Euclidean space - a region without boundary and a region with boundary - and
proved the theorem stating that a family of continuous functions 11(xl, ... , ,tJ),

fz(x 1, ... , x R
), ••• ,lq(x 1, ... ,xR

) specifies, with the help of the rigorous

inequalities.fi(x) <0, a region without boundary. By means of the inequalititesf.{x)

S; 0 the family of functions often determines a region with boundary.
As mentioned above, a region with a smooth boundary (without angles) is

usually given by one inequality j{x) < 0, whereas a region with angles, edges, etc. is
given by several functions:

11(x) < 0, ... ,fq(x) < 0, q > 1.

As an example, we shall consider the regions of the type of polyhedra given by a set
of linear inequalities:

where Aq are numbers,; are coordinates and aij are numbers. We have also defmed

an important concept of a bounded region.
We have introduced the concept of the gradient of a function and the derivative

of a function with respect to the direction of a vector as a scalar product of the
gradient of this function by this vector. The following property of the directional
derivative has been proved.

If the gradient of a function has a zero scalar product with the velocity vector of
a certain curve (i.e. they are orthogonal), then the function is constant along this
curve. More generally, if a functionf(x) is considered only at points of the curve
; =I(t), it becomes a function of the parameter 1: <!let) =f(i(r), ... , gR(r», d<!l/dt
being equal to (grad f) • v and to dl/dv (the derivative with respect to the direction of

v), where v = (dg 1/dr, ... ,dgR/dt) is the velocity vector.
Note that in connection with the concept of directional derivative we shall,

additionally, consider some properties of vector fields, introduce the concept of a
dynamical system and its integrals, and then describe the important special classes of
dynamical systems.
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In this section we shall be concerned with a very important concept of general
regular coordinates in Cartesian space or in a region of this space.

We shall recall the well-known types of coordinates with which the reader is
already acquainted:

1) Canesian coordinates xl, ... ,XS;
2) in the plane- polar coordinates r, cp, where xl = r cos cp, Xl = r sin cp; with

a special choice of the polar axis we always have r ~ O.
Next, the pairs (r, cp) and (r, cp + 21tk) for an integer k describe one and the

same point P = (.xl,X;. All the pairs (0, cp) describe one and the same point (the

origin ofcoordinates). We can see that the angular coordinate cp is multi-valued (cp ::::I

cp + 21tk), and at the origin there arises a singularity. This point will be called a

singularpoint of the system of coordinates. If we expresse r in tenns of .xl, Xl. then

r = «x1)2 + (Xl)2) 112. This function is non-differentiable when xl = 0, Xl = 0

(which is obvious).
Considering the deriyative of the function r wi~ respect to the direction of the

vector ~ = (y1, r) we obtain (at the point xl, Xl):

1 1 2 2ct do 1 cr 2 X Y +x Y- =-y +-y = -------
d; ax1 ai r

The limit of this expression for xl ~ 0, Xl ~ 0 does not exist: it depends on
the choice of a line (with a direction preserved) along which we move towards the
point (0,0). Ifwe move along a straight line xl = 0 (varying Xl > 0), then:

2 2it xy 2 1 2
~ = --r = Y (x = 0, x > 0).

IfXl = 0, then dr/~ =ry1/r = y1 (Xl =0, y1 > 0). Thus, moving towards

the point (0, 0) along these two curves, we obtain two distinct limits y2 or y1,
respectively.

We may regard the function p =,:J. =(x1)2 + (x2)2, rather than r, to be a

coordinate. This function is differentiable when xl =0, x2 =0, and we have
xl = (p)In cos cp, Xl =(p)In sin cp.

However, grad p =0 at the point (0, 0).
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We have the choice of two versions:
a) either a radial coordinate r non-differentiable at the point (0. 0).
b) or a radial coordinate p =,:l which is everywhere differentiable. but

grad P1(0, 0) =O.
In doing so we of course assume either r or p =,;. to be a function of

Canesian coordinates (.xl. Xl).
Let us now consider cylindrical and spherical systems of coordinates in a

three-dimensional space (xl. Xl. x3) =(x. Y. z).

The cylindrical coordinates r. CPt z. where z=z. x =r cos (I. y =r sin CPt are
polar coordinates in the (.x. y)-plane.

Here r =0 gives a straight line - the z-axis along which the coordinate system
"spoils".

For the spherical system of coordinates (Figure 2) we have r, cp, a. for which:

z = r cos a. x =r sin acos cp, y = r sin asin cp,

o ~ a S n, cos a = z
(f+l + iYI2

o S cp S 2n, tg cp = ylx

z P(x,g,z)

-Figure 2.

!I

We can see again that the function r =rex, y, z) is non-differentiable at the
point (0, 0. 0).

Furthennore, the function sin a = C· 2 2 2)112
r +y +z

when x = 0, y = 0 (and for any z). Le. along the z-axis.

is non-differentiable
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We see that all these coordinate systems, as distinguished from the Cartesian
one, have points which may be thought of as singular in the sense that at these points
one of the coordinates is either non-differentiable (as a function of a Cartesian
-coordinate) or differentiable, but its gradient is equal to zero.

So, in a region of space let there be given initial (Cartesian) coordinates
I n

X , ••• , x
Let there also be given some other coordinates (zl, ... , z'I) in the same region.
By definition, we can write the equality:

or

. . I ._
1= I(x, ... ,~), J - 1, ... , n.

These equalities imply that each point of the region can be assigned either a set
of Cartesian coordinates i(xl , ••• ,Jf) or a set of new coordinates (zl, ... , z'I), and
therefore the Cartesian coordinates can be expressed in terms of the new ones and
vice versa.

Let us analyze the linear coordinates in space:

. n ..

Xl = L a~z', i = I, ... , n.
i=1 )

For z to be expressible in terms of x, it is necessary and sufficient, as the reader

knows from linear algebra, that the matrix A = (~) has the inverse A-I = B = (b~) or

else the determinant of the matrix A is different from zero.

The inverse matrix B is defined as follows: B =(b~), where:

E = (a~) is a unit matrix.

Thus, the Canesian coordinates (x) of the point P are expressed through the

new set of numbers (z) by means of the matrix A = (a,}).

Briefly, we can write:

. n ..

X = Az (1 =L a~1 ).
j=1 )
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An imponant agreement: to avoid repetition of-the L sign. we shall henceforth

imply it in any fonnula where one and the same index is twice repeated: once a.s a
ft _ _ _ _
~ IJ.. I J

lower and then as an upper one. For example• .i:Ja_z IS WI1nen as a.z.
j=1 } }

If to the point P there corresponded the set of coordinates (xl•...• ,X'I). in the new
coordinates to this point there corresponds the set (zl•...• z'l). such that:J =d;.
i =1•...• n.

It should be noted that a~ =a~tai. and these numbers are constant. The
determinant of the matrix A is not equal to zero (the "matrix is said to be
non-degenerate).

Let us now examine arbitrary new coordinates:

. . I .r = r(z ..... z'l). I = I •...• n.

and the point P = (l<l..... x8).

We assume that the new coordinates detennine each point P • which
means that to any set of numbers (xb•.,.• x(j) in the space region we are studying

there corresponds at least one set (zA•...• z8). such that x~ =~(zt•...• z8).

i = 1•...• n.

DEFINITION 1. The point P = (xA• .••• x8) is called a non-singular point of the

eli ( I .JI)fi 1_ I ft_ ft( h I_J( 1ft»coor nate system z •...• 7. or z - zo•...• z - Zo w erexo -.A. zo..... Zo
if and only if the matrix:

I

A = (ax. I ) = (a~)
at :Q=Z6 }

has a non-zero detenninant (or if there exists an inverse matrix).

This matrix is called the Jacobian matrix. and its detenninant is called the
Jacobian (the Jacobian matrix is denoted as @xtaz). and the Jacobian as Idxldzl = 1).

The inverse transformation theorem (a particular case of the general implicit
function theorem) is proved in mathematical analysis.

G· th d' i..i ( I ft). 1 I I( IIven e new coor mates x =.A. Z •...• z • I = • '" • n. Xo = x zo•..

.. • z8) and the Jacobian J = ICJxldzl:;t 0 for t = zd. i = 1•...• n, we can express

the coordinates zl•...• zft in terms of xl •.., • xft within a sufficiently small
neighbourhood of the point P =(xA • ...• x8). so that zi =zl(x l • •••• xft). zJ =
zl(x~• •..• x8). i =1•...• n. Given this. the matrix b~ =a.JtroJ is inverse to the



20

manix a~ = a~/dZq, so that:

ai ai i r I, i = k,

aJ al = SA: = t0, i ¢ Ie.

PART I

This assertion for n =1 looks like this: ifx =x(z) and dxldz ¢ 0 (z =zo), then we can

express z =z(x) in such a manner that !!:. ck = 1 in a sufficiently small neighbour­
drdz

hood of the point xo' where Xo =x(zO>.

This assertion is already familiar to the reader in the case of linear changes of
coordinates x =Az, x =(xl, ... ,xR

), Z =(zl, ... , ZR), where xi =a~t; then the

numbers a~ = axi/df are constant. In this case, z = Bx, where B is the inverse

matrix to A.
Let us now look at polar, cylindrical and spherical coordinates.

1. Polar coordinates: xl =x, Xl =y, n =2, where:

x =r cos <1>, y =r sin <1>, zl = r ~ 0, z2 = <1>.

Let us construct a Jacobian matrix A = (axi/dt):

A =
ax ax
ar a<l>
ayay
ar a<l>

= ( c~s <I> -r sin <I> )
SIn <I> rcos <I>

For the Jacobian we have:

J = I: 1= r ~ O.

Hence, the Jacobian is equal to zero at the point r = 0 only. In the region r> 0 (<I> is
arbitrary) the new coordinates do not have singular points.

2. Cylindrical coordinates: for cylindrical coordinates r. <I> z in a space xl =x,

Xl =y, J2 =z we shall have z =z, x =r cos <1>. y =r sin <1>. By analogy with the
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polar coordinates, we find the Jacobian matrix A = (ox!dz):

[

COS <ll -r sin <ll 0)
A = sin <ll r cos <ll 0

o 0 1

21

The Jacobian is equal to zero for r = 0 only. In the region r> 0 the coordinate system
does not have singular points.

3. Spherical coordinates: xl, == x, Xl = y,;; = z, zl = r, z'l, = 0, ; = <ll, where:

x =r sin e cos <ll, 0 ~ e S; 7t,

y = r sin e sin <ll, 0 S; e S 27t,

z =rcos e,

The Jacobian matrix is:

(

sin e cos <ll
A = sin e sin ep

cose

r ~O.

r cos e cos <ll
r cos e sin <ll
-rsin e

- r sin e sin <ll I
r sin e cos <ll I

o )

The Jacobian J =laxlazl = ,2 sin e (check!).

We can see that in the region r> 0, e:F 0, 7t this Jacobian is not equal to zero,
_ • r - "

and therefore the spherical system of coordinates does not have singular points here.
Points r =0 (for any e, <ll) or e =0, 7t (for any r, <ll) are singular. Here, on the
contrary, we cannot express i in terms of xl, ... ,xR

, at least so as to obtain
differentiable functions z =z(x) (at singular points) since the Jacobian liJx!dzl is equal
to zero at these points.
. Let us now set our initial problem: to calculate the length of a curve in general
coordinates z, where~ = .t(zl, ... , z'1), (xl, ... ,,tJ) are Cartesian coordinates. The
curve is given paramenically: t =t(t), i =I, ... , n or ,t(zl(t), ... , ZR(t»:

. . . . 1
X = t(t) , t(t) = x(z (t), .•. , z'1(t».

According to Section 1.1, we have for the length of a curve segment:
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b

1 =JIv(t) Idt,
Q

where vet) = (dgl/dt• ...• dg'l/dt) is the velocity vector.

PART I

Ivl =

Since

. . I
gl(t) = .t(z (t)• ...• z'l(t)).

it follows that:

di ai d1 o'

Ct = iJzi 7 0

• 1 =I, ... , n.

. I .. . , ,.
Let ~(z •...• zn) =axltazl. Then (/xl/dt =dgl/dt =al j dzl/dt =dj vz' where. by

d fin· . ( In)' th I' . th rd° I J1.e anon, Vz = vz' .•• , V z IS e ve OCIty vector an e coo mates z '.0.• Z • I.e.

. d1.
~ = dr' J =1•... , n.

The velocity vector in the initial Cartesian (Euclidean) coordinates v = (dt/dt). i = 1•
... , n. will be denoted by vr The length of the vector in Cartesian coordinates has

thefonn:

S· di i til h
mce Ct =aj dr ' we ave:

n di2 n id:1 2 di dl'Ivr =L (-d) = L (a. -d) =g'k -d -d •
i:=1 t i=1 J tit t

where:
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. . I . . I
ConclUSLOn. In coordinates z , ••.• z". where:t =:t(z , .•• , z") the scalar square of

1 R

the velocity vector v% =(~ .... , ~ ) of a curve segment is given by the formula:

di til
Iv r = Iv r =g.. - -.

% % IJ dt dt

R '= k k
g.. = La. a. = 5&-~a. a? •

IJ 1=1 I J ..., I J

How shall we describe the class of coordinates zl••••• z" such that the length
of the vector is expressed in them by the formula:

R I R
2 _ "" I 2 _ I PI,. _ (dz liz )?

Iv%' - f:1 (y ) • where v% - (y ••.• •Y J - T' ... ·T .

Such coordinates are called Euclidean.
If :J. =,ti(z1, :••• ZR). (aij) =(d;;/dt) =A: the-n it is n~es~arY and ~uffi~i~~t

t.iat for Euclidean coordinates there holds the property:

{
I, i=j.

gij =5 j = (by definition).
O. i ¢j.

R

Since g .. = L i a~. the property g .. =5.. is called, as the reader knows.
IJ 1=1 I J !1 IJ

orthogonality of the matrix (~) = A. Under such conditions. x = x(z) is a linear

change. that is. the functions ~ are constant and this change is an orthogonal
transformation.
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1.3 Riemannian Metric in a Region of Euclidean Space

PART I

We shall briefly recall the material of the preceding section. Suppose we are given a
space (or a region of space) with Caneisian coordinates (xl, ... ,XZ) and some new

I .. _1
coordinates (z , •.. , z'l), r =r(z- , ... , z'I) or x =x(z), the new coordinate system
possessing no singular points: J ¢ 0, J = lax/dzi is a Jacobian.

IT the length of an arc J = J(t) is measured by the formula:

b

1=J
a

JI, di 2t (7) dt,

we are dealing with Euclidean coordinates. In the new coordinates zl, ... , z'l we
. . . . I

have t =Zl(t), i =I, •.. , TI, where ret) =r(z (t), ". , z'l(t».
For the length of the same arc, but already in the new coordinates, we have:

where J = i(z I (t), ... ,z'l(t», and t varies from a to band:

di ai d/
-=--,
ct a! a

whence:

n ax" ax" ax" axq

g. . =L ---:- ---:- = a ---:- ---:- .
IJ 1=1 at' at q azl at

In matrix notation G =A 0 AT, where G =(gij)' A =(ax!'tai) and AT is a transposed

matrix. Note that dz/dt ~ (dzl/dt, ... ,dz'l/dt) is the velocity vector of the same arc
referred to the same parameter t, but this vector is measured in the new coordinates

1 n
%, .... ,%.



RIEMANNIAN METRIC IN EUCLIDEAN SPACE
..

1,1..........

2S

By definition, we assume that dz/dt =~ is the same vector as dxldt =11 a~ the

point P =(zl(t), ... , :"(t» =ex1(t), ... ,,tI(t» written in two coordinate systems, (z)
and (x).

If we have two curves t =jet) and :i =i(t), i =I, ... , n, which intersect
when t = to and have the angle ~ between their velocity vectors, then:

where

( d/") (dgi)
~1 = -:i"' 1=1' ~ = T 1=1 •

~ 0 . 0

In the coordinates zl, ... , I' the formula for the scalar product is:

n ax" ax" ai axq

g .. = L - - = 5 - -. ,
I) 1:=1 azi aJ kit azi a/

where i =1, .., , n, t = to is the point of intersection of the two curves.

On the basis of this result, we shall introduce the concept of Riemannian metric
(see Definition 1).

A Riemannian metric in a region of space relative to arbitrary regular
coordinates zl, ... , I' is given by a family of functions gi;{zl, ... , 1') =gjj(zl, ..

. ~ ,1'), and if we are given a curve t = t(t), i =1, ... , n, the square of the length

of its velocity vector v: = (dzildt 1,=10) at the point t =to is the number:
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DEFINITION 1. A family of functions gij(z) =gjl{z) is said to define a Riemannian

metric (relative to coordinates (z I, •.. ,z'l» if for any zl, ...• z'1 the form giJ{z) 11i rt
is positive. IT det (gij) ¢ 0 but the fonn has no flXed sign. then the family gij is said

to determine a pseudo-Riemannian merric.

We define the arc length relative to the Riemannian metric or pseudo­
Riemannian metric gij to be:

b~.dzl dl
l = J gij di di dI.

a

If we have two curves t =t(t) and i = gi(t) which intersect when t =to, then the

angle between the curves is a number ell such that:

where ~ "11 = gij ~i 11i
, I~I = (~ • ~)II2, hll = (11 "11)112, ~, 11 are the velocity vectors at

the intersection point t =to-

If, in the same region. we take new coordinates yl. '" .;a. such that t =
zi(yl, ...• )0. i =1 n. and Idja,l ¢ 0 (the Jacobian J ¢ 0). then relative to the

new coordinates yl ;a. the Riemannian metric is represented by a family of
functions glj(yl• ...• ;a). g'ij = gji, where:

Ie 1
, dz dz l(yl ft)

g =-·gkl-:" = g ..... y.
g dyl dI ij

In matrix. language:

g'=AogoAT•

where

= (~).A g' = (g'). g = (g.. ).
dy" lj IJ



RIEMANNIAN METRIC IN EUCUDEAN SPACE
...... "'. 27

The length of arcs and the angles at which they intersect are calculated in the new
coordinates yl, ... ,ya by the same formula, but now instead of gi}<zl, .•• , z") we

should put g~{yl, .•• ,,n). All the above refers to the definition of Riemannian
metric.

EXAMPLES. Euclidean metric.

1. Let n = 2. In the plane, polar and Canesian coordinates are related as follows:
xl = r cos $, Xl = r sin $; relative to Cartesian coordinates, the metric has the form:

rI,
goo = 5.. = 1IJ IJ 0,

i=j,

i¢j,
(g~ =

while relative to polar coordinates we have:

This means that for the curve r =r(t), $ =$(t)

b

/ =f
a

tT 2 2 d$ 2
('(t) +r (iF) dr.

2. n = 3. Relative to Canesian coordinates, we have gij = 5U; relative to cynlindrical

coordinates r =yl, cI> =I, z =r:

f
l 0 0 J<iij) = 0 l'o ;
o 0 1

for the length ofan arc we have:

b

/ = J
a

Relative to spherical coordin ates yl =r, I =9,r =$, we have:
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and for the length of an arc:

PART I

b

I =f
Q

The Riemannian mettic is often given by the formulae for the differential of length
dl or (dl)2 as follows:

in Cartesian coordinates:
n .

(dr/ =L (d:/l,
;"1

in polar coordinates when n = 2:

in cylindrical coordinates:

and in spherical coordinateS:

We have defined the Riemannian metric gij in a region of space with coordinates

(zl•...• z'I). gij =gij(zl, .... z~. A metric is said to be Euclidean if there exist new

coordinates r ..... ;XI.~ =;(zl..... z"). Id~Jazl ¢ O. such that:

Relative to coordinatesr ..... ;XI we have:
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and the coordinates xl, ... ,;tJ are tenned Euclidean coordinates.
We always require mat the determinant Igijl be non-zero or, in omer words, that

the metric gij be non-degenerate.

If the matrix (giJ{zl, ... , z'I» determines a positive quadratic form- that is,

the lengths of all non-zero vectors (and, therefore, of all curve segments) are
positive, then we say that go represents the Riemannian metric. If the determinant

IgiJ~ is non-zero, but the fonn gij ~i 'f/ has no fIXed sign, men we say that there exists

apseudo-Riemannian metric.
Of particular imponance is the case where n = 4 and the fonn go ~i 't/ at each

point zA, ... , z3 can be brought to the form ~1)2+ (~2)2 + (~3)2 - (~4)2. These are

the metrics on which the general theory of relativity is constructed.

Now we shall consider Riemannian metrics, i.e. gij ~i 't/ > 0 (at all points).

What metrics do we know for the case n =21 Above, we have already
acquainted ourselves with metrics on the Euclidean plane and in the standard
two-dimensional sphere given in spherical coordinates by the equation r = roo
Restricting the space metric to a sphere, Le. putting r = ro, we come to the following

metric:

Replacing the usual trigonometric function sin by the liyperbolic' sh, ·we sh3.II Write

another metric dl2 = (dxl + sh2X(d~)2. This metric turns out to be connected with

Lobachevsky geometry which is treated in Section 1.4.
So, we compare three metrics in two-dimensional space:
1) Euclidean metric: in Cartesian coordinates, x, y, this is:

or in polar coordinates r,~:

2) Metric of me sphere: in spherical coordinates e, cjJ:
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3) Lobachevskian metric:

d12 = dX2 + sh2Xdcp2 .

PART I

This metric may equivalently be given in Canesian coordinates x. Y in a half plane
Y > 0 by the formula:

2 2dr = d.x + dy
2 •

Y

Why do we distinguish these three metrics?
Why is the Lobachevskian metric added to the Euclidean one and to the metric

of a sphere? What common property have all these three metrics?
These three metrics appear to be the most symmetric. What is the exact

meaning of this?

Let us consider transfonnation of the change of coordinates t =-i(yl• ... ,~).
We have:

I: I
I dZ dZ

g = ---:-1.., ~ .
ij cryl MaY

Ifg'ij s gijo the transfonnation is called the motion (or symmetry) of the metric­

it exactly preserves the form of the scalar product.

EXAMPLE. Suppose n =2, (X, y) are Cartesian coordinates in the plane, and

gij= Sij is a Euclidean metric.

a) Consider the translation:

-
x =x + xO'

-
Y =Y +Yo

(
i -+.i +xo = X').- - .
y -+y +Yo = Y

b) consider the rotation:

x = xcos $ +Ysin CP.

Y =-x sin $ +ycos $, $ =const.

All these transformations are motions of the Euclidean metric. They are

described by three numbers (.ro, YOt $).



RIEMANNIAN MElRIC IN EUCLIDEAN SPACE 31

Another example is a sphere.
It is positioned in a three-dimensional Euclidean space with spherical

coordinates r, 9, cp and is given by the equation r =ro-
Obviously, any rotation of a Euclidean space about the origin (about any axis)

represents the motion of the sphere, that is, on the sphere r = TO, it does not change

the lengths of the curves and the 'angles between them.. How many rotations are
there?

Rotation is given (in Canesian coordinates) by an onhogonal matriX:

which detennines the coordinate transformation:

Given this, we have:

3 i 2L (a.) = 1, 1Sj S; 3,
i=l J

.. . r1, j = k,
4a~ =~ = { .to, J ¢k .

If the vectors el' e2' e3 were ortho-normalized: e· e· = 0·' then the vectors Ae· = ci: e·I 'J IJ' I I 'J
are also onho-normalized.

The matrix A is described by nine numbers a~ which satisfy the six equations ~

cit =Wk.
So, all the rotations are described by three numbers (e.g. by the Euler angles

cp, 'If, ewhich the reader will come to know in mechanics).
Thus, the metric of a sphere also has a three-dimensionaal set of motions.

The third example is a Lobachevskian metric.
Consider the upper half plane (x,y), y > 0 and an element of the arc length

2 (tbi + (dy)2
(dt) = 2 • Assume that:

y
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z = x + iy (i2 = - 1), t = x' + iy'.

PART I

az' +b ..
If z = , d and the numbers a, b, c, d are real, then on condiuon that

cz +

the detenninant of the matrix (: :) is equal to unity, we obtain the transformation

x = x(x', y'), y = y(x', y'),

a(x + iy') + b
x + iy = ~-:---:-::=----:-c(x + iy') + d .

Verify by a direct calculation that this is the motion ofthe Lobachevskian plane.

How many types of such motions exist? The motions are given by the matrix

(: :) under one condition that ad - bc = 1. We see again that this is a three·

dimensional set.

(The matrices (~ ~) and (~ :) yield the same transformation, and

therefore, we can assume that ad - bc =1.)
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As emphasized above, from the contemporary point of view the construction of one
or another geometry should be started with the introduction of scalar product which
is, thus, the basic concept.

Recall the basic properties of the Euclidean (i.e. positive definite) scalar
n • • n

product If (~,11)=L ~1111 (we are considering a Euclidean space IR of dimension n)
i=l

then:

1) (~,11) = (11, ~);

2) QJ;, 11) = (~, 1..11) = A(~; 11);

3) (~,11 + et» = (~, 11) + (~et»;

4) (~'~ ~ 0 (~,~) =0 if and only if ~ =0;

5) ((~ +11, ~ + 11»112 ~ (~, ~»1I2 + ((11,11»112 (inequality of triangles).

Properties 4 and 5 characterize positive definiteness of the scalar product; they
do not hold for pseudo-Euclidean scalar products.

DEANITION 1. A linear real space of dimension n is called a pseudo-Euclidean
space ofindex s if in this space the following bilinear fonn is given:

If s = 0, we obtain a Euclidean space. A pseudo-Euclidean space of index s
will be denoted as IR~. The- space IR1 is 'the space ojthe speciai theory ofrelativity
and is called the Minkows/d space.

REMARK. Investigation of the space 1R~_s is reduced to investigation of the space

IF{; since all the lengths in u:r,.-s can be multiplied by i; then, obviously, the form

(~,11)n-s will become the form (~Tl>s- We may always assume, therefore, that
s ~ [nl2] (integral pan).

As in Euclidean space, the length of the vector ~ in the space~ is detennined
by the fonnula:
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but the lengths of the vectors in ~, as distinguished from iff, can be zero and purely
imaginary.

In the space IRn, the set of all points ~, such that I~I =p, forms an

(n -I)-dimensional sphere sn-l (hypersphere). In the pseudo-Euclidean space !R';,
we can also consider a set of ponts ~ whose distance from the origin is p (but now p
can be not only a real number, but also purely imaginary or zero). This set of points
will be referred to as a psuedo-sphere of index s and will be denoted by Ssn-l.

Clearly, S8-1 =Sn-l. Indefmiteness of the form (~, 11)s gives rise to a more

diversified geometry on pseudo-spheres S:-l as compared with the case s = O. In the

sequel we distinguish psuedo-spheres of real radius, imaginary radius and zero
radius. A pseudo-sphere of zero radius is described by the following second-order
equation:

that is, such a pseudo-sphere is a second-order cone in IR'; with the vertex in the

origin. Clearly, all the vectors emerging from the origin and lying on this cone have
zero length, while the vectors going outside this cone have non-zero length. The
pseudo-sphere S:-l of zero radius is called an isotropic cone.

REMARK. In the Minkowski space ~, the isotropic cone is entirely filled with light

vectors ~ (Le. (~, ~.r = 0) and is called the /ighl cone since a light beam started from

the origin will propogate along the generator of this cone.

Let us cosider examples. Let n =I; then s =0 (since we agreed. to assume that
s S [nil]) and the space IPJ is a usual real straight line.

Now let n =2; s = I. The isotropic cone consists of two straight lines:

xl =: n2 (we are considering a two-dimensional plane 1R2 relative to Cartesian

coordinates xl and Xl; just in this usual plane we are modelling pseudo-Euclidean
geometry of index one). This cone splits 1R2 into two regions: in one of them,

(~, ~l > 0 (namely, this is the region defmed by the inequality t.t21 > [xlI); in Ut~

other (~, ~)l < 0 (namely, the region defined by the inequality t.t21 < [xlI) (Figure 3).

The pseudo-spheres of real radius are the hyperbolas:

_ (xl)2 + ~)2 = a2 (p = a),

and the pseudo-spheres of imaginaIy radius are the hyperbolas (Figure 4):

_ (xl)2 + (Xl)2 = - a 2 (p =ia).
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Figure 4.

.---t-~-+---"'::rf

'$,ei<::o
",

(fJ~t>D"

(~'~)f<::O,­
,­

I'
1'1'

Figure 3.

Now let 13 =3, S =1 (recall that the study of~ is reduced to the study of ~).

The isotropic cone (a pseudo-sphere of zero radius) is the usual second-order cone,
with axis.xl , given by the equation:

It also splits the whole space into two regions (in conventional terms, "into internal
and external regions") (Figure 5).

The pseudo-spheres of real radius are one-sheeted hyperboloids,

while those of imaginary radius are two-sheeted hyperboloids (Figure 6):

Figure S. Figure 6.
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Let us consider the case lRi in more detail. We shall be concerned with the

group of motions of the plane 1Rf. i.e. the set of all linear transformations

C: lRf -+ lRt preserving the form (~, r!>l. The transformation C preserves the fonn if

(C~, Cll)1 = (~. 11)1 for any vectors ~,Tl. But before calculating this group, recall a

similar calculation for the Euclidean scalar product
n .•

If a linear transformation C: lR" -+ lR" preserves the fonn (~, Tl)::: L ~1T'l1, then
i=1

C is an orthogonal matrix, that it C-1 = CT. Then det C = ± 1. In the case n = 2, the
set of all orthogonal matrices of order 2 can be written as follows:

r( cos ~ sin ~"-
0(2) = I,

l-Sin~ cos~J (
COS ~ sin ~)}
sin~ -cos~

REMARK. The group of all orthogonal transformations in !R" is denoted by D(n),
and the subgroup containing those orthogonal transformations which have a positive
determinant (Le. preserve orientation of the space lR") is denoted by SO(n).

Let us consider the SO(2) group (i.e. the set of rotations of a plane preserving

(

cos ~ sin ~'\
the orientation of the plane) and associate with each matrix I a

-sin <I> cos ~J

complex number z =tit whose modulus is equal to unity. This correspondence will
be denoted by i'. Oearly. i' is a one-to-one correspondence and is continuous in
either side, 0 ~ ~ < 21t, i.e. i' determines "homeomorphism" between SO(2) group

and the circumference Sl = {z = eit). Furthennore, Cf also establishes an algebraic
isomorphism between the SO(2) group (operations in SO(2) are a multiplication of
matrices) and the Sl group (the operation on Sl ,is multiplication of complex
numbers:

A verification of this fact reduces to calculation of the matrix:

(
cos (~+V) sin (<1>+ '1') I =( cos <I> sin ~I( cos 'I' sin '1'1

- sin (~+V) cos" + '1')J - sin ~ cos ~Jl-sin 'I' cos '1').

The whole group 0(2) is obviously homeomorphic to a unity of two circumferences
(Figure 7).
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Now we go over to the plane fRio r.c:t C = (~ :) and (C~, CT\~l = (~, T\)l.

Recall that ifB(~, T\) is an arbitrary form of B(~, T\) =bj ~iqi; bij =bjj, then this fonn

is assigned the symmetric matrix (bij) in a one-to-one manner. If C is an arbitrary

linear transfonnation in space, then the matrix B (following the form B(~, T\»
transforms to a new matrix B' (corresponding to the transformed form) which is
related to the matrix B as:

B' = CBCT•

n ••

For example, ifB(~, T\) =L ~1T\1, then B =E is a unit matrix; and if C preserves this
i=l

fonn, then B' = B = E, whence we have E = CECT , i.e. C-1 = CT, which implies
orthogonality of the matrix C.

In our case, B(~, Tl) = (~, Tlh = - ~1'!11 + ~2.r)2, Le. B = tb ~).

Let C: lRf -7 ~ (that is, C preserves our form); then B' =B = (-b ~), that is :

(-10)= (a C)(-1 o)(a b)= (-{],2+ c2 -ab+Cd)
o 1 \P d 0 1 ~c d -{],b + cd _b2+;. •

which yields dle following relation for the numbers a, b, c, d:

c'l-t? = -1, ab = cd, Jl-b2 = 1.

In the case of the Euclidean plane 1R2• each rotation was determined by the
angle of rotation ep of the orthogonal frame; an analogous parameter will also be
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introduced in the case of the pseudo-Euclidean plane lRf. Let us consider the frames

el =(1.0). e2 =(0. 1) and C(el) =ael + ce2. C(e:z} =bel + de2 and let ~ =cIa.
The direct calculation yields:

a=± 1 .c=± ~
(1 - ~1112 (1 _ ~1112 ·

d=± 1 • b =± 1 .
(1 - ~1112 (1 _131112

Thus. the group of all transformations C preserving the pseudo-Euclidean

scalar product (~. T\)l consists of the following matrices:

±1 ±13
(1- ~1112 (1-1311

/2

c=
±13 ±1

(1 _131112 (1 _131112

Instead of the angle of ordinary rotation CP. we introduce the angle of hyperbolic

rotation 'I' by setting 13 =th '1': then

C _ (± ch 'I' ±sh 'I' )
- ± sh 'I' ± ch 'I' •

i.e. the group preserving the pseudo-Euclidean metric is the group of hyperbolic
rotations (Figure 8). Recall the group of orthogonal rotations of the plane !W which
consisted of two connected components (two pieces) - two circumferences. The
group of hyperbolic rotations has a more complicated organization: it consists of four
connected components (four pieces):

{(~~~ :n (:::~ ::~~~);

(
ch 'I' - sh '1').
sh 'V - ch 'I' •

Each of these pieces is homeomozphic to a real straight line IR1.

(
- ch 'I' sh '1')1
- sh 'I' ch'l' 1·
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Figure 8.

REMARK. Of those four connected components. only one is a sulrgroup. namely:

{(
ch 'I' Sh'l')}
sh 'I' ch 'I' •

the rest of the components not being sulrgroups. We can calculate the quotient
group of the complete group of motions from the connected component of unity. To
cany out this calculation. we should bear in mind the following general assertion: the
connected component ofunity. G{)7 in an arbitrary topological group G is always a
normal divisor (prove this!). and therefore thefactor group G/Gois defmed (its order

is equal to the number of connected components in the group G). In our example.
the direct calculation (to be carried out by the reader) yields that the factor group
G/Go is isomorphic to the Abelian group :l2 @ Z2. Note that the factor group

O(rz)/SO(n), is isomorphic, to :l2'

Now we shall turn to the metric properties of the space fRi. Consider the form:

The space IRi will again be modelled in the space IW. and therefore the Cartesian

coordinates in iff will be denoted by x. Y. z; then (~. ~)1 = - Xl +r+ z2. As we

have already established. the hypersphere (or pseudo-sphere) of imaginary radius
t =ip in a space IRi is a two·sheered hyperboloid given by the following equation:

Since this hyperboloid is imbedded in fRi. we can say that "the geometry of the

space IRi induces a certain geometry on the hyperboloid".
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From the point of view of Riemannian metric. the idea expressed aoove will be
formulated as follows: "the metric of the space IRi induces a cenain metric on the

hyperboloid". At the present moment. however. even without the general concept of
the metric tensor gij' we can already impart some meaning to the words "a geometry

induced on the hyperboloid". Indeed, let us consider a hyperboloid -p2 = - Xl +i
+ ? (for simplicity we shall restrict our consideration to one of its sheets; for
example, to the one described by the inequality x> 0); quite ordinary points of the
hyperooloid will be treated as "points" of the geometry induced on it. and the various
lines obtained on the hyperboloid when it is intersected by the planes ax + by + cz =
opassing through the origin of coordinates will be thought of as "straight lines" of
the induced geometry (Figure 9). We shall proceed to this geoemery., To do so, we
shall make a transformation which will bring into correspondence the geometry of the
hyperooloid and the geometry in a ring in the Euclidean plane. This transfonnation is
called a stereographic projection. The stereographic projection of the sphere S2 onto
the plane 1R2 is described in the theory of functions of one complex variable. Recall
the construction of this projection (Figure 10).

Figure 9. Figure 10.

The plane 1R2 (= lC) passes through the centre 0 of the sphere S2, and the
stereographic projection f: S2 -+ 1R2 assoociates each point x (which does not
coincide with the nonh pole N) with the point1\x) - the point where the ray Nx
meets the plane C. Given this. to the north pole there corresponds an infinitely
remote point of the extended complex plane. The south pole goes over to the origin.
The analogy between the usual sphere S2 and the pseudo-sphere sj is rather

widespread. In particular. the stereogrqphic projection of the pseudo-sphere Sf onto

the plane IW is specified in a quite similar way.
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The pseudo-sphere si: (- p2 =-Xl +r+?) is centred at the origin 0; the

nonh pole is the point with Cartesian coordinates: ( - p. O. 0); the south pole is the

point ( P. O. 0); the plane onto which we shall make the projection is the YOZ-plane
passing through the pseudo-sphere centre (by the way, the restriction of the form
(~,,,h to the YOZ-plane is the following form: l;2T1 2 + ~3T13), that is, the

pseudo-Euclidean geometry of IRi induces Euclidean geometry in the YOZ-plane.

Figure 11 illustrates me cross-section of a hyperboloid by a plane passing through the
X-axis. But since we have restricted our consideration to only one hyperboloid sheet
x> 0, it follows that the image of this sheet under projectionf does not cover the
whole of the plane lW =YOZ, but only an open ring of radius p.

Figure 11.

REMARK. If we consider the whole of the pseudo-sphere sj (that is, both the

sheets of the hyperboloid), then' under srereographic projection, the image of si, as

distinct from that of me usual sphere S2, covers in one-to-one manner only pan of the
plane YOZ (the nonh pole passes again into an infinitely remote point, and the circle
j + z2 =p2 is not covered).

Let x, y, z be coordinates of the point x e sj (where x > 0) and let (u1, u2) be

coordinates of the point f{x) e YOZ, where f is a stereographic projection. We
calculate the relation between these coordinates in an explicit form.

LEMMA 1. Let x =(x, y, z); u =(u1, ,r). Then
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Proof, From Figure 11 it is seen that:

y x+p---
U1 - P

that is,

z x+p--_<I
u2 - P ,

Since - p2 =- Xl +l'+ z2, it follows that substituting y and z into this equation, we
obtain:

This concludes the proof of the lemma.

Under the stereographic projectionf. Sf~ (1' + z2 < p2) = D2
, the points of

the hyperboloid are transfonned into points of the two-dimensional ring D 2 of
radius p. Into what curves on the ring D 2 will the "straight lines" of our
geometry on the hyperboloid, i.e. lines of intersection of the hyperboloid by the
planes ax + by + cz =0 be transformed?

LEMMA 2. Each line of intersection of S2} with the plane ax + by + cz =0

transforms under the mapping f into an arc of a circumference intersecting the
circumference l' +;. =p2 at a right angle.

REMARK. Recall that the angle between smooth curves at the point of their
intersection is the angle between their tangents at this poinL

Proof of Lemma 2. By virtue of Lemma 1, to clarify the fact into what curve a
"straight line" OD Sf is carried, it suffices to substitute the expressions of x, y, z in

terms of u1, ,;. into the equation of plane ax + by + cz =O. Let. for example, a '¢ O.
Then, after simple transformations, the equation:
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7apZ 2bu1
- a - ----.;-- + ----

(u, u) - p2 (u, u) - p2

is reduced to the fonn:

+ 2ci = 0
(u, u) _ p2

r =

i.e. defines a circumference with centre at the point (:' ~) and radius

2 2
b +c 2 h' h' til' mfi 2 2 2 . A2 - P w IC mtersects e erreu erence y + Z = P at pomts

a

and B at a right angle,

2 2 (b) (C)2P +r = 7i + a .

REMARK. The image of the "straight line" from Sf under the mapping f is not the

whole of the circumference:

but only that pan of it which is contained in the ri.!agr+ ? < p.

Thus, we have completed the proof of the theorem: the geometry induced on
the pseudo-sphere Sf by the geometry of the pseudo-Euclidean space IRi coincides
with the geometry arising in a ring ofradius p in the Euclidian plane IR provided that,
as points of this geometry, we take ordinary points of this ring, and as "straight
lines" of this geometry we take arcs of the circwnferences intersecting the ring
boundary at a right angle. (In particular, "straight lines" are, of course, all diameters
of the ring since they may be treated as arcs of circumferences of infiniely large
radius.)

REMARK. A geometry induced on a pseudo-sphere by the geometry of lRi is called

Lobachevslcy geometry, and its model in a ring of radius p in a Euclidean plane is
called the Poincari model ofLobachevslcy geometry.
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REMARK. Lobachevsky himselfobtained his geometry in quite a different manner,
without making use of pseudo-Euclidean spaces.

Using the Poincare model, we can easily verify the classical Euclidean axioms
(postulates) except, of course, the fifth .postulate (parallel axiom).

Indeed, from Figure 12 we can see that through a point exterior to a straight
line we can, using Lobachevsky geometry, draw infinitely many straight lines parallel
to a given one (i.e. not intersecting it).

Figure 12.

Note that if p -+ 00, then Lobachevsky geometry becotIles Euclidean geometry
(arcs of circumferences become straight lines). Later, when studying Lobachevsky
geometry, we assume p = 1.

Now we ask the question: what geometry, that is, the geometry with what
properties, arises if we cleave with planes an ordinary sphere S2 c: iff rather than a

pseudo-sphere sy c: ~1
Consider the geometry in which "points" are ordinary points of the sphere

S2: (\xl =1 in 1R3) and "straight lines" are the various equators of the sphere S2

(intersections with the various planes passing through the centre of the sphere). This
geometry has, as it stands, the shoncoming that many straight lines (not only one)
may pass through two distinct points; this will be the case if we consider two
diametrically opposite sides of the sphere. But if, as "points", we consider in our
geometry pairs (x, - x) where x spans the whole S2, then in this geometry there hold
Euclidean postulates, except order axioms and the fifth postulate. Namely, through a
point exterior to a straight line we can draw not a single straight line parallel to a
given one, i.e. any two straight lines intersect (any equators intersect at diametrically
opposite points of the sphere). The order axioms do not hold in the absence of the
concept "one point lies between two others". The described operation (identification
ofx and - x, where x spans S2) is equivalent to factorization of the sphere S2 with
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respect to the action of the group iE2, which yields a two-dimensional projective

space ~; the geometry constructed on 1RP2 is called ellip~c geometry.
Thus, we have distinguished three geometries:

1) Euclidean geometry,
2) Lobachevsky geometry,
3) Geometry on the sphere.

In spite of profound differences among them, all the three geometries can be
studied in parallel; they are widely inrerrelated. We shall return to their study from
the point of view of the metric tensor gij. We have calculated the groups of motions

of these three "unifonn" geometries; in these geometries, the groups of motions are
described by three parameters. .

The space !R1 is called the space of the special theory of relativity, and the

geometry arising in this space is called Minkowski geometry. The coordinates in !At
are conventionally denoted by x,y, z (spatial coordinates) and ct (time coordinate);

then (~, 11)1 =- c'-tt' + xx' + yy' + zz'. The isotropic cone (~, ~)1 =0 is called the

light cone, vectors ~ such that (~, ~)1 > 0 are called space-like, and vectors ~ such

that (~, ~)1 < 0 are called time-like. Here c is the speed of light
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1..5 Flat Curves

PART 1

Several of the following sections are devoted to the branch of the classical differential
geometry associated with the concepts of curvature and torsion of curves in the
Euclidean plane and in Euclidean 3-space.

Let us consider a Euclidean plane with coordinates (x, y) and basic unit vectors
el' e2' where any point P is given by a radius vector r = xel +ye2 with tail at the

origin 0 and tip at a particular point P coordinatized by (x, y). The length of the
vector r is given by the Euclidean fonnula Irf =(rr)lf2 =r,il +r)lf2 Suppose we are
given a smooth curve:

r(t) = (x = x(t), y = .y(t}},

where points of the curve are given as follows: x(t)el +y(t)e2' The length of the

curve segment has the form:

b b

I = fJ(X)2 + ~rl~t = fdl, x= :' y= : '
a

where the differential of length:

a

dl = Ivl dr, Ivl = (v. v)If2,

is the velocity vector.
We shall write V, =dr/dt indicating explicitly, thereby, the parameter with

respect to which the tangent vector is calculated. We shall often find it convenient to
consider curves parametrized by the Mtwal (length) parameter.

x = x(/), y = y(/).

In this case V = Vi = (dx/d/)el + (dyld/)e2 Ivl = 1.

If the curve was parametrized by an arbitrary parameter t, x =x(t), y =yet), we
have the relation dl = (x2 + y'2) 112 dt. Two vectors (those of velocity and

acceleration) will play an imponant role:

iT
~ = v"
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If the parameter is natural (t =l), we shall have Iv~ =1. There holds a simple, but
firequentlyencounre~lenunL

LEMMA 1. If there exists a time-dependent vector v =v(t), where Ivl = 1, then the

vectors v and ~ =dldt are orthogonal.

dldt (v. v) = vV +vV = 2vV = dldt (Ivf) = 0,

therefore v • ~ = 0, which proves the lemma.

REMARK. If there exist any two vectors v = vet) and w = wet), then in Euclidean
geometry there holds the formula:

dldt (vw) = ~w +vW .

In application to a curve parametrized by the natural parameter I =t, r =ret) =
x(t)el +y(t)e2, our lemma suggests:

v = drldl.

COROLLARY. The velocity vector vet) and the acceleration vector wet) = dvldl are
orthogonal if the parameter is nanual: t =I (the arc length).

DEFINITION 1. The curvature ofa flat curve is a magnitude of the acceleration
vector k =Iw(t)1 provided that t =I (the natural parameter).

DERIVATION. It is immediate that:

dv tlr
-=kn=-
d dr'

where n is the unit vector normal to the curve and

The radius ofcurvature R is the number 11k.



48 PART I

along the entire curve r(t)I' a smooth field of normals "n(l) oriented so that the

frame (n(/), v(l)), where vel) is the unit vector tangent to the curve and directed
towards the increase of the natural parameter t = I, have orientation coinciding with
that fixed in the plane. In that case the curvature Ris defined as d2rldl2 = tn(/). IT
d2rldl2

¢ 0 at each point of the curve, then 1£1 == IkI ¢ O. But if the acceleration vector

vanishes at some points. then the ditection of the nonna! • ~ ~ II~ I may vary as

distinct from the direction of the normal n(/). Thus, ItI = IkI = k, but £ may change
sign for the opposite when moving along the curve Odrldll ¢ 0).

Does this concept of curvarure agree with our intuitive ideas?
The curvature has the following properties.

1) The curvature of a straight line is zero.

Proof. Let x = Xo + ai, y = Yo + bl (straight line), the parameter I being natural; this

means that:

2 2 (tk)2 (dy)2
a +b = 7 + d = 1.

tir
Then w = - = 0 and k = 0, R =00.

df
2) The curvature of a circle of radius Risk = 11R.

Let:
x =Xo + R cos l/R, y =Yo +R sin 11R, R =const

tlx cos 11R tly sin l/R .
Then dr =- R 'dr =- R . Consequently, we obtam for the

curvature Iwl = l/R = k. An important theorem holds.

THEOREM 1. Given the parametric equation r = r(l) of a curve, in tenns of the
narwal parameter I, thefollowing Frenetformu1ae hold:

dv7 = kn = w,

dndf = lev,
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where n =1:1 is the unit normal vector.
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Proof. Since n is a unit vector, nn =I, and the vectors, n and v are onhogonal,
according to Lemma I, we have:

a) dnldl1. n (Lemma I),

b) dnldl= av (n 1. v and the dimension = 2).

Given Ivl = I, we have lal = Idnldll. What is the value of a? Since vn = 0, we have:

d dv °dtJo = d (vn) = d n + v d = k + a(vv) = k + a = 0,

(nn = I, vv = 1).

Whence a =- k, as claimed.

What is the geometric meaning of the Frenet formulae? Since dvldl =kn,
dnldl = -I..-v and (v, n) is a unit orthonormal frame, it follows that:

dv
v + ~v = v + (~f) df = v + (Mf) n ,

mz
.n + ~n = n + (M) d = n + (- k~f) v

with accuracy of the order of the second power of small quantities.
Suppose Ml = ~ep (the increment of the angle). For small angles ~ep

cos (~ep) :: 1 + O«~ep )2),

sin (~ep) =~ep + O«~ep)3),

and we have:

v + (~v) =cos (~ep)v+ sin (~) n ,

n + (~n) :: - sin (~ep)v + cos (~) n ,
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that is, under this transformation the frame is rotated through the small angle ~~.

Hence, the Frenetformulae detennine a rotation oftheframe (Y, n) in going to

a nearby point I~ 1+ l!J with accuracy of the order c;f ilte ~econd power of small
quanzities.

This fact is sometimes also expressed by the formula:

where <I> denotes the vector through which the vector v (or n) is rotated in moving
along the curve. The sign indicates the direction (clockwise or counter-elockwise) in
which the frame (v, n) is rotated when moving along the curve. The parameter twas
always taken to be the natural one.

It is now natural to ask how we go about calculating the curvature of a flat
cun'e parametrized as ret) = (x(t), y(t)), where t is not the natural parameter?

In this case v, =r' =i e1+i e2 and Iv,l:;c L The vectors v, and v', =T' (the

velocity and acceleration) are not therefore necessarily perpendicular.
Let ~ = ~(t) =~lel + ~2e2 be any arbitrary vector. For our curve we had

dl = 1r'1 dt = Iv,1 dt. For an arbitrary vector ~(t) we have:

~ ~ it 1 ~
d =li (ff = IV,I li'

where 1v,1 = tr'1 and the velocity is detennined relative to the parameter t given along

the curve.
Suppose

where ~(t) is the unit vector of the tangent (it coincides with the velocity vector v in
the case where the parameter is natural).

By the definition ofcurvature:

k = lir I =I~ I = I!. (2)1
d12 d d IV,I

(die length of the acceleration vector in the natural parameter is equal to the
curvature).
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By defInition,

d (V,) 1 d (VI) 1 (dv, _2. dlv,l) =
{j Iv I = j;j~ j;j =2"(f" IV,I dt, , , Iv I,

1 (" ;. d 12)= - r - - - (~I ) ;
Iv 12 2r12 a,

. d . 2 'H
v, = r, 7i 0-1) = 2rr.

Thus, we obtain (assuming that b:1 ¢ 0):

For the curvature, we have:

where:

The components of the vector tir =w =~ C; - (4-); )have the form:dr rl rl

...
H' H'

~2 w = (x _x x +y y .;) e
1
+ (.. x x +y y • )

• 2 • 2 Y - 2·Y e2 •• 2 •
X +y X +y

Next, we have:

51
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., .. , 2
Iwl2 = k2 = (xy -y X)

,2 ,23
(x + Y )

For the curvature, we obtain the relation:

PART I

., " , 2
k2 = !xy-yxl

,2 ,23
(x +y )

(an important formula).

The numerator is the square of the derenninant ofthe matrix A, where:

A =(~ ~)x y .

Thus, we have arrived at the following theorem.

THEOREM 2. If at any point on a curve the velocity vector does not become zero,
then for any choice of parameter t for the curve x =x(t), Y=yet) there holds the
formula:

k = lir I = ~y-yxldr ,2 ,23f2
(x +Y )

where X2 +Y2 ;c 0 since I': I ;c O.

Hence the absolute value of the acceleration d2rldl2, i.e. the square root of the
sum of squares of the componenets of the acceleration is the number:

k = liy -yxl
.2 ,23/2

(x +Y )

We have obtained the basic theorems of the theory of plane curves in Euclidean
geometry. Let us make several remarks. We shall later prove the following property
of time-dependent orthogonal transformations.

Given an orthogonal matrix A =A(t), where:
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O ( iO ~i {I. i¢j).A~ ) = E a ( ) = u. =
J J O.i¢j

The matrix Mdt 1 0 = ((j (0») is skew~symmetric. i.e. a~ (0) = - a~ (0).
1= J J I

53

This fact is proved below. Its manifestations were the Frenet formulae

dvldl = kn. dnldl = - kv. where k =k(l) and ~ 11=1
0

= (_~ ~).

It was shown separately ~at the matrix B =dAldl is an infmitesimal rotation
through an angle~ =k!ll of the frame (v. n) in moving along the curve or a rotation
of the vector v since the rotation of the vector n onhogonal to it is thereby defined.
Thus. k = d$ldl. where <p is the angle of rotation of the vector v.

LEMMA 2. Let A(t) be a smoothfamily oforthogonal matrices and let A(O) = E.

Then the matrix X = A(r)I,::{). which is the derivative ofthefamily A(t) at the point

t = O. is skew-symmetric.

Proof. The onhogonality condition for the matrices A(t) is (A(t)a. A(t)b) =(a. b)
for any vectors a and b. Differentiating this identity with respect to t, we
obtain the equality (A' (t)a. A(t)b ) + (A (t)a. A '(t)b) = O. When t = O. we obtain
(Xa. b) -t (a. Xb) = O. Setting a = ei. b = ejt we come to (Xei • ej) =":" (eit Xej)'

Le. ~j = - xii' where X = (x~). Here ei and ej are onhonormal. basic vectors, as
required.



54

1.6 Space Curves

PART I

We now proceed to the theory of space curves.
For any curve x =x(t), Y=yet), z =z(t) or in terms of the veaors r =ret) there

holds the equalities:

As in the planar case, we shall first consider the natural parameter 1only, since it is in
terms of I that our basic concepts are most conveniently defined. Our curve is thus
given by r = r(1), x = x(l), y = y(l), z = z (I), where x, y, z are Euclidean coordinates._

By defInition, v =; =xel +ye2 + ie3 and w =r- = ~ =xel +ye2 + i'e3 (we

use the dot to indicate derivatives with respect to l, dldl, since t = I). We define
curvature as in the planar case.

DEFINITION 1. The curvature ofa space curve r =ret) is the absolute value of the

acceieration relative to"the pafameter l: k = !wI = 1;1 (where dot stands for dial). The

radius ofcurvature is R =11k.
In the three-dimensional case, however, the velocity vector v =drldl and the

acceleration vector w =tPrldl2 are not enough to compile a complete reference frame

even if Iwl ¢ O. We know from Lemma 1, Section 1.5 that wv = 0 or w.l..v since

Ivl =1. Besides, it is obvious that in a three-dimensional space the curvature alone
is not enough to characterize the geometrical properties of the curve. Imagine, for
example, a -curve winding round a cylinder (x =R cos t, Y= R sin t, z=t) (a circular
helix). In addition to curvature, it has a third direction in which it is "contoning"
(Figure 13). The third basis vector can be taken orthogonal to v and w.

Figure 13.
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We remind the reader of the well-known operation. from the linear algebra of
Euclidean 3-space. of the vectorproduct of vectors.

If ~. TI are vectors in a three·dimensional space ~ = ~iei' TI = Tliej. where ej

fonn an orthogonal basis (ei 1. ej • lejl = 1). then we can build a vector:

where

(

~l ~2 ~3 '\ .
or ± i is equal to the detennin~t of the part of the matrix I . which

TIl Tl
2

Tl
3
)

remains after the i-th column is crossed out
We can readily see that:

and it can be verified that Jacobi's identity holds:

[[~. TIl, y] + [[y, ~l, TI] + [[TI, Yl,~] = o.

The following properties of the vector product are also well·known to the
reader: the vector [~, TIl is directed perpendicularly to the plane of the vectors

A.~'+ J.lTl, 'the vector'length being ~ual to I[~, TIll =1;1 1111 Isin cpl, where cp is the angle

between ~ and TI,

REMARK. If the vectors ~ and TI lie in the plane (x, y), their vector product is

orthogonal to the plane (directed along the z-axis) and [~, TIl = (~lTl2_ ~2rtl)e3 and

I[~. TIll = 1;1~2 - ~2rtll = 1~llTtllsin cpl.

We can now rewrite the fonnula for the curvature of a flat curve to obtain:



56

'" n, 2
Ixy -xy I=-----(i2+;)3/2 '

PART I

for an arbitrary parameter t.
Thus, the general formula for the curvature of a flat curve is expressed in terms

of the length of the vector product [':, i J, and since the curvature is related, by virtue
of the Frenet fonnulae, to the rotation of the reference frame, it is natural to relate the
curvature to the angular velocity of the frame (v, n) directed orthogonal to the
(x, y)-plane.

Now we are in a position to return to our space curve:

r = r(l), r = (x, y, z):

x = Z(l), Y=Y(l), Z =z(l).

We assume that Iwl ¢ 0 and Ivl ¢ 0; such points are called non-degenerate
points of the curve. We assume here Ivl =I, wv =0 (or w J.. v). Consider the vector

b =[v, nJ. n =wllwl. We shall call b the vector of binormal to the curve or the
binormal to the curve, and n the vector of the principal normal to the curve. or the
principal normal).

We can readily see that:

Ibl = Ivlln IIsin $1 = I, b J.. v, b J.. n.

We thus have an ortbononnal frame (v, n, b) at each point of the curve where Iwl ¢ 0
(ie. at each non-degenerate point). .

As in the case of scalar product, we shall fmd the following lemma useful.

LEl\-l'vlA 1. For two arbitrary vectors ~(t) andTl(t) in a three-dimensional space there
holds a Leibniz typeformula:

~ [~. TIl = [~ ,TIl + [~, ; l .

The proof is immediate from the general Leibniz fonnula for differentiation of the

product of functions (jg)' =i g +fg .
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THEOREM 1. For any space curve r =r(l), where I is the natural parameter, the
following Frenetfonnuiae hold:

dv = kn
d '

dn
-=-ldJ-kv
dl '

db
{j[ = 1CII,

where hel =Idb{dll is a definition, and the number 1C is called the torsion of the space

curve (which need not necessarily be positive). In the planar case, we have b =
const. and therefore K: =Idb{dn =O.

Relative to the basis (v, n, b) at a given point of the curve where v = el' n =e2,

b = e3 we have, using matrix notation, deJdl =JJjf!j, i = 1,2, 3, the matrix B =(JJ j),

i,j = 1,2,3 being of the form:

(

0 +k
B = -k 0

o +K:

We can see again that, as in the two-dimensional case, the matrix is skew-symmetric.

The proof of the theorem is given somewhat later.

In connection· with the concept of the vector product [~: '1'\] of v~cto~ ~ 'and '1'\
we have made several remarks on the algebra which we are now in a position to
specify. A skew-symmetric matrix A = (aij)' ajj =- aij in an n-dimensional space

(i = I, ... ,n;j= I, ... ,n) is determined by n(n -1}12 numbers aij' where i <j.

It can be verified that for two skew-symmetric matrices A, B of order n x n,

their commutator A 0 B - BoA = [A, B) = - [B, A] is again a skew-symmetric

matrix. For n =3, we have n(n - 1}{2 = 3. Therefore, skew-symmetric matrices in a
three-dimensional space also form a three-dimensional linear space
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with coordinates al2 =X, al3 =Y, an =Z. Thus, the matrix A is interprested as a

vector in the three-dimensional space, (X, Y, 2), where X =al2' Y =al3' Z =an.

The commutator [AB] =A 0 B - BoA appears to be exactly the vector

product of the vectors A and B regarded as skew-symmetric matricesfor n = 3.
What is the algebraic representation of the scalar product?

n

It turns out that 2(A, B) =- Sp (A 0 B), where Sp C = L c.. , C =(c..),
i=l II iT

Sp C is the trace (check it!).
Here we have used the notation:

"Sp" (= Spur) = the trace of the matrix.

It is sometimes denoted by"Tr" (= Trace).
Furthermore, the question has arisen why for the natural parameter 1=t we

have the equality: the absolute value of the acceleration =~y -xyl =l[vw]1. The
deri:vation of this equaltiy is as follows. The acceleration is equal to w = (x',';) and
(ij - xy}e3 is the vector product of the velocity vectors v = x' el +ye2 by the
acceleration w. We have:

I[v, w]1 = Iv!lwllsin ,I = Iwllsin ,I (Ivl = I).

Since w J.. v, it follows that Isin <;II =I, I[v, w]1 =Iwl =k.
We now proceed to the proof of the Frenet fonnulae for space curves.
Suppose the curve is given in terms of the natural parameter I:

r = r(l), x =x(l), y =y(l), z = z(l)

tT (dx dy dz)
v = d[ = del + di e2+(jfe3 '

where v is the vel~o/ of$e motion along the curve, Iv! = I, and w = d2rldl2.
By definition, k = Iwl, where k is curvature. We should prove the equalities:

:=kn
(by definition we have: n =w/lwl, w ¢ O),

dn
- = -kv-'dJ
d '

db
(j"=tcn, b=[v,n].
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Proof Introduce the formula dbldl = lCn. Since b = [v, n], it follows that

d[v, n]. •
dl = [v, n] + [v, n] (by the Leibniz fonnula);

then in accordance with the Lemma proved above, we have ~ .l.. v and ~ .l.. n (Ivl = 1,

Inl =1). Therefore, v· =kn,'; =av +~, where a and ~ are unknown. Since

[n, n] =0, and [v, v] =0 it follows that [v', n] =0,

[v,~] = ~(v, b] =± ~n.

Accordingly, : = ~ [v, n] =± ~n = lCn, whe!e lC is detennined from this

equality.

Thus dbldl =lCn. The number lC is called torsion. If v =el, n =e2, b =e3' we
have:

Next,

de. .

d
l = lie.

I )
(i,j =1,2,3).

dv del
-=-=kn=ke
d d 2

db de3-=-=lCn=lCe
d d 2

(k = bi, b\ = bf = 0),

(lC = b~, ~ = ij = 0).

We shall calculate dn/dl directly. Since ~ .l.. n, it follows that ~ = av + ~.
d

Note that n = - [v, b], and, therefore:

d1v, bl. .-r = [v, b) + [v, b ] = [kn, b] + [v, len] =
= k [nb] + lC [v, n] = kv + 1dJ ,

as required.

Now using Lemma 2 of Section 1.5, we shall give another proof of this
theorem. For the matrix B =(~) we have:
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B= U k
1
K

~I
0)'

PART I

Recall that if A(t) is an onhogonal matrix, A(O) = E, then ~ I,..{) = B is

skew-symmetric.
If we make use of this fact, we can fill in all the question marks in the matrix B:

B= U k
?
K

k
o
K

This implies that dnldl =- lev - 1dJ ifdvldl =kn and dbldl =len.

EXERCISE. Suppose we are given a helical line

x = Xo +R sin t, y =Yo +R cos t, Z =at.

Write this curve in tenns of the natural parameter 1and calculate the curvature and the
torsion. It turns out that the curvature and the torsion are constant along this curve.

We have deduced the main facts from the theory of flat and space curves,
In conclusion, we should explain in what sense the curvature and torsion of a

curve in Euclidean space make up a complete set of geometric invariants for the given
~urve.

In the Euclidean plane we have: given the dependence R=k(I), the curve is
uniquely restored to an accuracy of motion of the entire space. The function
(equality) R=R(I) is sometimes called "the natural equation of a planar curve", Here
~ is the curvature with sign, which has been defined in Section 1.5.

In the three-dimensional case we have: given the functions k = k(I), K = K(I),

we can reconstruct the curve to an accuracy of motion of the entire space as a rigid
integer. This pair of equalities is called "the natural equation of the space curve".

The next topic to be considered is the theory of surfaces in the
three-dimensional space,
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1.7 The Theory of Surfaces in Three-dimensional SIPJ~ce.

Introduction

In this section we shall be concerned with the ways of setting a surface, the
Riemannian metric (the first quadratic form)1. In the three-dimensional case, the
surface is the simplest object with, so to say, intrinsic geometry. What do we mean
by this?

We have investigated curves and their metric invariants in a plane and space.
These invariants (normal, binormal, curvature and torsion, FrenetformuIae) depend,
however, on the manner the curve is embedded in space, and in this sense they are
invariants only of the way of embedding, the shape of the curve, Le. are concepts of
extrinsic geometry. A curve has no intrinsic metric invariants: obviously, we can
coordinatize a curve with the natural parameter I, such that the lengths (on the curve)
between two points along both the curve and the straight line are measured in the
same way, that is:

,
I = JIV,I dt, v, = r = <X ,-Y,h.

'0

For surfaces this is not the case: for instance, it is impossible to coordinatize a
sphere (or even a piece of a sphere) in such a way that the formula for the curve
lengths in these coordinates be the same as those in Canesian coordinates x, y in the
Euclidean plane.

What is the way to determine a surface? There exist three ways for a surface to
be specified:

1) as the graph ofajunction (the simplest case)

z = ft.x, y),

2) as the graph of an equation (a more general case)

FCx, y, z) = const.,

3) by parametric equations (similar to those for a curve) r =r(u, v):

x = x(u, v), y = y(u, v), z =z(u, v),

where u, v are running over a certain region in the plane (u, v).

In Western literature the first (second) quadratic form is often termed the first (second)
fundamenraI fonn.
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F(x, y fi..x, y» == C. We shall obtain F(x, y, z) = C,

DEFINITlON 1. We say that the equation F(x, y, z) =const detennines a surface
which is non-singular at a point p(xo, Yo, zo), where F(Xo, Yo, zo) = const. if the

gradient of the function F at the point P is non-zero, i.e.

aF aF aFax e1 + aye2+~3 ¢ 0 (x=xo' y =Yo' z =zo)'

By the implicit function theorem if ~ I ¢ 0, then near the point
U~ %o'Yo,zo

(X(). Yo, zo) = P the equation F(x, y, z) = C can be solved for z: z =fi..x, y), where _

Zo =fi..xo, Yo), and in a certain neigbourhood of the point (xo, Yo) in the (x, y)-plane,

aF aF aF .
at dx + dy dy + tii dz = 0,

whence:

'if "dFfr)x 'if "dFfr)y
ax = - "dFfr)z ' a; = - "dF/i}z .

Consequently, for the surface F(x, y, z) = C in a neighbourhood of the point
(A{j. Yo, zo) the parametric representation z = fi..u, v), X = u, y =v (near the point

xo=Uo,Yo =vo) holds. We can see that locally, near a non-singular point on the

surface, the surface can always be given parametrically. In other words, the surface
near a (non-singular) point can be parametrized by local regular coordinates u, v.

Inversely, let a surface be given parametrically: r =r(u, v), i.e.

x = x(u, v), y = y(u, v), z = z (u, v).

DEFINITION 2. A point P =(xo> Yo> zo) = (x(Uo, vo), y("o, vo), z(Uo, vo» on the

surface is called non-singular if the matrix:

(~
A=lax

av
has rank 2.
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THEOREM 1. If a surface is given parametrically and if the point P =("0, vo) is
non-singular, then near this point the surface can be given by the equation F(x, y, z)

=0, where F(xo, Yo, zo) =0 and Flex y , "# 0, i.e. both the definitions of
0' 0' z<y

non-singular points are equivalent.

Proof. By the definition of non-singular point, the rank of the matrix A equals 2.

Let, for the sake ofdefiniteness, the detenninant have the fonn:

ax OJ ax OJ-----"#0auav avau .

Recall the inverse function theorem: let x = x(u, v), y = y(u, v), let the Jacobian at
the point (uo. vo) be non-zero and let x =x("o. vo), Yo =y("o, vo); then at a cenain

neighbourhood of the point (xo. Yo) we can find the inverse function:

u = u(x, y), "0 = u(xo, Yo),

v = vex, y), Vo = v(xo, Yo),

( dl dvldX"-
the matrix ldl : being the inverse to the matrix

OJ ()y)

By vinue of this theorem, we shall fmd the expression u =u(x, y), v =vex, y) and
substitute them into the expression for z = z(u, v) =z (u(x, y), vex, y», where
z =z("o, vo) =z(u(xo, Yo), v(xo, Yo». We obtain the expression for the surface in

the fonn z =f(x, y), Zo =f(xQt Yo) near the non-singular point (.xo, )'0, zo), which

completes the proofof the theorem.

Thus, we have arrived at the conclusion that locally, in the neighbourhood ofa
non-singular point P = (xo, Yo, zo) on the surface, all the three ways of defining
surfaces (by smoothfunctions) are equivalent.
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EXAMPLES

1. The ellipsoid illa'l +rlb2 + illc'l =1 (Figure 14).
This surface

PART I

a) has no singular points,
b) is not globally the graph ofa function (whereas locally it is),
c) has no global paramenization (such that all the points are non-singular).

2. The one-sheeted hyperboloid Xlla2 +rlb2 - illc2 = 1 (Figure 15).

This surface

a) is not globally the graph ofa function,
b) can globally be given parametrically.

3. The two-sheeted hyperboloid - Xlla2 - rlb2 + illc'l = 1 (Figure 16).

This surface is such that one half of it can be given both as the graph z = ft..x, y) and
parametrically.

Here the point (0,0,0) is singular.

z

z

Figure 14.

!I

Figure 15.
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Figure 16.

\lz
~

!I
J;' I

Figure 17. "-r-...

We now tum to the intrinsic geometry on the surface itself.
We have already made some introductory remarks concerning the curvature of

the surface. Let us return to this concept. Suppose we are given a surface with
(.xo, Yo, zo) as a non-singular point on it. Choose an orthonnnal frame, where z is

normal to the surface while x and y are tangent to il Then locally near the point
(xo, Yo, zo) the surface is given in the form z =fi..x, y), Zo =f(Xo, Yo), and

Consider the second differential of the function z =f(x, y) or

2 rl 2
Uj = a~ (dx)2 + 2 ax ~. dx dy + a~ (dy)2

ax V) ()y

and construct the matrix a.. = ~f., wherex
l =x,x2=y (the matrix is called

IJ axl ai
hessian). We shall view this matrix as quadratic at the point (xQo Yo, zo), where

CJfldx = 0, af/dy = o.

DEFINITION 3. Principal curvatures ofthe surface are eigenvalues of the matrix aij
at the point where the surface is given in the form z =fi..x, y) and gradf= O.

The Gaussian curvature is the determinant of the matrix (aU) at this point, and
the mean curvature is the trace of the matrix at this poinl The trace is therefore equal
to all + a22 = kl + k2, where kl and k2 are eigenvalues; 1C =kl k2 = det (aij) =
alla22 - a12 (Gaussian curvature).
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The Gaussian CUT'Vatw'e of the surface turns out to depend only on the intrinsic
metric properties of fhe surface (this assertion is proved below).

We have defined the concept of curvature in special coordinates associated with
the point under investigation; the z-axis is nonnal to the surface, while the x- and
y-axes are tangent to the surface at this point. Then locally the surface is written in
the form z = f(x, y), grad f being equal to zero at the point (xo, Yo). Such

coordinates can, of course, always be chosen.
We now tum to a consistent presentation of the basic concepts of intrinsic

geometry of the surface. To begin with, we introduce the Riemannian metric on the
surface; all intrinsic geometric invariants will be expressed in tenns of this metric. In
this connection it is instructive to recall the concept of Riemannian metric.

Let a surface (or a piece of this surface) be given parametrically: r =r(u, v),
r =(x, y, z), where (u, v) are the coordinates of a point on the surface. The point

will be thought of as non-singular, i.e. the rank of the matrix A _ (xu yu zu)
- Xv -Yv - zv)

. 2 h ax ax
IS ,were Xu = au ' Xv =av ' etc.

How have we defined the Riemannian metric? Suppose we are given the curve
u = u(t), v =vet).

b

What is the length of the curve I =J1v,I df, v, =(u , v)? Here v, =(u, v) is
a

the velocity vector in the coordinates u, v and

We have called the family of functions gij(u, v) (in the coordinates (u, v) the

Riemannian metric; it determines the arc length, as ·well as the angles between two
curves at the point where they intersect.

How shall we define the arc length? What are ~e values of gij(u, v)? (Here

u = xl, v = x 2).

Note that the curve u = U(f), v = V(f) is given in the coordinates (u, v) on the
surface, but the surface itself lies in a Euclidean 3-space (x, y, z), where r =r(u, v),
r =(x, y, z). Naturally, the arc (curve segmenf) lengfh u =u(f), v =v(f) on fhe
surface is understoodas the length ofthis arc in a fhree.mmensional Euclidean space.
Recall that the surface lies in the space.

We shall write the curve in the form:
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x = (u(t), v(r)) = x(t),

y = y(u(t), v(t» = y(t),

z = z(u(t), v(r)) = z(t).

For the arc length in a three-dimensional Euclidean space we have
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b

J(,2 .2 .2)lfl
1 = x +y +z a

a

(by definition).

, ax. ax
Sincex = au u + av V , etc., then we come to

X2+y2+i2 =Eu2+2Fu~+G~2 = gijxixj ,

where

and

g22 = X; +y; + Z; = G,

gij = rxl"':xi (i =I, 2; j =1, 2).

The functions gi)<u, v) = (E, F, G) are defined in the coordinates of the

surface.
The expression gij d:t~=E(du)2 + 2F dudv + G(dv)2 is usually called the

first quadratic form (or the Riemannian metric on the surface). The fIrst quadratic
fonn is a quadratic fonn defined on tangent vectors to the surface at a given point.

If the surface is given in the form F(x, y, z) =C, then the Riemannian metric
on the surface (the first quadratic fonn) is:
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under the condition that F(x, y, z) = C. This implies that:

Fxdx+Fydy+F'ldz = 0 (Fx = oFJax, ... ).

If at the point under investigation oFtaz "# 0, then:

F F
dz =- 2. dx - J.. dy = A dx + B dy and z =ft..x, y).

F'l F'l

Therefore, on the surface F(x, y, z) =C, x = u, y =v

PART I

gll = E = 1+ ~ g = F = Fxf'y
~' 12 ~

g22 = G
K

= 1+:.l.r''l

where u =x =xl, v = Y =x 2. If the surface has the form z = f(x, y), then

gll = 1 + fi, gl2 =f:fy' g22 =1 +f2y.
Thus, the Riemannian metric on the surface appears here as the way to calculate

the lengths of curve segments in the coordinates u, v which describe points of the
surface. Since the surface lies in a three-dimensional (Euclidean) space, we deal here
simply with the length of this curve segment in a three-dimensional Euclidean space.

Let Euclidean coordinates x, y, z be given in the fonn of the function
x =x(u, v), y =y(u, v), z =z(u, v) on the surface. By definition:

(dx)2 + (dy)2 + (dz)2 = gifb! dxi,

xl = u, Xl =v; gn = E, gl2 = F, g22 = G.

The metric giJ{xl , Xl) on the surface is said to be Euclidean if there exists a pair of

functions on the surface U(xl, x 2), V(xl, Xl), such that (du-)2 + (dv)2 =g Ii dxi dxi .
For the surface in a three-dimensional Euclidean space we have:
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x = x(u, v), y = y(u, v), Z = z(u, v), U =X1, v = Xl,
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Le. the metric is decomposed into the sum of squared differentials of three functions
x(u, v), y(u, v), z(u, v) rather than two (generally speaking). If the metric on the
surface decmposes into the sum of squared differentials of two fuctions, these two
functions are Euclidean coordinates on the surface, and the metric on it is Euclidean.

EXAMPLE. The meoic of a cylinder is Euclidean. The equation of the cylinder has
the fonn.ftx, y) =C (the coordinate z does not enter). Euclidean coordinates on a
cylinder are coordinates z and the natural parameter 1of a flat curve .ftx, y) =C ,
U=z, V =I.

We have:



70 PART I

1.8 The Theory of Surfaces. Riemannian Metric and the Concept of
Area

In Section 1.7 we introduced three ways in which a surface may be given in a
three-dimensional space: by the equation z =fl.x, y) or F(x, y, z) = C, grad F ¢ 0,
and parametrically by r = r(u, v), r = (x, y, z), where u, v are parameters. Tangent
vectors to a surface are the velocity vectors of the curves lying on the surface.

(

X y z '\
At a non-singular point, where the rank of the matrix ., ., ., I is equal to

Xv Yv zv)

2, these three ways are locally equivalent.
We have also defined the Riemannian metric on the surface (given

parametrically)

where xl = U, Xl = v, gu =F g12 =g21 = F, gn =G. The Riemannian metric

has been defined to meet the requirement that for any curve on the surface u =u(t),
b

J .. 112
v =v(t) its length on the surface I = (gijxIXJ) dt coincides with its length in

a

the three-dimensional Euclidean metric of an envelope space:

b

J('2 '2 '2)112I = X +y +z dt,

a

where

x(t) = x(u(t), v(t», y(t) = y(u(t), v(r)),

z(t) = z(u(t), v(r)), U = Xl, v = Xl.

Thus, by definition:

where

dz = z., du + Zv dv,
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(xu =dXtau, ... ). If the surface is given in the form z =f(x, y), then x =u, y =v,

and therefore

or

gu = 1 +~ gl2 = g21 = f,fy' g22 = 1 +Iy .

If the surface is given in the fonn F(x, y, z) =C and grad F ¢ 0, then on the surface:

In the case F'l ¢ 0, we can take u =x, v =y

Fx _ Fy
dz = A dx + B dy, A =- F' B - - F '

'I 'I

whence (dl)2 = (dx)2 + (dy)2 + (A dx + B dy)2 (on the surface). The vector ~ is
called a tangent vector to a surface at a point P if it is the velocity vector of a cenain
curve lying on the surface which passes through the point P.

If ~ = ~Iel + ~2e2 + ~3e3 is a tangent vector to the surface then we have

Fx~1 + Fy~2+ F'l~3 =0 or ~ 1. grad F. From this, we come to the conclusion that the

vector grad F is normal to the surface F(x, y, z) =C. When the surface is given
parametrically by r = r(u, v), r (x, y, z), we have two vectors:

These are both tangent vectors to the surface. If they are linearly independent, their
vector product [~, TIl = [ru, rvl is orthogonal to the plane ru, rvo that is, gives a nonna!

vector to the surface.
With the Riemannian metric we can measure the length of any curve u = f(t),

v = g(t) on the surface and the angle between two curves at the point of their
intersection, since the scalar product of the velocity vectors if I' gI) and if2' gz} at the

intersection point (Uo, vo) of the curves ifl(t), gl(t)), if2(t), g2(t», u =Ii(t) , v = gj(t),

i = 1,2, is given by the fonnula (at the point Uo =/;,(to), Vo = gl{tO»:
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ThTh = gij TIt 'Il~, gij = gij(Uoo vo),

TIl = lfl,gl)' 'Il2 = lf2,g2)·

PART I

Another question arises: How shall we measwe the area of a region on a
surface?

If we have a Euclidean plane with coordinates x, y and a region U in this plane,
then the area of U is given, as we know, by the double integral a(U), Le. the area of

the region has the fOIm a(U) = II dx dy. If we make a (one-to-one) change of

variables: U

x = x(u, v), y = y(u, v),

we come to the fOImula:

a(U) = II lx;Yv -y,ftv' du dv,
v

where V is a region in the (u, v)-plane corresponding to the region U in the
(x, y)-plane (see the theorem in analysis on the change of variables in a double
integral).

Thus, we have:

a(U) = II II 'du dv,
v

where J is the Jacobian of the change of variables x =x(u, v), y =y(u, v)

J = x,;cv'

A question arises: How shall we calculate the area of a region on the surface
r =r(u, v), r =(x, y, z) in a space if we know the Riemannian metric on the surface
itself:

2 .. 1.2
(df) = gij dxl dX, x = u, x- = v.

Let us consider the determinant of the matrix:

det (gij) = g = gllg22 - K'b = EO -P > o.



RIEMANNIAN METRIC ~'CONCEPT OF AREA 73

DEFINmON 1. The area ofa region U on the surface r = r(, V), r = (X, y, z) is the
expression:

(j(U) = II (g)lfl du dv,

v

where U is the region on the surface given parametrically as the image of the region V
in the (u, v)-plane.

So as not to introduce some special notation, we shall, in some cases, write

(j(U) =II (g)lfl du dv

u
implying that U is the image of V.

The expression (g)lfl du dv is called the differential ofarea with Riemannian
metric (g ij).

EXAMPLES.

1. If the metric is Euclidean, (dl)2 =(du)2 + (dv)2,

{
I, i =j,

gij = aij = 0 . .
, I ¢j,

then g =1 and (g)lfl =1. Therefore (g)lfl du dv = du dv.

( R
2 0)2 . 2 (g)lfl = R2 Isin ulo R SIn U '

we have

(j(U) =IIR
2

sin u du dv and 0 ~ u ~ x/2.
u

If the sphere is given in the form Xl +l + z2 =R2
, then u =9, v =cp,

y = R sin 9 sin cp, x = R sin 9 cos cp.
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Therefore, CJ(U) = JJR
2

sin ede dep. We can readily see that the total area of

u
the sphere is equal to 47tR2•

On what grounds do we define the area of a region in such a manner? Why is
the element of area to be taken in the form (g)112 du dv if the scalar product of
tangent vectors at the point (u, v) is given by. the matrix gij{u, v)?

To gain a deeper inight into this problem, we shall consider a pair of vectors of
the Euclidean plane ~, Tl and a parallelogram (A; + J.lTl), O:s; A:s; 1, 0 :s; J.l :s; 1.

The area of the parallelogram is equal to CJ = I~ lTl2- ~2.rll, ='det A'

A = (~ll ~22\
\ Tl Tl)'

i.e. the matrix A is fonned by the components of the vectors:

Let us now consider another example. Suppose we are given a plane with
coordinates (u, v), where any vector has the form uel + ve2 and el' e2 are basis

vectors.
Suppose the scalar product of the basis vectors is given by the manix:

Calculate the area of the parallelogram spanned by the vectors el and e2. The

points of the parallelogram are Ael + 1Je2' where 0 :s; A:S; 1,0 :s; J.l, A:s; l.

Ifgij =5if, the area of the parallelogram is equal to 1 (unit square).

We assume the matrix (gij) to be the matrix of positive quadratic form:

gij ~i 'f/ > o.
PROPOSmON 1. The area ofa parallelogram lel' e2' spanned by the vectors el and

e2 is equal to (g)112 where g = det (gij) = gng22 - gl~21 = gng22 -l21·

Proof. The quadratic form gij can be reduced to a diagonal form gij = 5ij through a

linear transformation A.. More precisely this means the following: there exist
vectors e'l' ei
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such that eiej = gij = 8ij (or lei = I, e'l.l e2)' Then the area of a parallelogram

spanned by the vectors ei, ei is equal to 1 (unit square).

e2 = a}e I + ~e2 =a~ej , it follows that:

In the matrix language, we have (gij) =A 0 AT

What is the area of the parallelogram spanned by the vectors el and e2'
Since the basis el' e2 is orthonormal, the area of the parallelogram lele21 is

equal to det A, i.e. to the detenm':1ant of the matrix A.

1) The detenmnant of AT =the detenninant of A.
2) The detenninant of A 0 AT = (det A) • (det AT) =(det A)2 =g.

We obtain (g)112 =det A = the area of lele21, and the assertion follows.

We have used the fact that in an n-dimensional Euclidean space with
orthonormal basis el' ... , en' e~j = 8ij' the volume of a para//e/ipiped spanned by

the vectors el' ... , en' ej =ai~j , i =I, ... , n, is equal to the determinant of the

matrix A = (~) (in the absolute value).

For n = 2 this fact is already known, but we leave to the reader to verify that it
is valid for all n.
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If the matrix of scalar products is given in the form eiej = gif' then the volume

of the parallelipiped spanned by the vectors el' ••• , en is equal to the root of the

determinant of the matrix (gij), i.e.

These two facts are t'le basic ones for some theorems from mathematical analysis and
geometry:

1) In the Euclidean plane (n = 2) after the change of coordinates (i = I, 2)
y} = y}(zl, z2) the area of a region is calculated by the formula:

CJ(ll) = II tb;l di = II lJl dzl dl, f 0 JT = (gij);

u v

2) In the Riemannian metric (g ij) the element of area has the fonn:

a(ll) = If (g)112du dv.
u

REMARK. The matrix J =

ai ai
azl azl

axl a:?
az 2 az2

is the Jacobian mattix.

The Jacobian J is equal to the determinant of the Jacobian matrix f.
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1.9 The Theory of Surfaces. The Area of a Region on the Surf~ce

77

Consider a region U in a plane with coordinates .xl =u, Xl =v, bounded by a curve

r (r is the boundary of the region U). We assume the curve r to be continuous, and

funhermore, to be piecewise smooth. This means that the curve consists of several

smooth pieces 11' .•. , 110 the end of the piece 1i coinciding with the origin of the

piece 1i+l (the end of 1k coinciding with the origin of 11). (Figure 18).

The pieces 1j can be given parametrically:

and ui(bi) =ui+l(ai+l), vj(bi) = .vi+l(ai+l) (the origin of 1i+l coincides with the end

of 1J· 11(al) = 1k(bV·

EXAMPLE. (Figure 19).

11: v = a, ul ~ U ~ u2'

12: U =fly), a ~ v ~ b,

13: v = b, u4 ~ U ~ u3'

14: U = g(v) , a ~ v ~ b,

r = 11 1213 14'

f(v) and g(v) are continuous functions,!> g.

Uf U;s

,v
- --,;,--.....:..._-\

tJ I
I
I

rr I
---T:--~:....l:....~-lp

I I
I I

Figure 19.'------~
·0Figure 18.
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Consider small numbrs~ and Av and partition the plane into rectangles with

sides 8u and Av.

We assume the umbers~ and Av to be sufficiently small and to tend to zero.
Obviously, we have: the area of the region U is greater than or equal to the

sum of the areas of all interior rectangles. The area of U is equal to 0'(U) L S"
• I
I

where Sj is the area of the interior rectangles indexed by the number i..

DEFINITION 1. The area of the regioin U is the limit of the sum of the areas of all
interior rectangles as b.u -7 0 and b.v -7 0 if this limit exists.

Suppose next that we are given, in addition, a continuous function of two
variables j(u, v). We shall now recall the definition of the integral of the function
j(u, v) over the region U.

Consider all the interior (for the region) rectangles with sides 8u and b.v from a
rectangular net. In a rectangle Sj we consider the value ofj(uj, Vj) at the centre of the

rectangle. Consider the integral sum:

Sif, U) = L f(u., v. )(b.u)(b.v) ,
• I I
I

where the sum is taken over all the interior rectangles.

DEFINITION 2. The limit of the sums S(U,f) as b.u -7 0, b.v -7 0 is called the
double integral of the functionj(u, v) over the region U and is denoted by

fff(U, v) du dv.

U

We shall list the properties of the double integral (withoutjustiflcation).

1. If the boundary of a region is a continuous curve r without
self-intersections, the region U is bounded and the function j(u, v) is continuous,
then the limit of the integral sumes exists and coincides also with the limit over all the
rectangles intersecting the region U ("existence of the integral'').

2. Ifj(u, v):= 1 with (u, v) being Cartesian Euclidean coordinates, then the

integral If 1· du dv coincides witlt the area of the region U. recall that in Euclidean

U

coordinates the square of the element (the differential) of the arc length has the fonn:
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2 2 2 {I, i =j,
(df) = (du) +dv), gr = aj' =

IJ IJ 0 ......, l..-j.
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(definition!).

In this case, the area of a rectangle with sides /).U and /).V is equal to (/).u) (/).v).

the curves u= consl. and v = consl. intersect at an angle which, in this case, is
actually right

3. If in the plane u = xl, v = Xl we are given a Riemannian metric:

2 ~ .. 2 2
(df) = ~ gij dx'~ = gll(du) + 2g12 du dv + g22(dv) ,

then the area of the region U is equal to the integral:

a(U) = ff (g)112du dv
u

Why is this definition natural?

If /).U and /).V are sufficiently small, the area of a small parallelogram centred at

the point (ug., vcJ with sides~ and /).V is equal, approximately, to Sj:: (/).u) (/).v)

(g)112 where (g)1/2 = (gllg22 - g12)l/2 =(EG _F2)ln, the numbers gij being

calculated at the point (ug., vcJ.

For small /).u, /).v we have;

(the area of U) =a(U) =,L Sa = L (g(Ul;(.' vcJ)l~ (~) (~v).
a a

The limit of these sums (as (~) -70, (/).v) -7 0) is called the integral

ff (g)ll2dudv .
u

As in the case of the curve length, the expressionff (g) Indu dv is taken, in effect,

u
as the definition ofthe area ofa region.

In the notation gil = E, g12 =F, g22 =G we have:

a(U) =ff (EO _F2
)ln dudv .

u
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4. Under a one-to-one change of variables:

such that

J = U IV 2 - U 2v I :;C 0,: z ::

PART I

to the region U in the coordinates (u, v) there corresponds the region V in the
coordinates (zl, ?) and we have the equality:

ff «u.' v) du dv ~ ff «u(zl, ~2), v(zl, z2» J(zl, z2) dzldz2

U V

("the change of variables in the integral").
If the point zl, z2 belongs to the region V, then the point u = xl(zl, z2),

v = .~(zJ ,z2) belongs to the region U.

EXAMPLE 1. The Euclidean plane.

u =r cos " v =r sin "

Conclusion. ff du dv =ff rdrd'.
U v

Let U be a ring (0 ~ r ~R, ,is arbitrary). We have:

R 2n R

a(U) = ff r dr d, =fdr (f r d,) =f 21[1" dr = 7tR
2

•

0<-r<...R 0 0 0
OS~S2n

Conclusion. The area of the ring is equal to~.
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EXAMPLE 2. A sphere ofradius ro:

(dl)2 =~ «du)2 + sin2 u (dv)2), 0 ~ u ~ x,

(g)112 = ~ sin u (~= 8, v =~).

A ring of radius R, whereR ~ XTo, is a region, where:

r0 ~ u~R/ro,

UR =1cp _ arbitrary.

The area

UR = C1(U) = II r~sinududv =
~u$R/ro

~vS21t

R/r0 21t R/r0

= r~ Idu (I sin u dv) =I r~ 2x sin u du =
000

=2xr~ (1- cos: ), R ~ xro (8 =u, ~ =v).
o

When R = xro we have that UR coincides with the whole of the sphere (Figure 20).

81

Figure 20.

II

Conclusion. The area ofa sphere is equal to 4xr6 (since cos R/ro =cos x =-1).
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EXAMPLE 3. The Lobachevskian plane.

(df)2 = ~ «dU)2 + sh2 iu (dv)2),

(g)lfl =~ sh u

(v =cp, where ~ is the angle).

A ring of radius R is a region

r0 ~uSR/ro,
U - ~

R - lOS; v S 27t.

For the area we have:

PART I

G(U) = II r~Sh u du dv
u

.= II (du dv)r ~.sh u =
frfl6Rlro
frf~2l't

R/ro 21t

= I du (fr~ shudv) =
o 0

Rlro

27tr~ I sh u du =
o

Since ch (x) =(e + e--,/2, it follows that for large x we have ch x == e/2, and
therefore, for large R

Rir
(the area of a ring of radius R) == 7t~ e u.

Now we shall calculate the circumference of the ring, respectively, on a sphere
and in a Lobachevskian plane.

1. The menic on the sphere: (df)2 =~ [(du)2 + sin2 u(dv)2].

Let the curve be given as follows: u = R/ro = consl., v is arbitrary, v = t

(circumference). Then the circumference is equal to:
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:bt

JTO sin u dt = 2XTo sin TO sin u =2XTo sin (R/ro)·
o
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We see that when R = xTr12 the circumference is maximal (equator), while

when R = ltro the circumference is equal to 27tTo • sin x =O.

1. The metric of the Lobachevskian sphere: (dl/ = ~ [(du)2 + sh 2 u(dv)2].

Let the curve be given as follows: u = RITo =const., v - arbitrary, v =t

(circumference). Then the circumference is equal to

2x

J " ~
TO sh u dt = 2ltro sh u = 2XTo e -e

. 2
o

Rlr
For large u --+ 00 the circumference is approximately equal to XToe" = xToe o.

Conversely, for small u --+ 0 we have

R R . R R
sh- =- andsm- =-,

TO TO TO TO

and therefore for small u=RITowe have for the circumferences and areas of rings

approximately the same fonnulae as in Euclidean geometry:

the circumference ofa ring is approximately equal to

27tR == 2XTO sh !!.. == 2XTOsin !!..,
TO TO

the area ofa ring is approximately equal to

2 2 (R ) 2( R )7tR == XTO ch- -1 == XTO l-cos- .
TO TO

The parameter TO of the dimension of length is sometimes called "the radius of

curvature" of the sphere and of the Lobachevskian plane, and the number Tel
coincides with the Gaussian curvature of the sphere.

For Riemannian metrics of the sphere and of the Lobachevskian plane (a
pseudo-sphere or a "sphere of imaginary radius") we have the natural scale for
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measuring he length - this scale is the number roo Choosing it as the unit length, we

assume ro =1.
We obtain the dimnsionless metric of the unit sphere:

(dxi = (du)2 + sin2 u (dv)2 (u = 9, v = ,),

and of the (Lobachevskian) pseudo-sphere:

(dil = (du)2 + sh2 U(dv)2.

From school mathematics we remember the concept of a "solid angle".
The solid angle is, by definition, the area of a region on a sphere in

dimnesionless metric:

The solid angle is equal to ff sin d du dv and correspondingly is equal to the solid

u
angle of a bundle of rays coming from the origin in the direction of all points of the
region U on the unit sphere.

The total solid angle is equal to

'It 2n

f sin u du dv = f du (f sin u dv) = 41t.

over aU 0 0
the sphere
«(h;~'It)

What prescriptions for calculating a double integral are naturally used? First, if a
rectangle is given relative to the coordinates (u, v) (Figure 21)

U =Ia~u~b,
l c ~v~d,

then we have the fonnula:

b d d b

If ft.u, v) du dv = fdl (f ft.u, v) dv) =f dv (f ft.u, v) dU).

U Q ceQ
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d

The expression f.tt.u, v) dv is a function of u only:

c

d

$(u) =J.tt.u, v) dv.
c
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The value of the function $("0> is the integral of the function f(Uo, v) over the variable

v.
For example, we had

2lt R· 21t 2

IJ rdrd$ = Jd$(J rdr) =J~ d$ = 7tR
2

{}$~ 0 0 0
{}$ilJ~1t

or

R 2Jt

JJ rdrd$ = JtT (J rd$) = 7rR
2

•

{}$~ 0 0
{}$~1t

Let us express this in a more general form. Suppose we are given a region V,"
relative to coordinates (u, v), between tWo curves u =.tt.v) and u -= g(v), where/> g
over the distance between a and b (Figure 22).

v
(/t---r.::::=:-:-:":,,,=

\~~!:;;{~;:~~~i~~t
Ct--~:.:.:...:.;~:.:.::.j

Figure 21. 11 IJ II Figure 22. ([ 6 lJ
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Given a function q. (u, v), there holds the formula:

b

fIq. (u, v) du dv = I 'I' (v) dv .
U Q

PART I

fly)

Here 'I'(v) =I q. (u, v) du is the integral over the variable u, where the function q. itself

g(v)

and the limits of integration depend on the parameter v.
Ifq.(u, v) == 1 then the area of the region U is equal to

b fly) b

a(U) = II du dv = Idv (I dU) =I(j(v) - g(v» dv.
U Q g(v) Q

We have given exact defmitions of all the "concepts referring to the double­
integral and have listed all its basic properties (the existnece for continuous functions,
connection with the area in Euclidean and general Riemannian geometry of surfaces
and the fonnula for the change of variables, the prescription for reduction to single
integrals).

We have also pointed out the areas of rings in the simplest geometries
(Euclidean, on the sphjere, on the Lobachevskian plane).

There holds:

THEOREM 1. Let in Euclidean 3-space a surface be given in the fonn F(x, y, z) =
C, where F ;to.

Ion the surface we are given a region U which is projected in a one-to-one
fashion into a region V of the plane (x, y), then the area of the region U on the
surface F(x, y, z) = C is calculatedby thefo17T1.41a .

(we asswne F'l ;tOat allpoinls of the region).

COROLLARY 1. If the surface is given in the form z =f(x, y) or F(x, y, z) =
z - fi..x, y) = 0 (where F(x, y, z) = z - fi..x, y», then the area of the region on the
surface is calculatedUy the fonnula
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C1(U) =ff (1 +;: +;:) 1f2dx ely.

v
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THEOREM 2. If the surface in a three-dimensional space is parametrized by the
coordinates r = r(u, v). r = (x, y, z), where ru = (xu' Yu' zu)' rv = (x", yl" zv) and

the vectors ru and rvare linearly independent. then the area of the region on the

surface is calculatedby theformula

C1(U) = ff I[ru' r;J Idu dv,
u

where [ru' rvl is the vector product.

We shall give a proof of Theorems 1 and 2. Both theorems are proved in a
simple way. We should recall the general definition of area of a region in the case
where we are given a Riemannian metric:

(dl)2 = gij dxi:t; xl = u, r- = v.

By definition:

ff 1f2 2
C1(U) = (g) du dv. g = gllgn - gl2

U

To prove Theorems 1 and 2 it is necessary to calculate (g)If2.

Proof of Theorem 1. Recall that for the surface F(x, y, z) =C we ha\;e

gll=1+F1F;, gI2=F"F/F;, g22=F;JF;+1. lfF:¢O,thenu=xl=x,

v =Xl =y and E =gil' F = g12' G =gn by definition. From this we have:

and therefore

1f2 (1' ~ F; )1f2 IgradF I
(g) = +-r+-r = ~IF"""':I-

: :

which concludes the proof of Theorem 1.
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Proofof Theorem 2. If r =r(u, v). u =xl. v =Xl, then gij =r;.rxi' Note that:

PART I

Hence I[ru' r vll2 =gllg22 -l12 and (g)112 = I[ru' r vll2• For the area we have, by

definition:

a(U) =JJI[ru' rJI du dv,
u

as required.

Thus, we have investigated area in the Riemannian geometry of surfaces and,
in particular, made sure that the concept ofarea is defined, as is the concept of length,
by giving the scalar product (gi) of the tangent vectors at each point.
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1.10 The Theory of Surfaces. The Theory of Curvature and! the
Second! Quad!ratic Form

In Section 1.9 we defined the double integral:

f ff{U,V) f{u, v) du dv
U

over the region U in the (u, v)-plane and fonnulated the properties of the integral:
a) The existence theorem;
b) the change of variables u =u(x, y), v =v(x, y).

ff f{u, v) du dv = f f f{u, (x. y). v(x, y)) l(x, y) dx dy,
u v

where lex, y) =Uxvy- Uyv% > 0;

c) theareaU = ffdutfv if(dl)2= (du)2+ (dv)2;
u

c') the area U = ff (g) 112 du dv,
u

if (dl)2 =gll(dll)2 + 2g12 du dv + gn(dv)2;

g =gllgn - g12 = EO _p2;

d b(ll)

d) ffAu, v) du dv =Jdu (f f(u, v) dv),
U c a(ll)

where U is shown in Figure 23.

Figure 23. c d «
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As an example of calculation of the areas of the simplest figures. we have
considered circles of radius R in the Euclidean plane. on the sphere and on the
Lobachevskian plane.

1. The Euclidean metric:

ff
0<<r<<R
0«~<<2n:

2
rdrd$ =xR.

2. The metric of the sphere:

(dl)2 = r5 «du)2 + sin2 u(d$)2),

a(UR) = ff r~ sin u d$ d$ = 2xr~ (1 - cos ~o ).
fr.;.16.Rfro
fr.;.~~n:

R R
2

2 R
As R --+ 0 we have 1 - cos - == - and, therefore, 21tro (1 - cos _) = xR

2
.

~ 2 ~ro
We obtain the area of the entire sphere by setting cos~=- 1, or R =1tro'ro
Then 21t~(1 - cos 1t) = 41trij. If ro =1. then we have the total area of the

sphere, equal to 41t (as has already been mentioned, this is the total solid angle).

3. The Lobachevskian metric:

a(U) = ff r~ sh u du dcf> = 2xr~ (ch ~o - 1).
fr.;.16.R/ro
fr.;.~~r;

2 ( R ) 2. eX + e-
x

IfR--+ O. then 2xro ch - -1 =xR Since ch x = 2ro
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We have proved the following assertions for the calculation of the areas on
surfaces situated in a three-dimensional space.

a) Ifwe are given a surface in theform z=f(x, y) and on this surface a region
U which is projected into a region V ofa plane (x, y). then there holds the eqooliry:

a(U) = 11 (1 +~ +~)112 dx dy,
v

where Ix = afldx,fy = afJay.

b) Ifa surface is given in theform F(x y, z) =C and a region U on this surface
is projected in a one-to-one manner into a region V in a plane parametrized by
coordinates (x, y), then there holds the formula:

a(U) = 11 I~IFI dx dy,
v z

where IFzl = laFldzl ¢ 0 for (x, y, z) lying in the region U.

c) If a surface is given parametrically in the form r = r(u, v) or x = x(u, v),
y =y(u, v), z = z(u, v), then we have:

a(U) = III[ru,r.,l'dUdv,
U

where U is the region in the (u, v)-plane, [ru' rv] ~s the ve~torprodu.et.

The proofof this theorem consisted in the calculation of the quantitiy (g)112 for
three different ways in which the surface was given.

i+l
=_~-

a
We are going to calculate the area of a region UR = (r ~R), where ,:z. = Xl +r:
EXAMPLE 4. Let a surface be given as a rotation paraboloid z = f(x, y)
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G(UR) =II (g)112 dx dy =
UR

II 2 2 112 II 2 112
= (I + 4~ + 4Y

2
) dx dy = (1 + 4~) r dr d$ =

U a a u a
R R

R ~ R

I I 4 2 112 I 4 2 112
= dr ( (1 +-T) r d$) = 21t (1 +-T) r dr =

o 0 a 0 a

PART I

R
2

/a
2

= I m 2 (l + 4p)112 dp,

o

EXAMPLE 5. An ellipse in the Euclidean plane.

Let

x = x/a, y' = ylb,

G~a,b) = II ab dx'dy' = xab.

«%')2+(y')2~1

The theory of curvature of curves on a surface. Suppose we are given a
surface in the parametric fonn r= r(u, v). Then [rll' rvl = (g)II2. m. m is the nonna!

vector and Iml = 1, I[rll, rvll =(g)II2.

Consider the curve r =r(u(t), v(t». We have:
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Since Til 1. m and Tv 1. m, we obtain:

93

This is the quadratic fonn of the velocity vector (u' , ~) in local coordinates u, v,
u =xl , v =XZ.

Let bll =L, bl2 == M, b22 =N. We have:

(i'm ) d? = bij<iJdY! = L(du)2 + 2M du dv + N(dv)2.

The fOnD (r'm ) d(l is called the second quadraticfonn.
Let the cmve line u(r), v(r) be taken with respect to the natural parameter r = l.
According to the Frenet fonnulae, we obtain for the curve line:

T =r(r) = r(u(r), v(t}), T = (x, y, Z),

~ = :; = kn, wbere n is the prineipal nonnallO the curve line, k is tbe curvature of

the CUIVe line.
Since r'm =k(nm) = k cos 9, we obtain (9 is the angle between m and n):

where

Conclusion.

Thus, we have obtained the following:
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THEOREM. The curvature of a curve on a surface in Euclidean 3-space, when
multiplied by the cosine of the angle between the normal to the surface and the
principal normal ofthe curve is the same (up to the sign) as the ratio of the second
andfirst quadraticforms.

COROLLARY 1. If the curve is obtained by sectioning the surface with a plane
nonnal to the surface, then:

cos 9 = ± 1,

b.. didJ
±k = _I,,-IJ--:-_

g.. didJ
IJ

1 2
X = u, x = v, i = 1, 2: j == 1, 2.
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1.11 The Theory of Surfaces. Gaussian Curvature

95

In the preceding section we have defined the second quadratic fonn of the surface as
follows: a surface is given in the parametric fonn r =r(u, v); we consider a curve
r =(u(t), vet)) and the normal projection of its acceleration:

~,~ "
where m = I[r:, rJI is the unit vector of the nonna!. Then the expression (rm ) is the

quadratic fonn of the components of the velocity vector (u', ~) and is called the
second quadratic form.

For curves given in terms of the natural parameter 1= t, we have derived the
following formula:

± k cos e = k(nm)
= bij tb/til

.. ,
gij tb;ldi

1 2
X =u, x =v,

where k is the curvature of the curve, n is the vector of the principal normal to the
curve:

For the nonnal cross-section cos e= ± 1 since ± n = m by definition (at a point under
investigation).

Thus,' each point of the surface is associated with the pair of quadratic forms:

1) (dl)2 = gij ~c&,

2) (r"m ) dfl = bij dJ,w,

the form (d/)2 being positive defmite.
What are the known algebraic invariants of a pair of quadratic fonns?
Consider any pair of quadratic forms, in a plane, of which one is pOSitive

defInite. Let the matrices of the quadratic forms look like:
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Next we write the equation det (Q - A.G) = 0, which, when written out in detail,

becomes (L- A.gll}(N - A.g:u> - (M - A.gl2l =0. We call the roots A.l' ~ of these

equations the eigenvalues of the pair of quadratic forms.
Let us solve the system of linear equations:

(L- A.igll) ~li + (M - A.~I:z) ~2i = 0,

(M - A.ig21) ~li + (N - A.~:U> ~2i = 0, i = 1, 2,

where ~li' ~2i are the unknowns.

If the roots A.l' A.2 are the eigenvalues, then the system of equations has

non-trivial solutions (~ll' ~21) and (~12' ~:u>' which are the vectors el = (~11' ~21)'

e2 =(~12' ~22)·
The directions of the vectors elande2 are called principal directions of the pair

of quadratic fonns, that ofe-l corresponding to A.l and that ofe2 to ~.

Recall that the scalar products of the basis vectors in the plane have the form:

(The Riemannian metric is given by the form gij).

PROPOsmON 1. If the eigenvalues ofa pair ofquadratic fonns are distinct, then
theprincipal directions are orthogonal.

We have two principal directions e2' e2:

By definition, their orthogonality implies that

Proof. Choose a pair of plane vectors d1• d2, such that

{
I i--

dd- = 5·· = • -J.
I J IJ

0, i ¢j.

This can be done by virtue of positive definiteness of the quadratic form with the
matrix gij since it can be brought through a linear transformation into the Sum of
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squares. The second quadratic fonn will now be considered in a new basis dI , d2,

where:

( 0

1
For matrices of quadratic fonns we have di~ =8ij or G =

where G = A 0 AT in the basis d I , d2, where Q is the matrix of the second quadratic

form in the new basis d I , d2-

Since G =A oAT, Q=A 0 Q oAT. it follows that:

Q - A.G = A 0 (Q - A. • E) 0 AT

and

det (Q - A.G ) = (det A) det (Q - A. • E) • (det AT) =

= (del A)' det (Q - A• E), E =(~ ~ ).

inasmuch as the detenninant of the product of matrices is equal to the product of the
detenninants of the matrices.

. It shouid be noted that (set AT) = det A =(g)If2 = (det G)il2 and g ¢ 0, and so
the two equations for the eigenvalues:

(I) det (Q - A.G) = 0,

(II) det(Q - A.. E) = 0

are equivalent. The solution of either of these two equations yields the eigenvalues

1..1 and~ to which there correspond the principal directions elande2'

In the basis (dI , diJ the scalar product is Euclidean - it is given by a unit

matrix ( ~ ~) = G - E = (Su>. II is a well-known fact in algebta that the
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quadratic form Q, when rotated, can be brought into the diagonal form, and its

eigenvectors i l' e2 are onhogonal in the usual Euclidean sense. Next, we choose i 1,

e2 in such a way that I ill =1i21=1; then ei ej =8ij.

Thus, our algebraic assertion is proved: it is a somewhat more extended
version of the theorem which states that the quadratic form in the Euclidean plane can
be brought to the diagonal fonn by rotation.

Now we shall turn again to the fIrst and second quadratic forms on the surface
in a three-dimensional space:

(1)

(IT)

2 . .
(dl) = gil dX l&,

The ratio of these quadratic forms gives the curvature of the normal
cross-section (up to the sign).

The eigenvalues of this pair of quadratic forms are called the principal.
curvatures of the surface at the point under investigation.

The product of the principal curvatures is called the Gaussian curvature of the
surface, and their sum the mean curvature of the surface.

EXAMPLE. Let the surface be given in the form z= ft.x y), and at the point (.lO, Yo)

that we are studying, we have Ix =Iy=0, let x =£I, Y =v, z =ft.u, v). For the fIrst

and second quadratic fonns we obtain (at the point .LO, Yo under study):

M = b12 = r .. m - ~ •
• \1"" - J%)'lxo"yo'

Here the vector m coincides with the unit vector along the z·axis.
So, at the point under consideration, the second quadratic form is represented

by:

The Gaussian curvature coincides in this case with the determinant of the matrix:
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(I;a I xy ) ;

l/yx I yy

the eigenvalues can be obtained from the equation if;a - A) ifyy - A) - ifry)2 = °
since g Ii = 5ij. The tangent plane to the surface at this point is parallel to the

(X, y)-plane. The principal directions at this point can be obtained from the solution
of the system of equations:

{
if;a - AI) ~11 +Ixy ~21 = 0,

fry ~11 + ifyy- AI) ~21 = 0,

{
if;a - Az} ~12 +Ixy ~22 = 0,

fry ~12 + ifyy- Az} ~22 = 0,

In so far as i l J. e2' we can take the unit vectors of the principal directions as the new
coordinate axes x', y', obtained from the old system through rotation of the
(x, y)-plane. It is only necessary that there hold the condition Al ¢ '-2.

Relative to the new coordinates (z, x', y') we have:

z = j{x(x', y'), y(x', y'»,

where x = x' cos <jl +y' sin <jl, y = - x' sin <jl +y' cos <jl, <jl is the angle of rotation.
Relative to the new coordi~ates, the second quadratic form becomes,(at the

point under investigation, only):

Relative to the coordinates (x', y'), the curvature at our point of a normal cross­
section is given by the formula:

Al(dx')
2 + A2(dy')

2

k=-------
(dx,)2 + (elyl)2

The tangent vector e to this normal cross-section of the surface has, at the point in
question, the fonn (;(', y') = e, where dx' =X'I dr, ely' =y' dr. On this account,
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2 (dx,)2 . 2 (dy,)2
cos a = sm a =--~--

(dx ,)2 + (dy'/ . (dx,)2 + (dy') 2 ,

PART I

where a is the angle between the x-axis and the tangent vector e to the normal

cross-section. '
We shall now derive Euler'slormuia.

nmOREM 1. The curvanue 01the nonnal cross-section is given 1:Jy thelormula:

k = Al cos2 a +~ sin2 a,

where AI' ~ are the principal curvatures, a is the angle on the surface between the
tangent vector to the normal cross-section and the principal direction corresponding to

AI'

Proof. We have derived Euler's fonnula in the case where the surface is given in the
form z =j{x, y), and at the point XOt Yo under investigation we have Ix =/y =O.

However, since the result itself is independent of the choice of local coordinates, for
any neighbourhood of the point we can always choose coordinates associated with it,
such that the z-axis be nonnal to the surface at this point and the x- and y--axes be
tangent to the surface and mutually orthogonal (we may even choose them to be the
principal directions). Then the surface in the neighbourhood of this point is given in
thefonn:

z =j{x, y), whereIx =Iy=0 (x =Xo, y =Yo),

and, moreoverdry =/yx = 0 provided that the axes are the principal directions at this

point.

In this case, Al =Irr:> ~=/yy at this point.

Since we have already derived Euler's formula relative to such coordinates, we
have completed the proof.

We shall now present the fonnulae useful in the case of the second quadratic
fonn.

If the surface is given in the formf{x, y) =z, then for the coefficients of the
second quadratic fonn we have (here x =u, y =v)

rll = (1,0 IJ. rv = (0, 1,/y),

[rll, rv] = (-Ix, -I,. 1),
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rllll ::: (O,O,frJ, rllll = rllll = (0, O,fry) , rVl' = (O,O,fyy)'

101

m=
(-f% -fy, 1)

1 1 .
112 '

(1 +.t:+i;)

From this, we can obtain:

Xl = X = u, Xl = y = v.

Recall that for the coefficients gij we had the formulae

and

As has already been defined above, the Gaussian curvature of the surface is the
product of the principal curvatures (eigenvalues) K =Al'~' The mean curvarnre is

the sum H= Al +~.

THEOREM 2. The Gaussian curvatlUe of a surface is equal to the ratio of the
detenninanJs of the matrices ofthe second andfirst quadraticforms:

K=
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In particular, if the surface is given in the form z = f{x, y}, then there holds the
formula:

Proof. The eigenvalues Al and A.:z were detennined fonn the equation:

det (Q - AG) = 0,

where Q = (~ ~) is the matrix of the second quadratic fonn,

It should be noted that:

and

The matrixG = (gij) is positive definite and is, therefore, non-degenerate. We shall

denote the matrix inverse to this one by 0-1.

There holds the equalIty:

det (Q - AG) = (det G) det (o-IQ - A • E).

where

E = (~ ~) = Go <r
l
,
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The eigenvalues Al and~ can be detennined from the solution of the equation:

det «(TIQ - A•E) = 0,

as long as g =det G = gllg22 - g12 ¢ O. We remind the reader of the well-known

algebraic fact.
If there exists a matrix A and the equation det (A - A• E) =0 detennines the

eigenvalues, then for the second-order matrices the product of all the eigenvalues of
the matrix is equal to its determinant det A = Al •~.

Assuming A =C11Q, we see that:

This implies that the Gaussian curvature is equal to the ratio of the determinants
of the matrices of the second and first quadratic fonns.

Next, if a surface is given in the form z =i{x, y}, then we have the table of
coefficients L, M, N, gij written above. Calculating the determinants, we use their

ratio to deduce the fonnula for the Gaussian curvature.

COROLLARY 1. /fa surface is given in theform z =j{x,y}, then the sign of the
Gaussian curvature K is the same as the sign of the determinant ifnfyy - f~y}

because

K=

EXAMPLE. Suppose that we are given a surface in the fonn z = j{x, y}, where the
function j{x, y} satisfies the Laplace equation

hx +fyy = O.

Then we have fJyy - /ry ~ 0 sincefn = - f yy. Hence, at all points of the surface,

where at least one of the panial derivativesf:a>fyy,fxy is non-zero, we shall have
that the Gaussian curvature K < O.

Conversely: if the curvature K is positive at all points of the surface, then the
surface is referred to as (strictly) convex.
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The use of this tenninology is due to representations of visual geometry.
Suppose z = ft..x, y) and at a point (xo. yo> we haveIx =fy=°(such coordinates can
always be chosen). The graphs of the function z =ft..x, y) with poisitive and
negative K are shown in Figures 24 to 26. In the case where K is positive, there may
be either Al >0. A.z> 0, and then (xo. Yo) is the point of the minimum of the function

f, (Figure 24) or inversely. Al < 0. A2 < 0, and then (xo. Yo) is the point of the
maximum of the function f, (Figure 25); in the case where K is negative, we have
Al < 0, ~ > 0, and the function has a saddle (pass) (Figure 26).

Figure 24.

Figure 26.

Figure 25.
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1.12 The Theory of Surfaces. Imrariants of a Pair of Quadratfic
Forms and Euler's Theorem

We shall systematize the facts from the theory of surfaces which have been discussed
above.

I. Mathematical representation of the surface, non-singular
points, equivalence of different ways of representing a surface (local
equivalence).

a) z = j{x, y), x = xl = u, Y = Xl = v,

b) F~,y, z) =C, grad F ¢ 0,

c) r = r(u, v), r = (x,.y, z), [ru' rvl ¢ 0,

u =,xl, v = Xl.

II. Riemannian metric on the surface (the first quadratic form)
generated by the embedding into space.

where

Xl = u, Xl = v, x = x(u, v), y = y(u, v), z = z(u, v),

c) gij = rxl'zi' i = I, 2; j = I, 2.

The Riemannian metric gij serves to determine the scalar product of the velocity

vectors of curves on the surface u(t), v(t), ~ = (u', ~) are the lengths and angles; for
example,

the length of the curve segment is equal to
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b

IJIEJt )1
2
' dt.

Q
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r(t) = T(U(t), v(t»,

III. The area or a region on the surrace. The area of a region is
calculated by the fonnul~

a(U) =II (g)lfldu dv = If (EG-nlfldu dv,
u u

g = gugn -.rl2 = det G, G = (gij)'

For the calculation of the quantity (g)lfl for different ways of representation, see
above.

IV. The second quadratic rorm on tangent vectors (the normal
projection or the acceleration vector or a curve on the surrace). Given a
curve u(t), v(t), u = xl, v =: Xl, the surface

[Tu' TJ
m= ,

'[Tu' T)'

where m is the unit vector of the normal

Let the surface be given in the form:

z =f{x, y),

x =xl = u, t = Xl = v,

z = f{u, v).

The table of quantities Tu, Tv, [Tu' Tv], (g)lfl =I[Tu' Tv]', gij' bij is given above. From
this, we have:

f;"j
b.. =-.

lJ (g)lfl
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v. The properties of the second quadratic form. a) if a curve is
given in the form u(t), vet) on the surface or in the form T = r(u(t), v(t», T =(x, y, z)
in Euclidean 3-space, then there holds the formula:

b .. dxidl· b.. ;iXi
±kcose = _I.:,..'J__ = IJ •. ,

g .d}d1 g.. ;IXJ
IJ IJ

where k is the curvature of the curve, cos e=mn and n is the vector of the principal
nonnal to the cmve.

iT- = kndr (the definition of k and n).

For normal cross-sections cos e::: ± 1 (± n =m).

b) Algebraic invariants of a pair of quadratic forms (the first and the second) at
a given point of the surface are two quadratic forms in a plane v.;th basis vectors

Tu = el' Tv =e2

the first form gij ~i f/; the second form bij ~i 'tI,

the first quadratic form gij ~i 'tI being positive.

Let us consider the matrices of the forms:

Q = (b ..) = (L M ) ,
IJ M N

Q3 = (g ..) = (E F).
IJ F G

We shall write the equation det (Q - AQ3) = 0 and find the roots AI, A2 of this

equation.

The Gaussian curvature K = AI~. The mean curvature H = Al +~.

Suppose Q3-1 =gij is the inverse matrix:

2 '0 {I l'=kIJ "
Lg gile = 5ik = .

i=1 0, 1 ¢k.

2 .
We have considered the matrix A = Q3-1 0 Q =(au>, where aile =L gUl b k' Then

q=1 q
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K = Al~ =det A =det (e-I
0 Q )

detQ
=

dete'

PART I

2 ..
"'L S "t"lJbH = ""I +'''2 = P A = au + an = ~ g '"

ij=1 }I

In particular, we have

K= LN-lf=---
EG-~

If z =ft.x, y) parametrizes the surface, then

Therefore, the sign of the Gaussian curvature is the same as the sign of the
detenninant

For example, if/;a +I yy =0, then K is always either less than or equal to zero.

VI. The geometrical meaning of the Gaussian curvature. Let us
choose, for a given point of the surface, an orthogonal frame (x, y, z), where the
z-axis is normal to the surface. Then locally the surface is written as z = ft.x, y),
whereIx =Iy =°at this point. .

At our point we get:

{

1, i =j,
gij = Bij = ..

0, l '¢J.

since gu =.ti + 1, gl2 = IJ"y' g22 =.t; + 1. Next, L = bll =lxx' M =bl2 =Ixy'
N = b22 =Iyy.

We shall consider the three cases depicted in Figure 27:
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2) 3)

minimum

Figure 27.

maximum saddle

1) K> 0, A,I > 0, "-2 > 0 (the functionf(x, y) is minimal when x =Xo, y =Yo);

2) K > 0, A.I < 0, "-2 < 0 (the functionj(x, y) is maximal when x = xo, y = Yo);

3) K < 0, and therefore A,I > 0, "-2 < 0 or vice versa (this is a saddle or a

"path").

Conclusion. When K is locally positive, the surface lies on one side of the tangent
plane in a neighbourhood of the point under study. When K is negative, the surface
necessarily intersects the tangent plane.

If the Gaussian curvature is everywhere positive, then we may say that the
surface is strictly positive, as, for instance; an ellipsoid.

Thus the property that the Gaussian curvature is positive in a neighbourhood of
a given point is sufficient for the curvature to be locally convex. It should be recalled
that a closed surface ir:t a tJu'ee-dimens~onal space is called globally convex if it _
bounds a convex region in !W, i.e. a region which contains, along with any two of its
points, the whole of the straight line segment joining these points. As a visual
geometrical exercise, we suggest that the reader prove the follov.ing: any region
with a locally convex boundary is globally convex.

- EXERCISE. Show that for the ellipsoid, and for the two-sheeted hyperboloid, K is
positive and for the one-sheeted hyperboloid, K is negative.

For the cylinder, K is zero (whatever the base line of the cylinder). K is also
zero for the cone.

An important class of surfaces of negative Gaussian curvature is that
parametrized by z =j(x, y), where In +Iyy =O. Such functions I are called

harmonic (e.g. the reader can verify thatj(x, y) =In (x?- +y)If2,fn +Iyy =o.
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EXAMPLE. Suppose w = x + iy, where i =(- 1)1/2 andftx, y) is the real pan
of the polynomial P(w) = aown + ... + an_lw + an; the reader may check that

In + Iyy = o.

Interesting geomenic relations arise on the surface of negative curvature.
Suppose the Gaussian curvature K is strictly negative. Then in the neighbourhood of
each point on the surface we can introduce local regular coordinates p and q, such
that relative to them. the second quadratic form L dp2 + 2M dp dq + N dt[l assumes
the fann: 2M dp dq. If in addition the Gaussian curvature is constant, e.g. K =- 1,
then it turns out that we may assume the coefficients of the first quadratic fonn
E + dp2+ 2F dpdq + G drr to satisfy the relations 'dEldq = 'dGldp = O. i.e:
E = E(P), G = G(q). We shall now introduce on the surface new local

P q

coordinates u and v. putting u =fJE(P) $ f JG(q)' dq. Then relative to these

Po qo

new coordinates, the firSt and second quadratic fonns become d,} + 2F(u, v) du dv

+ dv2 and 2M(u, v) du dv. Consider on the surface the coordinate lines u =const.
and v =const. These are usually called asymptotic lines. Consider on the surface the
function oo(u, v) defined as F = cos 00, In other words, CJ) is the angle between

asymptotic lines at a given point. When K =- 1, the function 00 satisfies the

following differential equation CJ)1l1' =sin CJ) (the reader may prove it himself),

occasionally referred to as "sine-Gordon" equation.
It should be emphasized that our definition of asymptotic lines has sense only

for surfaces of strictly negative Gaussian curvature. When K is positive, these lines
do not exist.

VII. Invariants or a pair or quadratic rorms, principal directions
and principal curvatures (eigenvalues). Euler's rormulae. Suppose that
we are given a pair of quadratic fonns on the plane (n = 2) with basis vectors el (for

a surface el = Til) and e2 (for a surface e2 = Til), the vector e = ~lel + ~2e2' The first
quadratic fonn:

gij ~i cj = lel2 = ee > 0,

the second quadratic fonn:

bij~i cj, bu = L, b12 = b21 = M, b22 = N.

The matrices have the fonn:
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Q=(L MJ. G= (gn g12).
M N g12 gn

Let us write the linear equations:

(L- Agll) ~l + (M -Ac12) ~2 = O.

(M - Ag10 ~l + (N -Ag22) ~2 = O.

111

The solution of these equations exists only for A=Al or A=~ where AI' ~ are the

roots of the equation del (Q - AG) = O.

Let Al iF~. Recall that Al and~ are the eigenvalues (principal curvatures).

Substitute A=Al and A=~ into the linear equations and f'md two non-zero

solutions of these equations:

We have:

a) (L - Algll) ~l + (M -Alg12) ~2 = 0,

(M - Alg10 ~l + (N -Alg22) ~2 = 0;

b) (L - ~11) '11 + (M -'A.,.g12) '12 = O.

(M - ~10 '11+ (N -'A.,.g22) '12 = O.

An important property of the vectors e1. e2 is that they are orthogonal provided that

A,l iF ~, i.e.
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We assume the vectors e-I' i 2 to be the new basis, and for any vector e we
have:

Here (;I, ;2) and (r, Xl) denote the components of the vector relative to the bases

(el' e~ and (elo e~, respectively.
In the new basis ii, e2' the fIrst and second quadratic forms are:

1) gijjJi = g-ij ;i;i = (;1)2+ (;2)2,

(the first quadratic fonn), i ij =8ij'

2) bij jJi = b-ij ;i;i =Al (x l )2 +~ (x2)2,

(the second quadratic form) i 12 = Alo e-22 = ~, ii12 = o.

The directions of the vectors e-I, e-2 are called eigenvectors or principal

directions.
It was essential that Al ¢~.
The Euler fonnula (algebraic): the ratio of two quadratic forms is equal to (for

thevectore =;lel+;2e~

_ -i-i
b..x x 2 2

lJ . . = Al cos cp + A2 sin cp,
- -J-J
g..xx

lJ

where cp is the angle between the vector e = ;lel+ ;2e2 and the eigenvector el where

AI, ~ are the eigenvalues. Note that

• 2",
SIn 't' =

By definition:

- 2(ee
2

)

lel2 • ~212

(since ell. e~, and for any vector e by defmition:
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(jij is the Riemannian metric on the plane).

In application to geometry, we have the first quadratic form gij and the second

quadratic fonn (bij) at a given point on the surface (on tangent vectors).

We know that the ratio of these two quadratic forms:

b
. i. j i Jj

.x x b .. dxax
-..;.1)~~ = _1;..11---,._

• i. j dxlJj
g .x X g.. ax

I) I)

is equal (up to the sign) to the cUrvature of the normal cross-section with the tangent
vector (d, ~) = e=x lei +;2e2, where; = u, Xl = v, dxl = x'i dr, dx2 =i 2 dr.

Conclusion. The curvature of the nonnal cross-section is equal to kl cos2 ell +
k2 sin2 ell, where kl = A.1o k2 =A:2 and ell is the angle between the tangent vector of

the normal cross-section and the principal direction i I at a given point on the surface

(Euler's formula).
The proof has been given above. It is very simply deduced on the tangent

plane in the basis el e2 in which the matrices of the quadratic forms are diagonal:

- - (A.I 0 Jgoo = 5.. and (boo) =
I) IJ IJ OA.'

2

since

':'1 2 .:. 2 •
~(x) + ~(x) i l 2 i 2 2 2 2
~----.;;.- - 1 [ ] + 1 [ ] - A.I cos q. + 1 sin q..

':'1 2 ':'22 -"1 iei '"'2 iei - '"'2
(x) + (x )
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1.13 The Language of Complex Numbers in Geometry. Conformal
Transformations. Isothermal Coordinates.

The majority of problems in geometry are most conveniently formulated in terms of
the language of complex numbers. We, therefore, present here the simple facts
which we shall need for our further purpose.

Suppose we are given an n-dimensional linear space over the field of complex
numbers and that this space has the basis el' e2' •.. , en' where any vector has the

form ~ = ~cc.ecc.' ~cc. =~+ iycc. being complex coordinates. From the point of view

of real numbers, this is a 2n-dimensional space over the field of real numbers with
the basis {ej, iej}' In this 2n-dimensional space, the scalar product in the complex

language is given as (the real scalar square of the vector is Euclidean):

n n

(~, T!) = L ~atia; (~, ~ = L l~al2
~l ~l

and possesses the follo~ing properties:

(A.~, T!) = A.(~, T!),

-
(~, A.T!) = A.(~, T!),

(~, T!) = (T!, ~).

Any scalar product possessing the properties (2) is called Hermitian.
Complex linear ttansfonnations A that preserve the scalar product (1),

(A~, AT!) = (~, T!),

(1)

(2)

are called unitary.
From the point of view of reals, the unitary transformation is simply an

orthogonal transformation of a 2n-dimensional real space, which is, at the same time,
a complex linear transfonnation,

Un =Om (") GL (n, IC).

We use the following notation: GL (n, IC), SL (n, II:) is a group of complex linear
transfonnations and its sub-group with the determinant equal to 1 (the detenninant is
complex). Next, Un' SUn is a ~up of unitary transformations and its sub-group

with detenninant 1.
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SIMPLE EXAMPLES. In a one-dimensional space, the group GL (1,1[:) consists of
multiplications by a complex number a, and the sUb-group VI is multiplication by

numbers a =i B• In the two-dimensional case n =2, the group U2 consists of the

matrices:

in which lal2 + Ihl2 =1, lel2 + Idl2 =1 and there holds the orthogonality condition for
the rows: ac + hd =o. Its sub-group SU2 is specified by the condition ad - he = 1.

Thus, the group SV2 is described by matrices of the form:

where lal2 + Ihl2 =1. The reader may check this, as well as the fact that the group of
motions of a real plane along the dilatations has, in the complex notation, the fonn of
affine transformation of a complex one-dimensional space:

z-+az+h

(the sub-group of motions without dilatations is specified by the condition Ial =1 or a

= eiB). The element oflength in a complex Euclidean space (zl, •.. ,Zll) is written in
the form:

where dzrJ. =~ + idyrJ., d;rJ. =~ _ idyrJ.. Here zrJ. =~+ iyrJ., and the set (xl, yl,

... ,:?,~) represents real Euclidean coordinates in this space (considered here as a

2n-dimensional real space). The length of any curve ~(t), yrJ.(t) (or zrJ. = zrJ.(t» is
written in the fonn:

b b

J( II '(12)112 J( II .a.:<1 )112
I = Eliz I dt = E/ z dt.

a a

It appears convenient. if we pass over, purely fonnally, from the real variables

(?', y~ to the complex variables:
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itt. = J!4 - iyCt.,

Let us introduce differential operators:

Note that there hold the identities:

(3)

(4)

-!-(z~=oaza ) , a -~-(z = 0aza '

(5)

The following assertion can be verified, immediately.

LEMMA 1 The differential of an arbitrary complex-valued function f(x1, yl, ...
.. ,x"y") has the form:

af 1 af· n af _1 af _ndf = -dz + ... + -dz +-dz + ... + -dz .
az1 azn ail at

We can verify this by calculation.
We now tum to considering an arbitrary polynomial of a cenain degree with

complex coefficients p(r, yl, ... ,;ii, ya) of the variables (r, yl, ... , ;x!l, ya).
After the change of variables (3) we obtain from the polynomial p(r, yl, ... ,

;ii, ya), the polynomial:

1 -1 ..JI -n 1 1 ..n nQ(z ,z , ... , l • Z ) = P(x ,y , .... ..t. ,y ).

The following assertion holds.

THEOREM 1. After the change ofvariables (3), any polynomial



CONFORMAL lRANSFORMATIONS. ISOTHERMAL COORDINAlES 117

1 -1 -2 -II •depends on the variables z , ... , fI only and does not depend on z ,z ,"', z if
and only if there hold the identities:

apJail:1. =0, a =1, ... , n

(these are referred to as Cauchy~Riemann conditions or the complex analyticity
conditions).

Proof. The operators 'Orai'" and araz-1:1. possess the following propeny (Leibniz
fonnula):

Next, by virtue of the identities (5), arazl:1. (z~ = O. From this we Obtain, using the
Leibniz formula. that:

LEMMA 2. If the polynomial Q(zl, z-l, ... , Zll, Z-II) has at least one non-zero
coefficient, then the polynomial P(x, y), which corresponds to it after the change of
variables (3), is non-zero.

Lemma 2 follows from the fact that the change of variables (3) has a non~zero

determinant seeing that Z, z are independent.

Conclusion of proof of Theorem 1. Let now the polynomial P depend on il:1. and let

the variable zl:1. enter in it in the (maximal) power n.

We shall show that aprail:1. ¢ O. The polynomial P has the fonn:

P -lX.\1I -1:1. 11-1= Ao(z J + A1(z) + ... + All'

where Ao.Al.... •All are polynomials of all variables zl..... fI and all z-j except

zl:1.. Obviously. on the basis of the Leibniz formula. we have:

a'r.:f: 1:1. -Ill> II 1 -1:1. PI-2
1U~ P = AO'n(z ) - +A1(n-1)(z) + ... +A n-l'
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since aA/Oza. =0 (Ai does not depend on za.). So long as Ao :j. 0, we have

ap/d? ~ 0, which concludes the proof.

REMARK. The theorem is applicable not only to polynomials, but also to

convergent power series; independence ofvariables ;a. is equivalent to the ~nnditiQns

d/iia. =O. Such complex-valued functions ft..x1, l, ... , ~,y") for which there

hold the identities af/;a. =0, a =I, ... , n. are therefore referred to as complex
analytic functions.

For functions of two real (one complex) variables, ft..x, y) = ft..z, -z). where·
z = x+ iy, i =x - iy, the analyticity condition is:

or, if ft..x; y) = u(x, y) + iv(x, y), then:

(6)

Equations (6) are called Cauchy-Riemann equations. From (6) it obviously follows
that:

a2 a2 a2 a2

(-+-)u = 0, (-+-)v =o.
ai cry2 ai cry2

a2 a2 a2

The operator~+2 = --=- is called the Laplace operator.
ax dy azaz

DEFINITION 1. The map z --+ w(z) of a complex plane is called conformal if there
holds the complex analyticity or analyticity condition:

aw/dz E 0 or aw/dz =o.

The simplest examples are;

1) affme transformations

z --+ az + b =w(z);
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2) linear fractional transformations:

z --7 az+b = w(z);
cz+d

3) transformation given by a rational function:
PI

aoz + ... +a
z --7 PI + w(z);

m
boz + ... + bm

4) transformations given by the exponent, trigonometrical functions, etc.:

w(z) = tf, w = sin z, w = sh z, ...

The differential of the functionj(x, y) =j(z, z) satisfies the equality:

where

j(x, y) = u(x, y) + iv(x, y).

119

For the complex analytic functionj(x, y) = j(z), this formula assumes the form

df =dfldz dz since 'iJlfa'Z == O.

The differential of the complex-valued function j(x l , yl, i x2) = f(zl, z2,
zl, ;2) of two complex variables is equal to

Provided that there holds the condition 'iJlfai 2 == 0, a =I, 2, we have:

df -E 'if dz a, wheref =u+ iv.
a=ldZa

A two-dimensional surface can be given by the equation (one complex equation):

(these are two real equations u =0 and v =0, wheref=u + iv).
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We can obviously introduce a complex gradient for complex analytic functions,

We shall later make use of a complex analogue of the implicit function theorem. This
complex analogue of the implicit function theorem is as follows:

at a given point (zA, z5) of the surface f = 0, then in a sufficiently small

neighbourhood of this point the equationj(zl, z2) =0 has a unique solution which is,
at the same time, complex analytic:

where-zA =$(z5), d$raZ2 =O. Such points are called ·'non-singular".

Letj(zl, z2) be the polynomial p(zl, ?). Then the totality of the solutions of
the equation p(zl, z2) =0 of the form zl = $(z2) is called a multiple-valued algebraic
function, and the surface P(z 1, z2) = 0 is called the graph or the Riemann surface of
this multiple-valued algebraic function.

If p{zl,?) = (zl)Q - PIJ(z2), where P".{z2) is a polynomial of degree n, we

obtain:

2z = z.

Let us consider a complex gradient:

( aP iJp) ( Q-l dPIJ )
VeP{w, z) = dw'~ = qw , ¥ .

What are the zeros of this gradient? To answer this question for the case q ~ 2, it is
necessary and sufficient to solve the equation

w = 0, dPtaz = o.

The zeros of the gradient get onto the surface w = :;P".(Z; provided that
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the equations w = 0 and dP,/dz = 0 have a common solution with the equation Pn(z) ­

~ = O. Obviously, this is possible if and only if the polynomial Pn(z) has at least

one multiple rool This completes the proof of the theroem which follows.

THEOREM 2. The set ofall complex solutions ofthe equation 0 =WI - Pn(z), q'? 2,
consists ofnon-singular points if and only if the polynomial Pn(z) has no multiple
roots.

The complex implicit function theorem allows us now to introduce in a
neighbourhood of the non-singular point (wo, zo) on the surface P(w, z) = 0 the local

coordinate a) z in the case dP/dwl(zo,wo) ¢ O. Then in the neighbourhood of this

point, we have:

w = w(z), P(w(z), z) == 0, dw/d-z = 0;

or else, we may introduce the local coordinate b) w in the case dP/dzl(zo,wo) ¢ O.
Then we have

z = z(w), P(w, z(w» =0, dz!dw- =O.

In the space (z, w) we are given the Hennitian metric:

dP = Idzl2 + Idwl2 = dz dz +dw dw . (7)

The surface P(z, w) = 0 (where Vr!' ¢ 0 in a neighbourhood of the non-singular

point) is given parametrically in the fonn:

z = z(t), w = w(t), t = (u + iv);

where t is the complex parameter and dZ/dr =0, dw/dr 5: O. On the surface we
obtain:

2 dz2 dw2-. -
dl = dzdZ +dwdw = (I{fl + 17 1) dt dt.

In case a) we have t = z, and therefore
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on the surface given by me equation

w = w(z), dwtaz- eo O.

PART I

Returning again to the real coordinates x, y, where z = x + iy, we obtain, from
formula (7), in the region of local coordinates the following formula for the square of
the length:

(8)

Now let us go back to surfaces in iW.

DEFINITION 2. Local coordinates x, y in a neighbourhood of a certain point on the
surface are called conformal if the Riemannian metric of the surface induced by
embedding the surface into lR3 has, in these coordinates, the form analagous to (8):

gIl = g22 = rex, y},

dl2 = rex, y) edx2+ dy2). (9)

The form of the metric (9) is called conformal Euclidean and the coordinates are
called isomermal. Consider other conformal coordinates u, v, in me neighbourhood
of the same point (Figure 28). Let t = u + iv.

Figure 28.. L..-.-A--J..---..,J



CONFORMAL lRANSFORMATlONS. ISOTIIERMAL COORDINATES 123

THEOREM 3. The transformation from one setofconformal coordinates to another
set of confonnal coordinates is called conformal transfonnation x = x(u, v). This
means that either azldr =°or azldt = 0, where z = z(t, r).

Proof. Let us write the formula for the transfonnation of the metric gij under the

change of coordinates, where gtJ denotes the new metric in the coordinates u, v. Let

xl =x, Xl = y, u l =U, I? = 'V. Then:

, 1 2.. ai 'OJ
g (u, u ) = g .. - - .
kl I} al ai

Assuming z =x + iy, t =u + iv, z =z(t, -t) and taking into account the condition g12

=g21 = 0, gn = gn =f and also the condition g'12 = gil = 0, g'll = gi2 = if)2,

we obtain that dz di is transformed into the metric:

~ ~ 2 ~ ~ - ~ ~ -
- -(dt) +- -=-dtdt+--: -dtdt+
at dt dt at at dt

~ a'i 2 (~2 dz 2)
+ -= -= (dr) = 1-I + 1--:.- 1 dt dr +

at at at at

~ az 2 (az az 2)+ - - (dt) + -;- ':l(dt) .
at at at ot

This exactly implies that either az/i)t =°or azldr =0, as required.

Suppose that a two-dimensional surface M2 c IW is given parametrically, that
is, x =x(P, q), y =y(P, q), z = z(p, q), where (P, q) vary in a certain domain D
(Figure 29).

On the surface M2 we consider the Riemannian metric d? = E dp2 + 2F dp dq
+ G dcr induced by the embedding M 2 c lR3 This means that E = (rp , rp); F =
(rp' rq); G = (rq, rq), where r is the radius vector of the surface M2• Since ds2 (M2)

= d? (IW)IM2 and d? (IW) =cJ.r +d1 +d?- is a positive definite form, it follows

that d?(M2) is also a positive definite quadratic form, that is, g =EG - F2 > 0, and
we can consider the real-valued function (g)1f2 =(EG - p)lf2. Suppose that Po is a

non-singular point on the surface.
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Figure 29.

PART I

If we change to the new coordinates u and v on M2, then the fonn ds2 will
undergo the corresponding transfonnation, and it is, therefore, quite natural to ask
the following: what is the most simple form to which we can reduce the form
ds2(M2) by choosing different local systems of coordinates on the surface? The
theorem which follows answers this question.

THEOREM 4. (witltout proof). Let M2 c !W be a surface given in certain parameters

(local regular coordinates) p and q. Suppose that the metric tJSl = E dp2 + 2F dp dq
+ G d.ll is smooth, that is, the coefficients of the form E(p, q); F(p, q); G(p, q) are

c2 smoothftmctions ofp and q. Then in a certain neighbourhood U of the point Po

e M 2 we can introduce new isothermal coordinates u and v, such that th(! metric is

ds2 in these coordinates assumes the/ollowing conformal Euclideanform:

The existence of these coordinates is reduced to the solution of the so-called
Beltrami's equations in the following way.

Let us expand the quadratic fonns tJSl into factors:

ds2 = «E)l/2dp + F + i(g)ll2 dq). «E)ll2dp + F - i(g)ll2 dq).
(E)112 (E)112

We seek the new coordinates u and v as functions of p, q: u = u(p, q), v= v(p, q).
We 'Wish to represent ds2 in the form (du + idv) (du - idv) =d~+ dv2• This can
be achieved if we succeed in choosing the integration factor, that is, such
a complex-valued function 'A. ='A.(p, q) that there hold two identities:
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A.- (E/12dp + F + i(gi
12

dl) = du + i dv,
(E}112

125

It should be noted that the second of these identities is obtained from the first one by
means of complex conjugation. Indeed, if such a function '}...(p, q) is found, then
multplying the two identities we arrive at:

and may setf(u, v) = ft.u(p, q), v(p, q» = 1A.12. Thus, the unknown functions are

u(p, q); v(p, q); "-(p, q). These functions must satisfy the equation:

F "(g) 112In + l ."-(E) dp + dl) = du + l dv =
(E}112

= (au + i av ) dp + (dl +i av ) dqcp cp CXj CXj ,

whence

Elimination of A. gives:

(F+i (g)l/,). (~+i: )= E (~ + i ~ )

or

From this we have:
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au au cU dvF--E- G--F-
dv cp '*I. dv cp '*I-= -=cp (g)112 d:[ (g) 112

av dv dv dv
E--F- F--G-au d:[ cpo au '*I cp

-= -=cp (g) 112 '*I (g)1I2

2 2

Since a:'iJq = a:'iJp , we obtain the following equations: L(u) =0, L(v) = 0, where

the differential operator L has the fonn:

[
'iJ d 1 [d F--E;..... d

L=- cp '*I +-
'*I (EG - fli 12 J cP

The equation L(j) = 0 is called Beltrami's equation, and the operator L,
Beltrami's operator. Thus, we have found that the unknown functions u and v must
satisfy Beltrami's equation. It is a well-known fact of the theory of differential
equations that if the functions E, F, G are smooth, then the equation L(j) = 0 always
has a solution. Since, in our case, the functions E, F, G are smooth by the
assumption, all the unknown functions u(p, q), v(p, q), 'J...(p, q) are determined.

Note that the coordinates u, v serve, generally speaking, only for a certain
neigbourhood of the point Po.
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1.14 The Concept of a Manifold and the Simplest Examples
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In cartography, there exist several ways of drawing maps of the earth's surface. All
of them are necessarily reduced to one procedure, namely, to projecting the convex
spherical surface of the globe onto a plane. It is more or less obvious that to make a
one-to-one and continuous projection of the whole sphere into a cenain region of a
plane is impossible. Moreover, in attempting to project onto a flat map large enough
pieces of the earth's surface, we inevitably introduce distonions. Therefore,
cartographers reson to various contrivances to the effect that the sphere is cut into
several sufficiently small pieces, each of which is projected separately into part of a
plane. The original sphere is reconstructed from them by the reverse operation of
glueing together according to the rules usually indicated on a flat map. Thus, a rather
complicated object (sphere) is obtained from several simpler objects by glueing them
together along their common pan.. Precisely this idea is an underlying one in the
construction ofa wide class of geometrical objects which are called manifolds.

The most clear fonnulation of the concept of a manifold is due to K.F. Gauss
who porposed his definition in mathematical tenns in connection with his studies in
the field of geodesy and cartography of the earth's surface. In the practical mapping
of sufficiently large regions of the earth's surface, these regions are sub-divided into
smaller, partially overlapping, ones, each of which is assigned to a cenain group of
cartographers. They draw a map of each separate region endowed with reference
points (landmarks, etc.) (Figure 30).

Figure 30.

In forming the total atlas, these maps are sewn or glUed together. Those parts which
were overlapping are reflected in several local maps. Adjusting individual local maps
is realized by comparison and imposition of their common reference points.' This
procedure underlies the very imponant mathematical concept of a manifold. The
simplest examples of manifolds are surfaces ofcertain dimension in Euclidean space.

If a surface in Euclidean 3-space is given by the equation:
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(1)

then in a neighbourhood of any non-singular point xJ, ... , .x8, such that the rank of

the matrix (iJfqldJ!4) is exactly equal to n- k, we can introduce local coordinates.

Indeed, suppose the minor which is not equal to zero is (dfqldJ!4), where a =i1> ". ,

t_!Co then in the neighbourhood of the point xA, , x8 on the surface we choose, as

local coordinates, the missing variables li=zl, ,lie= ~ and solve equations (1)
in the neighbourhood of this point by the implicit function theorem:

i1 i1 1 Ie
.x = x (z, ". , z ),

in_Ie in_k 1 k
X = X (Z, ••• , Z ). (2)

We obtain the parametric representation of the surface relative to the variables
zl, -?, ... ,~ in a neighbourhood of the point of interest. In a neighbourhood of
each non-singular point of the surface we can, generally speaking, set special local
coordinates. To calculate the length of any curve on the surface we can, in a domain
near each non-singular point, use the local coordinates associated with the
neighbourhood of this point; the length of any curve can be calculated by pieces
positioned in each coordinate region. In general, by definition the length of a curve
(and of any vector) does not depend on the choice of coordinates.

On this ground, we can give the general definition of a differentiable manifold.

DEFINITION 1. A differentiable (smooth) manifold is an arbitrary setM of points
endowed with the following structure called the "atlas": the set M is covered with a

collection of its sub-sets Uq called "local charts" (rather than "maps"), i.e. M = U U .
q q

There exists a one-to-one correspondence C/lq between each set Uq and a certain

open region Vq of Euclidean space IR n with coordinates yl, ... ,yn. This

correspondence introduces into the set Uq a family of functions called local

coordinates:

One and the same point of the set M may belong to different local charts:

P E Up (J Uq. In the intersection of local charts Up U Uq there are already two
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systems of local coordinates x; and x;. It is required that each of such systems of

local coordinates in all such intersections Up (I Uq be smoothly expressed in terms

of the other and, inversely, and that;

dXu

det ( --L) ¢ 0.

ax'"q
The general smoothne~s class of these coordinate changes ~(x~, '" , x~) for all

intersecting pairs of regions Up, Uq is called the smoothness class of the manifold M,
which, later on, we always assume equal to infinity.

This completes the definition of a smooth manifold endowed with an atlas of
local chans.

In the following we shall specify in which case distinct atlases are equivalent,
Le. define identical manifolds.

We shall give the simplest examples of manifolds.
1. A Euclidean space or any region of iL

2. A surface in a space!1(x1, ... ,x") =0, ... '!I'l_Ic(X1, ,x") = 0, where

all points are non-singular; for example, a hypersurface ft.,xl, , x") = 0, where
Igrad jI ¢ °on the surface.

3. Group manifolds (Lie groups):
a) a group of matrices with non-zero determinant over the field IR of real

numbers or over the field (C of complex numbers, i.e. a region in space of dimension
n2 for IR or (2n)2 for [;, denoted by GL (n, IR) (or GL (n, [:»;

b) a group of matrices with detenninant 1, which is given by one equation
(hypersurface) in the space-of all matrices:

det (aij) = 1.

It is denoted by SL (n, IR) (or SL (n, (C»;

c) a group of onhogonal matrices On given by the system of equations:

d) a group of unitary matrices Un given in the group GL (n, [;) by the system of
equations:

where the bar implies complex conjugation of all the coefficients of the matrix.
(We have not listed all of the well-known even matrix Lie groups.)
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4. Projective spaces (real and complex): we are given a vector y =(y0•...• yn)

¢ 0, the vectors y and ay for a ¢ 0 being assumed to defme one and the same point of

the projective space denoted by lRP" (or ~).
Let us consider the region Uq =~ ¢ 0); in this region Uq we introduce local

coordinates:

x~ = l/fl. ... .:Jlq =yr1fll.

x3+1 = yq+l/fl• ...• X'q = i'/~.

EXERCISE. Find the changes of local coordinates in the intersection of regions

Uq(I Up for a projectve space of dimension n = 1. 2. What is meant by the real and

complex projective straight lines?

The simplest example of a c;:omplex proje¢ve space is the Riemannian sphere.
i.e. a "projective straight line" which is a z-plane with an extra infinitely remote point.
The reader is no doubt familiar with the real projective plane 1RP2 from the course in
analytical geometry. It turns out that the three-dimensional real projective space~
coincides with the matrix group S03 (onhogonal matrices with determinant + 1).

In what follows, the reader will find a number of other examples of manifolds.
It should be noted that the general concept of a manifold that we have introduced is
too wide from the logical point of view, and we shall restrict it. It is required from
the very beginning that a manifold, by definition. be situated as a smooth non­
singular surface in a Euclidean space of a cenain (perhaps. large) dimension.

Let us introduce an imponant concept of a smooth sub-manifold in Euclidean
space. Suppose that we are given an arbitrary covering of the Euclidean space IJi'I by
open domains Wq• A smooth sub-manifold tI'. in 1Ji'I. of dimension k is given by a

system of local equations in the domains Wq:

where the functions~ of class COO are defmed only in the domain Wq• It is required

that the rank of each matrix (orq/oyi) be equal to n - k at all points of the

sub-manifold Nt.
It is also required that the systems of local equations f q =0 and fp =0 be

equivalent in the intersections Wp (I Wq.

We shall investigate. in detail. two-dimensional surfaces in three-dimensional
Euclidean space.
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We shall now construct an atlas of local chans Uq on the sub-manifold N",
where the indices q will be in a natural one-to-one correspondence with points of the
sub-manifold we, i.e. q =Q eN".

Let Q E tvl. By the defInition of a sub-manifold there exists a set of numbers

ii' ••• , in-ko such that:

at/'
det(~) ¢ O.

dI
According to the implicit function theorem, in a cenain neighbourhood of the point Q,
equations (*) can be solved in the fonn:

(**)

where 1 !!:.p !!:. n - k, and the numbers h, ... ,he make up a complementary set to

i1,···, in_to
Let us fix in the space IRt a cenain sufficiently small region where the

expression (**) holds. We denote this region by VQ' The coordinates /1, ... ,/t
in this region will be denoted by xb, ... ,x~. By Up we denote the set of points on

the sub-manifold we corresponding to points of the region VQ by virtue of (**).

THEOREM. The set Nt, along with the atlas of local charts UQ in which local

coordinates xQ are introduced as shown above, is a smooth manifold.

Proof By ·definitIOn, the t01allty of the regions UQ yields the covering of the set we
by virtue of the non-degeneracy of equations (*). Suppose P and Q are two points
of the sub-manifold Nt, such that the regions Up and UQ have a non-empty

intersection. According to the implicit function theorem, the mapping (**) is

infinitely differentiable. Therefore, the expression of local coordinatesip in terms of

the set xb, .., , x bis infinitely differentiable by the definition of these coordinates,

and inversely. This implies that:

(***)

Indeed, iffor any pair ofindices P and Q the Jacobian (***) were equal to zero, then
the Jacobian of the inverse mapping would not exist, as required.
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REMARK. A particular case of the argument for n =3, k =2 has, in fact, been
considered in the proof of equivalence of the concept of non-singular points for
different ways of defining the surface (see Section 1.7).

Hereafter, we restrict our consideration only to such differentiable manifolds
which are equivalent to smooth sub-manifolds in Euclidean space, although we shall
not prove this equivalence for particular cases.

The differentiable manifolds equivalent to sub-manifolds of Euclidean space are
called Hausdorff. Any two non--eoincident points x and x' of such a manifold can be
"separated" from one another, that is, their open neighbourhoods U(x) and U(x') can
be so constructed that they do not intersect

We now discuss the concept of equivalence of manifolds: we have not yet said
when two manifolds are thought of as identical.

Suppose two manifolds are given:

M=UU,.N=Ull
p v q q

(coordinates~ and y~).

DEFINITION 2. An arbitrary transfonnation

f.M~N

is called smooth ofsmoothness class k if all the functions yg(x1, ... ,x~) for all pairs

(q,p), when defined, are smooth functions of smoothness class k in the regions
where they are defmed.

By definition, the smoothness class of a trans!onnation (or of a mapping) is
assumed to be not higher than the smoothness class of any of the manifolds M, N.
In the case N is a real straight line N =IR or a complex straight line N =a: pthe
mappingf M ~ IR orf. M ~ a: is naturally called the numerical functionj{x), where
x is a point of the manifold M.

The situation is possible when a smooth map (or a numerical function) is
defined not on the entire manifold M, but only on a part of it

Such a situation can be illustrated on an example of the local coordinates~

themselves which are numerical functions for any a and are defined only in the
region Up already by their meaning.
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DEFINlTION 3. Two manifolds M and N are called smoothly equivalent if there
exists a one-to-one and smooth onto map of some smoothness class:

In particular, the Jacobian of the local coordinates Jpq =det «()y~Ja~> is non-zero

wherever these functionsyC(x~, ... ,x';,> are defined.

Later, we shall everywhere assume that the smoothness class of the manifolds
and mappings between them is precisely the one that we need for our particular
pupose (always not less than 1, and if we need second derivatives then it is not less
than two, etc.).

Suppose on a manifold M we are given a curve x =x(t), a S t S b, where x is
a poit on the manifold. Whenever the curve is coordinatized by the local system of

coordinates (t;;) of the region Up, it can be represented in the form:

~ = ~(t), a = 1, .,. , n.

The velocity vector in these coordinates has the form:

• ·1 . PI

X = (x p' ... ,x p ) •

In regions Up n Uq, where two coordinate systems apply, we have two
representations:

~(t) and x~(t),

where t;;(X~(t), ... , XXq(t» == ~(t).
For the velocity we obtain:

'a _ dX; 'y
xp --x

(}xy q
q

As for Euclidean space, this formula provides the basis for the following definition.

DEFINITION 4. A tangent vector to a manifold M at an arbitrary point x is a vector

represented in terms of a system of local coordinates (t;') by a set of numbers (~~);

the representations of one and the same vector in terms of distinct local coordinates
containing this point are related by the formula:
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:be tangent vectors form an n-dimensional1inear space. In particular, the velocity
'ector ofany smooth curve is a tangent vector.

)EFINITION 5. A Riemannian (pseudo-Riemannian) metric on a manifold M is a
ositive definite (indefinite) quadratic fonn given on tangent vectors at each point of
le manifold and smoothly depending on all the local coordinates, pointed out in the
efmition, in the region where they apply. In each region Up coordinatized by the

)Cal coordinates (~, ... , x~) the metric is given by the matrix:

Jr any vector ~ at the point x.

A Riemannian (pseudo-Riemannian) metric determines a symmetric scalar
.roduct of two vectors at one and the same point by the usual formula:

Iere ~1'\ =(~, 1'\). In the mathematical literature both the notations are used. In this

,otation, the modulus squared, 1~12, does not depend on the choice of the system of
oordinates:

OXU ox~
(or g' =_P g _P) .

10 ax1 u~ axo
q q

The length of any smooth curve on a manifold is detennined by the usual
onnula:

b

I =f IX (t)ldt.
Q

In manifolds with a pseudo-Riemannian metric the class of space-like curves

{t), such that IX (t)1 > 0, is naturally distinguishable.
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The concept of a manifold might, at first glance, seem excessively abstract In
fact, however, even in Euclidean space or in its regions we often have to make
coordinate changes and, consequently, to discover and apply the transfonnation rule
for one quantity or another. Funhennore, it is often convenient to solve one problem
relative to distinct coordinate systems and then to see how the solutions are "sewn"
together in the region of intersection of theses distinct systems of coordinates. In
addition, not all surfaces can be coordinatized by a single system of coordinates
without singular points (e.g. the sphere has no such coordinate system).

Continuous transfonnation groups of a space are also manifolds.
Of particular interest is "space-time continuum". The generally accepted

hypothesis suggests that this space-time continuum is a four-dimensional
differentiable manifold. This means that if an observer is at an arbitrary point of a
space-time continuum, then the space-time region Up which is surrounding this

space-time continuum admits an introduction of the coordinates x~, x~, x~, x; .
Given this, the coordinates rxp and~ introduced by different observers positioned at

distinct points are expressed in tenns of each other in a smooth invenible way in the
region where both the coordinate systems apply:

~ =~(x~, ." , x~)

(in the region Up n Uq). This hypothesis is the most convenient and simple one,

although in the neighbourhood of an observer there of course exist pontS which he
cannot observe at a given instant of time.

In the special theory of relativity it is assumed, in addition, that the space is a
pseudo-Euclidean Minkowski space which admits the introduction of a unique
coordinate system, ct =xO, xl, Xl, i3 and possesses a pseudo-Euclidean metric:

The underlying (Einstein's) hypothesis of the general theory of relativity
suggests that the space-time possesses a pseudo-Riemannian metric which in its
physical meaning is identical to the gravitational field. In each local system of
coordinates (~, x~, x;, x;) this metric is given by:

The gravitational field is said to be weak in the case where this metric is close
to the pseudo-Euclidean one in some coordinatesxO, xl, Xl, i3, where xO = cr, given
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this, the components ga.p are small when a '#~, goo is close to unity and gru:J.' a. ¢ 0,

is close to minus unity. In classical mechanics, the gravitational field was descibed
by the potential ~(x) (force is grad ~); in comparison with mechanics, the metric
should approximately be given by:

goo = 1- 2~/~+ o( 1/~, gpCt. = ga.p = o(1/~),

gru:J. = - 1- ~/c'l + o(1/~), (a =1, 2, 3; ~ ¢ a),

where c is the speed of light in a vacuum, and its value is high.
As far as positive definite (Riemannian) metrics are concerned, they have

occurred, of course, due to the geometry of three..<fimensional space. At the same
time, the concept of a positive Riemannian metric is often a convenient tool for
investigating various essential manifolds, for example, group manifolds (Lie
groups). We shall give a number of useful examples of the Euclidean metric.

For example, in a linear space of skew-symmetric matrices

A = (a··) a·· = - a··I)' I) '}l

there exists a positive scalar product

{A, B} =- trace (A • B),

where the trace (A • A) > O.
Another example: in an infinite-dimensional linear space consisting of all

continuous real functions (for instance, on a segment [a, b]) there also exists a
positive scalar product:

b

if, g} = Jfix) g(x) dx,
a

Let us now sum up the results. On defming the concept of a manifold, we
considered the basic examples.
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1. k-dimensional surfaces, in an n-dmensional Euclidean space, given by a
system of equations

j,{x1, ••• ,:x!') = 0, i = 1, ... , n - k,

the rank (afra~)= n - k.

A more general case is a sub-manifold of a Euclidean space the whole ofwhich
cannot be given by a non-degenerate system of equation, for example, a projective
plane.

2. The basic groups given by equations in an n2-dimensional space of real
matrices:

GL (n, IR) (det ¢ 0), SL (n, IR) det A = 1);

°n is a group of matrices whose rows make up an orthonormal basis of

vectors;
san is the part of the group On' for which

detA = 1;

SPn is the transfonnation group preserving the skew-symmetric scalar product

in a 2n-dimensional space.
Analogous groups are defined over the field of complex numbers GL (n, «:),

SL (n, «:), On«:' Sp~. In addition to these groups, in the complex case there appear

other transformation groups preserving the Hennitian positive scalar product:

Un = 0 211 (IR) n GL (n. «:).

There exist some other groups of linear transformations preserving the pseudo­
Euclidean real scalar product which hasp positive and q negative squares Op,q; SOp,q

(where det =1); 00,n =On' SOO,n. =SOn'
Analogously. in the Hennitian complex case we detennine the groups Up,q;

SUp,q (UO,n =Un' SOO,n =SUJ.
3. Projective spaces (real and complex); points of these spaces are non-zero

vectors considered up to a factor
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3. Projective spaces (real and complex); points of these spaces are non-zero

vectors considered up to a factor
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The coordinate regions ~ are distinguished here, where I ¢ 0, with coodinates xj:

a =I, ... , n,a~i,

{

ya./I,
~=

) yrl-lJl, a <i, i =0, ... , n.

In particular, the region U0' where yO ¢ 0 is called finite part with coordinates

x~ = ya./yo, a = I, ... , n.

4, Riemannian surfaces of multi-valued functions are defined as follows: in
the space of two complex variables (w, z) for any analytic functionft:z, w) (e.g. a
polynomial) we take the surface of its zeros

ft:z, w) = O. (3)

Here the function! is complex-valued,!= u + iv, and analytic,

iw = 1/2 ( ~ + i ~ ) == 0, - iz = 1/2 ( ~ + i : -) == 0,

z = x + iy, w = h + ig ,

(or, which is equiValent, in a neighbourhood of any point ZOo Wo it is expanded into a

series ft:z, w) = ft:zo, wo) + Qrn,n(z - zo)rn(w - wo)P1). The set of solutions of

equation (3)

w = w(z), ft:z, w(z» == 0 (4)

may appear to be a multi-valued function.

For example: a) w = (p,.(z) )In., where PP1(z) is a polynomial;

b) w = In z = In Izl + i arg z + 27tin, f(w, z) = eW
- z.

Then the surface (3) is called the Riemannian surface o! the multi-valued
junction (4).

That the function w(z) is multi-valued means that the projection of the surface
(3) into the z-plane along w is not one-ta-one.

Suppose the funetionf(z, w) is a polynomial ofdegree n in the set ofvariables.

We make the substitution z =y1/l, w=l/l. Thenft:z, w) = (1/(y~P1)QPI(y°,i,

r), where Q,. is a homogeneous polynomial. To the projective plane «:p2 the

equationf(z. w) = 0 is continued in the fonn

(5)
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Those points of the surface (5), where yO = 0, are called infinitely remote points of
the Riemannian surface (3).

What is meant by two-dimensional manifolds? To which of the surfaces
known to us are they equivalent as manifolds?

The reader is already acquainted with the following surfaces in two­
dimensional and three-dimensional spaces.

A. Regions in a plane with k holes (Figure 31).

Figure 31. "-- .....

B. A surface in a three-dimensional space with g handIes (Figure 32).

Figure 32.

C. Arbitrary regions on surfaces with g handles.
Now consider the following examples.

EXAMPLE O. Let

j{w, z) = w2
- z, Q2Cl, yl, I) = if)2 - II = o.

Consider points (z =co) and (z =0) and joi~ them with a straight line a
(Figure 33).

Figure 33. a ---e
=
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On the sphere S2 equivalent to r;.p1 this line looks as shown in Figure 34.

PART I

Figure 34.

Outside this line, the graph of the Riemannian surface f{i, w) = 0 falls into two
disjoint pans (two "branches") each of which is equivalent (can be projected in a
one-to-one manner) to the appearance of the line a in a z-plane (Figure 35).

Figure 35.

At the points 0 and 00 the values of these two branches of the function
w(z) =(z)1/2 merge.

To obtain a surface, it is necessary that the piece of a boundary al of region I

be identified with the piece of boundary 132 of region II and that the piece of boundary

~I of region I be identified with the piece ofboundary S2 of region II.

It can be readily seen that after g1ueing we again obtain a surface equivalent to
the sphere S2 (this can be done with scissors).

EXAMPLE 1. fl.z, w) =~ - P2(z), where P2(z) is a polynomial of degree 2 with

simple (allquant) roots z = zo. z = zl' Zo ¢ zl'
Join the roots Zo and zl with a segment a. Outside the segment a, the graph

f{z, w) = 0 falls into two pans which are disjoint. Over the sphere [:pl this set looks
exactly as the one in Example 0 (Figure 36).
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Figure 36.

The only difference is that here ZI '¢ 00. By analogy with example 0,

identifying the curves

we shall obtain the sphere S2.

EXAMPLE II. f{z, w) =w2 - P3(z), where the roots Zo. zl'z 2 of the polynomial
P3(z) are not pairwise equal. Let us make cutsal and a2 (Figure 37).

r'.f~
Figure 37. ~o Zz

Outside these cuts the surface falls into two disjoint pans (Figure 38).

Figure 38.
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Identifying the curves

al .... 132, 11 .... 82,

~
....

~I' i'2 .... 81,

PART I

we shall obtain a torus (g = 1) (Figure 39).

EXAMPLE m. j(z, w) =w2 - P4(z), where the roots of the polynomial P4(z) are

not pairwise equal. Let zo, zl,z2' z3 be the roots of the polynomial Piz). Using

arguments similar to those of Example II, we also arrive at a torus here.

For the Riemannian surfaces of muliple-valued functions of the form

W =(P:ua(z)) 112 or w =(P2n-l(Z))1I2 (the polynomials P(z) have aliquant roots) we

obtain, as the Riemannian surface, a surface with (n - 1) handles (Figure 40).

Figure 39. Figure 40.

We can see that quite different definitions of the surface lead to equivalent
results.

Let us discuss some more examples.
1. A special role is played by the torus which can be obtained as follows.
Let (x, y) be points in a plane. We shall assume the points (x, y) and

(x + mxo, y + n Yo), where m,n are atbitrary integers, Xo ¢ 0, Yo, ¢ 0, to be

equivalent.

C
--ti2---1

lIf b:! I
1

a, 1
,..1

Figure 41. (;&o.!lo)
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Within the rectangle in Figure 41 there are no equivalent points, while the
segments al and a2 on the boundary are equivalent, and so are the segments b1 and
b2• Glueing them, respectively, together we obtain a torus. From this it is obvious

that the doubly periodic functions in the plane are functions on the torus. Figure 42
illustrates several two-dimensional manifolds.

Figure 42.

2. We shall point out that even functions on the sphere are functions in the
projective plane (similarly for the n-dimensional sphere~, + x1 + ... +.1'~ = 1). An

even function on the sphere is a functionit.1'°, ... ,,tJ), where L(.t)2 = I, such that

it.1') =f (- .x).
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Among group manifolds, the simplest are the following:
1) the rotation group of a plane as a manifold is equivalent to the circumference

U1 =S02=SI;

2) the group of motions of a plane is described by three coordinates:

x nd y assuming any values; this manifold is equivalent to a region in the space 1R3

from which one straight line is removed (this straight line may be. say, the z-axis);
3) the group SL (2, IR) as a manifold is equivalent to the preceding manifold

(as the group SL (2, IR)/-E is equivalent to the group of motions of a Lobachevskian

plane or to the group ~.l)' Here SL (2, IR)/-E is the factor group with respect to

the sub-group (E, -E);

4) the group S03 as a manifold is equivalent to the real projective space 1RP3;

5) the group SU2 as a manifold is equivalent to the three-dimepsional.

sphere S3

and consists of matrices of the fonn Ci ~), where lal
2 + Ibl

2 =I, a and b being

complex numbers.
Note that as a group, SUV-E is isomorphic to the rotation group S03'
The notation SUi -E or SL (2, IR)/-E implies the factor-group with respect to

the sub-group which consists of matrices E = (1 0) and _ E = (-1 0).
o 1 0 - 1

If ep(z) =w is a multiple-valued function given by the equationitz, w) =0, then

the graph of this surface is the Riemannian surface of the function w = $(z).

The functionitz, w) is analytic, i.e. near any point (zo, wo) it is expanded into

a power series

For example, this is the case if f(z, w) is a polynomial (the variables z and w
are complex numbers).

What can be said about the multiple-valued function w =,(z)1
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First, at each point Z (except at the discrete set zcc.> this set has a cenain number

of values ("branches") wi = cMz) which are not equal to each other and are

continuous in a neighbourhood of the point z.

For example, w± = cjl±(z) =± (z)ll2, z ¢ 0, -.

Second, at the points z =Zcr. the number of values of the function is smaller

(these are the "branching points'').
For example, + (z)112 = - (z)112 when z =0, -. Two or more branches are

said to merge at branching points.
Third. if we move continuously along one branch and pass round the

branching point Zcr.. then we can go over from one branch to another.

For example, from the value + (z)ll2 we shall go over, by passing round the
point z = 0, to the value - (z)ll2.

How can we imagine the geometrical structure of the Riemannian surface?
If branching points are removed, the local coordinates on the surface can be

given as follows: suppose U is an arbitrary region in the branching plane. It is
necesssary for uS that the region U contain no closed paths moving along which we
could. on returing to the same point z, go over to another value of the function

w =¢(z). If the region U is such, then over it the graph of the function w = cjl(z)
falls into disjoint pans (branches) which can be somehow indexed by the subscript i:
Wi =c!laCz) in the region U.

On each branch we can introduce the same coordinates as in the region U.
Therefore, we obtain charts (or "maps") of the coordinate atlas (U, I). Such regions
may. in principle, cover the entire Riemannian surface except the branching points.

We have already discussed above the example w = (Pra(z))II2, where Pra(z) is a

polynomial with aliquant roots z =zl' ... , zra of degree n. Let us represent the result·

as a theorem.

THEOREM 1. The Riemannian surface ofthefunction w =(Pra(z))112 is equivalent

to the surface ofthe sphere with g handles, where n = 2g + 1 or n = 2g + 2.

We shall explain this once again. Suppose n is even. Let uS divide the roots of
the polynomial Pra(z) into pairs and then join each pair with a curve ai' ... , ara/2

which is disjoint with the other curves.

ra-I ra



146 PART I

Now cut the z-plane along the segments aj. We have made sure that the

Riemannian surface falls into two disjoint parts UI and U2 (going round two roots at

a time does not change the branch).
The edges of the cuts we denote by eli and ~i~ they lie, respectively, on the

pieces UI and U2 of the Riemannian surface.

After this, we glue the edges together by the rule

This glueing reflects the fact that when approaching the edge C1j we must go over

from the piece UI onto the piece U2 (the edge ~J.

We can make sure (as in the case w =zl12) that near any root z =Zq the

function has the fonn:

where Q~I(Zq) ¢ o.
From this, we can see that going round the point Z =Zq along the small path

changes the values of two branches as in the case w = (z)ll2.

If the closed path is large, it can be continuously deformed to the one
consisting of small paths that cover the branching points (Figure 43). For odd n the
construction is much the same, but we take zPI+I = 00 for one of the branching points

and, after this, repeat the whole procedure.

Figure 43. (3- ~
The crucial point which we have left without rigorous proof is that after we

remove an appropriately chosen collection of paths, the Riemannian surface falls into
two disjoint pieces.

This can also be represented as follows: choose a point P in a z-plane aside
from the branching points.
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Consider all possible closed directed paths which start and end at the point P
and leave aside the branching points (Figure 44).

Suppose 1 is such a path. By "(I we denote the same path in the opposite

direction.

If there exist paths 11 and 12. then we can fIrst move along the path 11 and then

12' Then we shall cover the path 1 = 12' 11 (the ''product'' of paths).

It is obvious that generally 11 • 12:;C 12' 11 (the order of taking paths is different).

Moving along the path 1. we shall return to the same point. The values of the
multi-valued function at the point P will be somehow pennuted (if the function has n
branches):

(1. 2. ... n.).
1 ~ CJ(1) = IIIII l2 ... . In

here CJ("'/) is the permutation of the values of the function induced by the motion along

the path 1.
Obviously. we have:

A surface w = (pn(z))1/2 always has two branches; for a path 1i (Figure 45) which

embraces one point, we obtain:

CJ(y. ) = (1 2).
l 2 1

Figure 44. Figure 45. ?

' ..
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We can easily reconstruct the Riemannian surface if we know the pennutations
CJ(Y) for all closed paths y which start and end at one point P. It suffices to know

only CJ(Yi) for paths Yi embracing one branching point.

As an example, investigate the Riemannian surface of the function

w = (pm(z)) lin.

The specific feature of the Riemannian surface is the complexity of these
two-dimensional manifolds:

1) each coordinate region U is a region in a plane with coordinate z(a).

2) in the intersection of regions Uri. n Up the change of coordinates

z(~) = w = .ttz(a)), z(a) = z = x(a) + iy(a),

is analytic (or confonnal),

_"if = 112 ( "if + i --L-) == o.
az (a) ax (a) dy(a)

z(~) = x(~) + iy(~) = u + iv,

z(a) = x(a) + iy(a) = u + iy.

The Jacobian matrix.

(
ux u )

Y =J
v v
x Y

with account taken of the identities:

has the form J = C':: ~). and its determinant is positive: det J =.;+ u; > O.

The transfonnations w =.ttz), where 'iJj/az- = 0 (or the complex conjugate ones) are
called confonnal.

Bydefinition. ~ = 112(r -i ~). Obviously, I~ 1
2 =u;+v:.

It would be of interest to pay attention to the following circumstance. In this
sub-section we have imposed the requirement that all the manifolds we are dealing



CONCEPT OF A MANIFOLD 149

with should be smoothly equivalent to sub-manifolds in a Euclidean space of some
dimension or in its regions. We call such manifolds Hausdorff. Among the simplest
examples of manifolds considered above, all except projective spaces are, by
defInition, as follows. For projective spaces this fact does hold, but requires a
special proof which we do not give here. The general smooth manifolds that we have
introduced need not necessarily be Hausdorff. The simplest example: consider two
copies ofa real straight line with coordinates x and y respectively. Identify the points
x = y for x < 0, Y< 0. When x ~ 0, y ~ 0, we assume the points to be distinct.
Obviously, we obtain a smooth one-dimensional manifold. Prove that it is not
realized as a smooth sub-manifold in a Euclidean space. (The points x= 0 and y = 0
are not identified!)

The requirement that manifolds be Hausdorff may also be formulated in some
other equivalent ways (without proof).

1. On the manifold there exists a Riemannian metric, such that there exists not
a single pair of infinitely close points. A pair of points P and Q is called infinitely
close if, for any E > 0, these points are joined in this manifold by a piecewise smooth

curve y, such that its length is less then E.

2. There exists a "sufficiently small" partition of unity, so-called, i.e. an atlas

ofa fmite or countable number of maps (charts)~ U U ,where each point belongs
q q

only to a finite number of regions. Given this, each region is homeomorphic to a

region of Euclidean space and endowed with local coordinates~, and there exist

smooth real functions 'q ~ 0 on the manifold MrI
, such that :r. 'q :; 1, 'q!!! 0 outside

q

the region Uq•

3. For any pair of points P and Q of the manifold M there exist continuous

functions 'p and 'Q on the manifold M, such that 'p(Q) =0, 'pep) =1 and

'Q(P) =1, 'Q(P) =O.
('The last definition extends to all topological spaces.)
For instance, with the partition of unity in mind, we construct the Riemannian

metric as follows. We introduce the tensor relative to the coordinates xq of the point

P e Uq: 1fyt])(xq) = 5ij • 'q(xq), where 1Jut]) a 0 outside the region Uq• This tensor is

defined on the entire manifold and is non-negative. We assume gi;{P) = :r. g~~)(P).
q IJ

EXERCISE. Prove that the tensor gj}{P) determines a positive definite Riemannian

metric on M. Prove that there exist no infinitely close points.
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As has been mentioned above, that the manifold Mil is Hausdorff is a
consequence of a rather small-sized partition of unity. Non-negative functions 'q
fonn partition of unity if at each point of the manifold the identity L 'q(x) == 1 holds.

q

For a sufficiently small-sized partition of unity, the suppon '<I>J of the functions 'q
(Le. the closure of the set of points lot "ql at which the function 'qis positive) is

obviously embedded into the Euclidean space!R". Suppose that the points P and Q
are inseparable (i.e. assume the manifold not to be HausdorfO. Let Vj and Vj
be contracting sequences of neighbourhoods of these points. Choose points

xje vjn U'j. Choose a function 'q such that ,q<P) > O. Then P e Int I,qt
Since the support "ql is embedded into the Euclidean space !RII

, it follows that

'q(Q) =O. Hence Q E lot "qt But continuity of the function 'q implies that the

condition 'q(Q) lpt 'q(Xj) = 'q(P) ¢ 0 must hold. The contradiction obtained shows
J

that hte manifold M cannot contain inseparable points.
It should be emphasized that the existence on a manifold of an indefinite

non-degenerate metric does not necessasrily require that the manifold be Hausdorff.
Therefore, the requirement that a manifold should necessarily be Hausdorff is
unnatural from the point of view of the general theory of relativity.

For real analytic manifolds, the existence of an analytic embedding into
Euclidean space is an exceedingly sophisticated and not at all elementary theorem.

The requirement that the manifold be Hausdorff is not natural in a number of
other fields of mathematics, namely, in algebraic geometry, in the theory of invariants
and others. It is precisely for this reason that we think it most fundamental only to
determine a manifold as an atlas of local coordinate regions with certain requirements
imposed upon the class of functions of the change from one local coordinate to
others.

In the defmition of the basic concepts of analysis on manifolds, the requirement
that these manifolds be Hausdorff in the sense of items 2 and 3 (see above) is
important for the manifold as the domain of definition of functions and is not so
imponant for the manifold as the domain of values of functions.
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Suppose we are given a certain Riemannian manifold M with a positive definite
metric gij. It is natural to define an important class of curves on a manifold, which

are called geodesics and posses the property that they are locally minimal. Le. they
minimize the length between any of its two sufficiently close points. In Euclidean
space such curves coincide with straight lines. If points on a Riemannian manifold
are situated/ar from each other, then the geodesic joining them may tum out to be not
a minimal trajectory. In other words, there may exist another curve of smaller length
between these points.

Thus, geodesic lines are (at least locally) the shortest trajectories, Le. their
length does not exceed that of any other curve joining the same two points
sufficiently close to one another. Let us consider this question in more detail

It is instructive to approach this question from a more general point of view.

Suppose L(z, ~) is a function of the point z = (zl, ? ,~) and of the tangent vector

~ = (~i) at this point. Consider a fixed pair of points P = (z\, z1, z1)

and Q = (zl, z~, z~), as well as various smooth curves y: zi = i(t) joining these two

points

t(a) = zf, t(b) - zi
- 2' a~t~b.

Consider the quantity

Q

S(y) =JL(z(t), ~ (t)) dt .
p

On which curve ywill the quantity S be minimal? The quantity S('y) will be called the
action.

EXAMPLE 1. Let L(z, ~) =gij ~i "fI, then

Q Q Q

S(y) =JL(z, ~) dt =Jgijii zi dt = J~r dt.
p P P

On which curve y = (z(t») will the function S(y) be minimal?

EXAMPLE 2 Let L(z, ~ = (gij ~i 'tf)1f2, then
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Q

fe ., )112
S (y) = gij i l ZJ dt = (the length of the curve y).

p

On which curve y is the length minimal?

PART I

• i' j
EXAMPLE 3. Let the metric be Euclidean and let L = m

2
a.~ ~ - U(z). Then

rJ

Q

S(1) = J[£; (z~2 ~ U(z)] dt.
1=1

P

The CUIVes y along which S(y) is minimal are the trajectories of motion of the point of

mass m in the field of forces/; = -aural
Then a simple theorem holds.

Q

THEOREM 1. If the quantity S(y) =fL(z, i) dt reaches its minimwn on a ceriain
p

curve y: {i =i(t)} among all the smooth curves going from Pinto Q, then along the
CW1!e there hold the equations

dL • dL
(-) = ~, i = 1, 2, 3iJii azl

where

(it is asswned that L = L(zl, z2. r'. ~ I, ~2, ~3), whe;e z and ~ are independent
variables, but then ~i = dzildt is substituted along a given curve y : t =i(t».

Proof. Let lli = lli(t) be any smooth function, such that lli(a) = 0 and lli(b) = 0,

a ~ t ~ b. Let E be a small number. Consider the equation

lim S(y + ETl) - S(y) =.!L S(y + ETl)1 •
£....0 E dE £=0

Here y + Ell is the curve (i =zi(!) + ETli(t») close to the curve y(t) as E -+ O.
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LEMMA 1. If S(y) is minimal, then for any smooth vector function 1) (t) which

vanishes at the ends ofthe time interval (the curve y + Ell also going from P into Q) we
have

lim S(y +Ell) - S(y) =.!L S(y + Ell)1 = o.
£-.0 E dE E=O

The proof of this lemma is obvious.

We now proceed to the theorem. For the expression dlde. S(y + ~11)lt=o' we

have

(1)

where the integral, by definition, is calculated along the curve y :

i i t: i 'i
Z = Z (t), ':I = Z (t).

This equality holds for any smooth vector function 11(t) which becomes zero at

the ends of the time interval.
Note that there holds the identity

b b

JdL lidt - (aL i' (aL i' J i(dL )"dJ
a~i 11 - a~i 11 J1=b - a~i 11 JI=a - 11 a~i

a a

(integration by parts).

Since 11i(a) =11i(b) =0, we obtain

b b

JaL I' JCaL )" .-. 11
1
dt = - -. 111

dt.
a a~1 a a~1

Substituting this expression into fonnula (1) we see that for a.ny smooth vector
function 11 i(t) which vanishes at the ends of the time interval, there holds the equality
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if y: t =t(t) gives the minimum of the function S =S(y) among all the smooth
curves joining the points P and Q, whence

Indeed, if ~(t) ¢ 0 for some i and t = to between a and b, then we can easily choose a

function lli(t) such that the integral is not equal to zero (e.g. for lli =~ •f(t) we have
in the integrand a positive number iff(t) is greater than or equal to zero and if it
vanishes at the ends). This completes the proof.

REMARK. The solutions of the equations (aL. ). = aL. are called extremals.
a~1 azl

Now, we shall give some defInitions.
1. The energy is the expression:

. i aL .i aL
E = E(z,z) = E(z,~) = ~ -. -L = z ~-L.

a~1 ail

2. The momentum is described by the expression:

aL aL-" =p. = ---:" (covector).
i1z1 I a~1

3. The Lagrangian is an original integrand:

L = L(z,~) = L(z, z'>.

4. Theforce is given by the expression:

5. The Euler-Lagrange equations are those of Theorem 1 (equations for
extremals)

aL • aL
(~) =-

01 ~iaz oZ
or p. = f.

I I
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EXAMPLE 1. IfL = l/2gjj ~j 'tI, then pj =gij 'tI,

dp age ,j 'j
We obtain the equations for the extremals } = 1/2.....L. z •z where

u aZk

apk "i 'j agjle 'j agij .j 'j- = zg + Z - Z" = 1/2 -IeZ Z" •
d jle ai az

Since g1:mgjle =5j, we obtain:

"m km (agjle agij ) 'i~j
Z + g --:--1/2 - z z- = o.

al ai
Now we shall point to the identity:

Substituting it into the preceding equation we obtain

"m m 'i 'j
Z + r .. z z = 0,

IJ

where

rf1J _ 1:m (agjk agjk aglj )
1 .. - l/2g -+---
Ij ai ai al .

(2)

Equations·(2) are called equations for geodesics (relative to a given Riemannian

metric). The functions r"lj are called Christoffel coefficients (or Christoffel symbols)

for a symmetric connection compatible with the metric gtj' We shall again deal with

these equations in Part II, where they are derived in another way.
Thus we have obtained

THEOREM 2. The Euler-Lagrange equations for extremals (in particular, for
minima) coincide with the equations for geodesics prol'ided that
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•j'j • 2
L =g.. Z1: =lzl,

I}

Q

S('y) = Jlir dt.
p

PART I

Q
. ,)1/2 f

EXAMPLE 2. IfL = (g ij ZI il = Izl, then the expression S = (length) = ~ Idt

p

does not depend on the introduction of the parameter t. The Euler-Lagrange
equations have the fonn:

or

(
g/cizi J~ = - (dgij 'i '1)1 ( ·j'i)lfl

(
.j •. )lfl /cZ Z 2 gj'zz

g,.zz) dZ I}
I}

If we associate a curve with the natural parameter I = t, where (g ij ijii) lfl = 1, we

obtain (gt' zj)" = dgij zi i. This is the same equation as in Example 1, but only
'.) dl

forthe curves associated with the natural parameter.
We have arrived at the following:

THEOREM 3. The Euler-Lagrange equations for extremals (in particular, for

minimal curves) in the sense of length (L = (gij ~j ~j)lfl) coincide for the natural

parameter with the equations for geodesics. Therefore, any smooth curve which is
the shortest between two points P and Q satisfies the equation for geodesics if it is
run through with the natural parameter of time (proportional to the length).

Note some general properties of energy and momentum, for any Lagrangian
L =L(z, z).

Propeny 1. The total derivative of the energy along an extremal is always equal to
zero (it is assumed that L = L(z, ~ and does not depend explicitly on t):
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dE d(,.aL )
"":i"" = .. Z I~ - L == O.
u c.a di l

(This can be checked by direct calculation!)
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Property 2. If coordinates (zl, ? z3) are so chosen that auaz1 == 0, then there holds

the equality

( aL)" ,- =p = 0 (along the extremal).
oil 1

Indeed, p =(aLI) == O.
1 di .

Properties 1 and 2 are the laws of conservation of energy and momentum.

EXAMPLES.

Ii Ij ,
1. If L = gij z z ,then E =L = Iz 12• From the energy conservation law we have

dEldr == 0 along the extremal of this functional S = JL dr. Thus, extremals are

always geodesics, and the velocity of their motion is constant (the natural parameter).

2. If a surface in three-dimensional Euclidean space is given relative to cylindrical
coordinates z, r, q. by the equationJtz, r) = 0 (the surface of rotation), then one of the
~ordinates on the surface may be an angle, and the other will be r or z (locally).

Then the components of the fIrst quadratic fonn do not depend on q.:

ag/aq. == 0; i,j= 1,2;

for coordinates zl and? on the surface, we shall take zl =q. and? =(r or z). This
implies momentum conservation:

,

o = aLIdq. = Pt = 0, p. = aLIdq.,

( ' '2)L = 1/2 g q.2 + 2g rq. +g;' ,
~ r~ "

p = g q. +g ;. = const
~ ~ r4J
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(along the geodesic curve). However, for surfaces of rotation we always have:

Thus, there holds

THEOREM 4. For surfaces of rotarionft..r, z) =°in Euclidean space with cylindrical.
coordinates (z, r, ep) and Euclidean metric dP =d? +d? + Tl(dep)2, the quantity Tlep
is constant along any geodesic curve.

(Recall that the parameter is naturaH)
Indeed, if (r, ep) are coordinates on the surface, we always have g~r = 0,

g~. =Tl. Therefore p' • =Tlep. Since p. =dLfaep =0, the theorem is proved.
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TENSORS. RIEMANNIAN GEOMETRY

2.1 Rank-One and Rank-Two Tensors

We have already got used to the fact that many quantities are given as numerical
functions of a point in space. For example, the distance from a point to a certain
fixed centre, etc. If we have several such quantities at our disposal, we already have
several functions of a point (or, so to say, the vector function of this point). In
three-dimensional space, for a complete characteristic of the poisition of a point in
space it is ncecessary, as is well-known, to know the values of at least three
numerical functions called coordinates of the point (xl, x2, x3): each of the
coordinates xi is a function of the point, and the set (xl, x2, x3) completely
determines the point. The reader has already met with different types of coordinates,
for example, in a plane there exist Cartesian coordinates xl, Xl and polar coordinates
T, ~, where xl = T cos ~,Xl = T sin ep; in space there exist Cartesian, cylindrical T, z, ep
or spherical T, e, ep coordinates.

Thus, coordinates make up the set of numerical functions of a point which
determine completely the position of this point in space. In precisely the same way,
the coordinates ofany physical system make up such a set of numerical functions of
the state ot this system which completely determines this state. The state of a system
is a point in "the space of all possible states" of the system. For instance, the state of
a moving material point is determined by six numbers: three coordinates and three
components of the velocity vector; here we deal with a six-dirnensional state space.

It turns out, however, that the numerical function of a point, or the set of such
functions, is insufficient for the investigation of many problems. The point is that
many geometrical and physical quantities can be described as a set of numerical
functions only after a certain set of coordinates (xl, Xl,~) in space is already given;
the numerical representation of these quantities may change significantly if we
assume some other coordinates zl,?, -!, where

To clarify this, we shall consider the concept of a vector, for example, the velocity
vector for motion along a certain curve:
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t= t(t), j = 1,2, 3;

J- = J-(t) = i(zl(t), ?(t), ;(t)), i = 1, 2, 3.

PART II

In the coordinates zl,?,? we have the components of the velocity vector in the
fonn:

I 2 3

(
dz dz dz) I 2 3
dt' dt' dt .=1

0
= (~ ,~ ,~ ).

Representing the same curve in the other coordinates Xl, Xl,,.3, we obtain other
components of the same vector:

I 2 3

(~ ~ ~) I 2 3
dt' dt' dt .=1

0
= (11 ,11 ,11 ),

where

j, i = 1,2,3.

j, i = 1,2, 3,

Thus, for the components of the vector, we have ~e fonnula of their transformation
under the change of coordinates:

~i =r{ ax~,
azl

i = J-(zl,?, ;);

(~I, ~2, ~3) are the components of the vector in the coordinates (zl, z2, z3) at a

given point;
(TJI, 112, 113) are the components of the vector in the coordinates (Xl, Xl, ,.3) at

the same point.
Tensors are the most important class of quantities whose numerical

representation changes under the change of coordinates. The vector is the simplest
and most visual example of the tensor. A trivial example of the tensor is the scalar
which does not change under the change of coordinates.
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Before we introduce mathematically the exact concept to a tensor, we shall
consider some other examples which we have already encountered repeatedly.

1. The gradient of a numerical function. It is normal to say that the gradient of

a numerical functionj(xl ,x2,r) in Canesian coordinates xl ,x2,r is a vector with
components:

. (af af af)
VJ = gradf = l' 2' 3 = (~l'~, ~3)'

ax ax ax

Let us see how the gradient of the same function looks in coordinates zl, z2, z3,
where

. . I ~ .~X = X(z ,r, T),

We have

l = 1,2, 3.

Hence

aj
11-=-. ~.,

I ai")

i = 1,2,3.

(1)

where (~I' ~2' ~3) are the components of the gradient in the coordinates xl,x2,~;

(1h, Tho T'I3) are the components of the gradient in the coordinates zl, z2, z3.
Now compare the formlae of transfonnation of the numerical representation of

the velocity vector of a curve and that of the gradient of a function.
The velocity vector

i i ai
~ = T) - ••

azl

The gradient

11. = ~. aj .
I '} ai (2)
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These formulae are distinct!
To compare these formulae, we shall introduce the matrix A =(a~), where

~=aJIdt, and a transposed matrix AT =(J:i iJ, where Ii" = ~.

For the vectors l; and 11 we rewrite fonnulae (l) and (2) in the fonn

(x) f- (z)

; = A11 (for the velocity vector),

11 =ATl; (for the gradient)

(Z) f- (x).

In case the matrix AT has the inverse (AT}-l, fonnula (2) can be rewritten to
become

(AT}-l T'I = (AT}-l AT~ = ~,

~ = (AT)-l T'I (or~. = T'I. a~).
I 'J axJ

(2')

In which case will the transformation laws for the velocity vectors and gradients of
functions coincide under the change from the coordinate system (x) to the coordinate
system (z)?

From fonnulae (l), (2) and (2') we obtain

(x) ~ (z)

~ =ATJ (for the velocity vector)

The final conclusion is that for the transfonnation fonnulae (I) and (2) to coincide, it
is necessary that we have equality of the matrices

where

i axi

A = (a.) = - ..
J al
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Such matrices A for which AT = A-I are called onhogonal. Note that the change of
coordinates Ax =x(z), such that at each point the Jacobian matrix (a:Jfdt) =A is
onhogonal, is a linear onhogonal transfonnation A =consL, that is, the matrix A
does not depend on the poinL

Thus, the gradient of a function under the change of coordinates transforms in
a way different from that of the velocity vector. This is anotherform of the tensor
which is occasionally referred to as "covector" as distinct from velocity vectors.

2. Riemannian metric. As has already been said, given the coordinates
xl, Xl, r, in three-dimensional space or in a region of space, the metric concepts
(such as lengths and angles) are determined by the set of functions (giJ{x»,j, i = I,

2,3. For the length of a curve, by defmition

wherex =dx/dt and the quadratic fonn Lg.;t./~ is positive. This is the quadratic fonn
lJ

detennined on vectors of the "velocity vector" type at each particular point x =
(xl, Xl,~) and dependent on the poinL We have called (gij) the Riemannian metric.

Under the change of coordinates

. . I 2.~ .r = r(z ,r, T), 1 = 1, 2, 3,

the formula for the lentth of the curve assumes the fonn

b

J( . .)Ifl
1 = gij (z(t» i l iJ dt ,

a

where :J(t) =:J(Zl(t), ?(t), ?(t», the transfonnation law for metric components
being of the form

" II ax ax
g'I)' (z) = gL'(X(Z»· - .• ---:- •

I .... azl at
(3)

Hence the quadratic forms on the vectors are transfonned by the law (3). This is one
more type of tensor (called tensor of rank two).

Thus, we have already pointed out several types of tensors:
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a) scalar (does not transfonn);
b) vector (transforms by the law (1»;

c) covector (transforms by the law (2»;
d) Riemannian metric (transforms by the law (3».
It should be recalled that the Riemannian metric (gi) in coordinates r. Xl. x3

was needed to define the concept of the length of the vector at a given popint (x).

Given the vector ~ =(~l. ~2. ~3) at the point (xl. Xl. i\ we have

1~12 = the length squared = gij{x) ~i 't/.

In particular. this rule has been applied to the velocity vectors of parametrized curves
to determine the length of a curve as the integral of the length of the velocity vector.

The transformation law (3) for the components of the menic under the change
of coordinates follows unambiguously from the law (1) for the components of the
vector and from the obvious requirement that the length of the curve should not
depend on the choice of coordinates relative to which it is calculated. The lenth of a
curve is. in fact, the time integral of the lenth of the velocity vector. It is. therefore.
necessary that the square of the length of the velocity vector

should not depend on the choice of coordinates. This requirement and fonnula (l)
for the components of the vector imply the transformation law (3) for the components
of the menic (gij)'

3. Ifwe wish to define the invariant concept of the square of the length of the
covector which transforms by the law (2) or (2'). we have to introduce the
components (gij(x» and put

1~12 = gij(x) ~i ~j

~ = (~l' ~2. ~3). (at the point x).

Under the change~ =7!(z). i = 1.2.3 we obtain the transformation law

.. azi aJ
g'l (z) = gld (x(z» • -._.

ax" ax'

(2)

(4)
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Then the length will not depend on the choice ofcoordinates:
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1T}12 = 1~12 = lj Tli Tlj = gij ~i ~j'

where ~ =(~l' ~2' ~3) is a covector in the coordinates xl. Xl,,(3 at the point (x), Tl =
(Tll' Tl2, Tl3) is the same covector at the same point but relative to the coordinates zl,

z2, z3.

The transformation law (4) yields one more type of tensor (of rank two).
4. Finally, we have to examine the last type of tensor of rank two, namely,

linear operators on vectors.
Suppose that at each point of a space with coordinates (xl. Xl, r) we are given

a matrix (a~{x)) =A, which detennines the linear transformation of vectors at each

point x = (xl. Xl, ,(3). This line~ transfonnation A(x) has the fonn Tl =A~, where

(5)

Here ~ = (~l , ~2, ~3) is the vector at the point x.
The same matrix will detennine the linear transfonnation of covectors by the

fonnula Tl =A~, where

(6)

Under the change of coordinates:/ = :/(zl, z2, z3), from formulae (1) and (2) we can
deduce that the components of the matrix A are transformed by the law
A ~ A = (ti'}):

I i
"'i az k ax
a· = -q-

J a" dZ.'X J

where:t =:/(z), t = t(x) and zi(X(z)) = zi, and

ai ax" r I, i = j,

ai . aj =10, i ¢ j.

For the covector, fonnula (2) can now become

a1
~. = n.-. .,

I 'ai (2')
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since

PART II

aJ .ai = rJ.
ai ai' Ie·

Now we shall tabulate the transfonnation laws for the scalar, vector, covector
and all three types of rank-two tensors:

The laws of transfonnation.

1. The scalar (rank-O tensor) is not transformed.
Tensors of rank one:

. , '.
2. The vector ~ = (~I)% -+ ~ = (~J)z (of the type of velocity vector):

, , ,
3. The covector ~ =(~)% -+ ~ =(~}z =~ (of the type of the gradient of a

function):

, ai
~j = ~i aJ

Tensors of rank two: ,
4. The scalar product ofvectors (gi} -+ (g ij):

al a/
• -. ; (x) -+ (z).

ai at
•• I ....

5. The scalar product ofcovectors (gIl) -+ (g !1):

ai aJ
0-

al a/



TENSORS. RIEMANNIAN GEOMETRY

, . , , .
6. The linear operator on vectors (covectors) A = (a j) ~ A = (a j):
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ax
i

, . -1:

aj =ui
aJ

ai.-
ax"

. . 1 _23 . . 12 .3
Here x =x(z ,r, r), Zl =t(x ,A, r), 1= 1,2, 3, and

- zi= ,

i "~. ax = l)~.
ax" aJ }
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2.2 Tensors of General Form. Examples

PART II

In the preceding section we have considered tensors of rank one (vectors and
covectors) and tensors of rank two (quadratic fonns on vectors gil' quadratic fonns

on covectors gii and linear transfonnations - operators or affiners - a~). It should

be recalled that in each coordinate system xl, Xl, x3 ... the tensor was given by the
set of numbers at a given point x

(gij)

(gij)

(t4)

rank-2 tensors of all the three types.

• .. 1 2 .~ .
Under the chan ge of coordinates :t = .r(z ,z ,or, ... ), I =1, 2, 3, ... , k, the tensor
in the coordinates z at the same point was given by a set (a different one) of numbers

Given this, there hold the relations

, aJ
~i = ~j - .•

axl

ai' azl
gij = gkJ - -,

ai al

ai alii=gkJ --,
ai' a/

(1)

(2)

(3)

(4)

a/ ai--al ai'
(5)
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By definition
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where t = i(x(z». ai = 5~ = a< al . Hence. the matrices A = (al) and
a/' ai a/' a/'

B = (al) are mutually inverse: B =A-I. We can now define tensors of general
axq

fonn.

DEFINITION 1. A tensor ofrype (m. n) and rank m + n is an object which is given
. . 12k i li 2 .••i man arbItrary system of coordmates (x •A ••..• x~) by a set of numbers (Tilh .. .jn)

and whose numerical representation depends on the coordinate system obeying the
following law:

·f i _ i( I 2 h' . I 2 h.
I X - X Z • Z ••••• z J, z1 = z1(x •x •...• x ),

then there holds the formula

i
axl

Ieaz I

i i
axm az I
----" .az mail

iaz n-.-.
ain

(6)

Here it is the numerical representation of the tensor in the coordinates (z) and '0 is

the numerical representation of the tensor in the coordinates (x). The indices (il' ...•

im.h • ... • jn) and (k lo .... km.l1• ••• • In) vary from 1 to 3 for tensors in a

three-dimensional space. and. in k dimensions. all these indices vary from 1 to k.
The velocity vector is a tensor of type O. 0).
The covector is a tensor of type (0. 1).
The quadratic fonn on vectors is a tensor of type (0. 2).
The quadratic form on covectors is a tensor of type (2. 0).
The linear operator on vectors is a tensor of type 0, 1).

, "I .. .k
TIIEOREM 1. The components ofthe tensor T i •.• i m can be expressed in tenns of

I n
i
l

.. 1
mTh .. 'jn by theformula
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" .az mail---i iax m az 1

PART II

(7)

LEMMA 1. There holds the relations

(8)

Proof. From the fact that the transformations x = x(z) and z = z(x) are inverse to
each other, we have

.t(z(x)} = .t; z'I(x(z)} = z'I .

Therefore, from the formulae for differentiation of composite functions and from the

a i i
X i az i .

fact that -" = 8" ' - =8 , we obtaIn formulae (8). Indeed,ax ifzq q

:lz"
8" = _0_
q

Formulae (8) are thus derived.
Let us now prove formula (7).
By the defmition of a tensor, we have the relation (6). Consider the relation (6)

as a linear equation with the right-hand sides ry and with the unknowns f~. Solving

this equation, we must derive (7).
By virtue of (6) there holds the formula
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I:
i aZ 1

T·1

I: .
aZ mail
---i ,
ax m az 1

ain,
az n

=

axi 1 i all I:

= (1: 1Q1··4m ax m aPn a 1

Tp1 "'Pn --- _z_. )~
p,Q a/I i)zq mall 1 I

ax n ax 1

I: ail ainaz m
---- -- =

i , ,
ax maz 1 az n

where

= (iI' ... ,im), j = VI' ... ,j,J,. k = (k1, ... , km),

Thus we come to the relations (7). This completes the proof.

Now we shall point out the simplest properties of tensors.
At any arbitrarily given point of space, the tensors form a linear space

iiI: I:
a) ifT = (T/ t), S = (S ,I ,m) are tensors of type (m, n), then their

1 n 1 n

linear combination

iii iii
AT + J.1S =U with components U.1 •...m= AT.l ....m+ J.1S.1 ..•.m

11 .•• 1n 11 ..• 1n 11 ... 1n

is also a tensor of type (m, n);
b) it is important to note that a tensor is an object fixed to a point, and there

exists no rule for summation of tensors fixed to different points;
c) the dimension of the linear space of tensors of type (m, n) in a k­

dimensional space is calculated as k'"+n. If the basis coordinate vectors in a
k-dimensional space coordinatized by a system of coordinates xl, Xl, ... ,x!' are
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expressed in terms of el' e2, .'. , ek and the basis vectors in terms of el , e2, •.. ,tI,
then any tensor will be conveniently represented in the form

covector ~ = ~-ei (e.g. grad! = a~,),
ax'

quadratic forms (g) = gjj t 0 ei (on vectors),

quadratic forms (g) = gij ej 0 ej (on covectors),

linear operators A = a} ei 0 d.

Any tensor T = (T~1... ~m) will be written as
I ... n

i l i m jl in
T - T ... e e e e- j j j 0 ••• 0 i 0 ••• 0

I .. , n I m

It is essential to note that in this notation the order of indices is of importar-ce - ej
I

and ei ' for example, should not, generally speaking, exchange places.
2

Thus, in the linear space of tensors of type (m, n) at a given point (x) of the
space, the basis has the form

jl jn th ,.m+tl\ej 0 _•• 0 ej 0 e .•. 0 e (altoge er" ,
I m

where i, j independently take on values I, 2, ... ,k. Making the change of
coordinates ~ = ..t(zl, ?, ... ,~, we go over to another basis in the linear space of
tensors fixed at a given point to the basis connected with the coordinate vectors of the

I 2 "th- .system z ,z , ... , z· at IS pomt.
The mutual expression of these bases in terms of each other proceeds,

according to formulae (6) and (7), at a given point of space. We shall consider
several examples.

1. The stress tensor. In a continuous medium in iW, at each point x = (xl, Xl,
;x3), the pressure upon a small element of area liS orthogonal to the unit vector n is

given by (I1S)P(n), where P is a linear operator P =~. If n =riej' then Pn =(ripij)ej
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or (P(n»)i =,I~, for instance, if the medium satisfies Pascal's law ~=a~, where

the quantity P is called the pressure at this point
2. The strain tensor. If in a continuous medium with coordinates xl ,Xl, X3

each point is displaced

then the medium is said to have undergone de/ormation (or strain). If originally the
distance between two close points of the medium, for example, in Euclidean
coordinates xl, Xl, X3 was

after the defonnation the distance between the same points will be different:

Obviously, we have

3 . 3

(Ml = (Ml- 2 L !ui~ui + L (~i)2,
i=l i=l

. . I .

M =r-x\

Therefore as tyJ --70,

(dEl = (dl)2 _ 2did1 au~ + ai au
i

dxkdxi •

ai ax" ai
Given this, there holds the equality

since
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DEFINITION 2. The strain tensor Tlij ofthe medium is given by the difference

(ai aJ) i.
where TI..... -. + -. = TI·~ In the case when U are small displacements, the

IJ ai ai IJ

quadratic terms in ui are ignored, yielding the strain tensor for small deformations

ai dz1
(TI··) = (-. + -.) .

IJ ai axl

According to Hooke's law, such small deformations induce stresses in this
medium, which depend linearly on the deformation. Therefore, the stress tensor and
the strain tensor must be related linearly as

P = U(TI).

This relation is a tensor of rank four. In index notation it is given by

where

The tensor Ujkl of rank four is described by 81 components. Hooke's law in a

continuous medium does not actually require 81 components for its specification and
can manage with a much smaller number. .

In the case when the coordinates are Euclidean, we need not (under onhogonal
transformations) distinguish between vectors and covectors, and may generally do
without distinguishing between upper and lower indices of a tensor, since they
transform in a similar way. The general tensor U =(Ujld) in Euclidean coordinates is

specified by 81 parameters, but the medium is hypothesized to be isotropic. This
hypothesis means that the tensor U at each point should be such that its numerical
notation remains invariant in all coordinates that differ by rotation around this point,
i.e. under orthogonal transformations. We may write either U or (~J) since we do

not distinguish between the types of tensors ujl:1 and U~J so long as they are

equivalent under orthogonal transformations.
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We can there'bre write p .. = p!. = pii and n .. =.J. = nij, 1~, I} I '19 I r I '1'

There holds

175

THEOREM 2 (without proof). The class of tensors of rank four which, when
written numerically, are invariant under all rotations ofEuclidean space is specified
by three parameters A., J.L, V: this class consists ofthe tensors

p .. = A.n .. +II(Spn)l) .. +,," ..u ~IU ~ '1 U •. ~,

where

3 3.

Sp Tl = L Tl·· =L Tl~ ,
i=1 II i=1 I

(here we do not distinguish between upper and lower indices under rotations),
'"1fp .. = U I
} TlJ.fI} ,. •

In the theory of elasticity, we should take into account the symmetry

Therefore, Hooke's tensor is described by two parameters only.
It is obvious here only that the tensors U of the indicated fonn are actually

invariant under all rotations.
The condition that the medium be isotropic is fulfilled in many liquids. In a

solid, this hypothesis is far from being always valid. Of course, in an isotropic
substance any linear law relating two symmetric physical tensors of rank two, which
is described by a tensor of rank four, depends only on two constants at each given
point of the medium.

It should be emphasized that the condition of isotropy suggests the presence of
the Riemannian metric (we have fonnulated it for the Euclidean one), whereas the
concept of a tensor is not associated with a metric, and the Riemannian metric itself
is simply a special type of tensor of rank two (g ij).

It is natural to ask a simpler question: what form may be assumed by tensors
of rank one and rank two?

Obviously, there exist no non-zero vectors (covectors) whose numerical
notation would not change under all rotations.
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As for tensors of rank two (T'Ii), the only invariants of all the rotations are the

eigenvalues of the matrix (T'Iij), namely, the solutions of the equations det (llij - 'A.fJij)
=0.

The tensor AfJij is invariant under all rotations (the eigenvalues are all the

same). If there exists a pair of distinct eigenvalues, then the tensor of rank two is
already not invariant under rotation. Therefore, 'A.fJij is the only isotropic tensor of

rank two. It can be shown that there exist no isotropic tensors of rank three.
Now we shall consider the class of tensors of rank two invariant not only

under rotations but also under all linear tr3nsfonnations (it is already needless here to
assume the space to be Euclidean and generally to introduce the Riemannian metric).

For rank two tensors we shall have a single invariant tensor of type (1, 1):

It can be verified that there exist no tensors of type (0, 2) and (2, 0) invariant under
all linear transformations.

For fourth rank tensors we obtain (without proof)

We can see once again that the result is different for tensors of type (l, 1) and (0, 2).
Thus in the absence of the Riemannian metric, the properties of tensors of

different types are distincl
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2.3 Algebraic Operations on Tensors

In the preceding section we have discussed the concept of a tensor of type (m, n)

i "i I ... i Ii I .,. I ax I az I
Tj ••• t(x) =T" ... (z) -

I PI I a/I all
(the sum over k, I),

,
The inverse transfonnation from T to T has been shown to have the form

177

(the sum over i,)).
We have considered several examples:

1) the stress tensor P} =!,
2) the strain tensor TJu = Ti,
3) Hooke's law - the relation between Ti and!,
4) the isotropy principle - the restriction upon the relation between strain and

stress tensors which follows from the rotational invariance of Hooke's law. We are
now in a position to proceed to algebraic operations on tensors.

1. Pennutation of indices. We shall say that two tensors of the same type

T)i· 11 ••• )I.m and T)~I )i.m can be obtained one from the other by means 01"a permutation
••• PI I PI 'J

. (il ... iPl
)of the upper indices if there exists a permutation of indices , where

ql .•. qPl

...... il···i ql···qT. ,m = T. .m
)1 "')PI ) I ... ) PI •

Thus, from the tensor T we have obtalned a new tensor T. In a similar way we can
make a pennutatlon of the lower indices and obtain a new tensor. We cannot
interchange the lower and upper indices (this operation is not preserved under the
change ofcoordinates).
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EXAMPLE 1. From a second·rank tensor (tl;,j) we can obtain a tensor (by) = (ai>
using the permutation. Similarly, from a tensor (aii) we can obtain a tensor (bij

) =
«(Ii).

2. Contraction (trace). The contraction of a tensor T of type (m, n) with
respect to the indices (ik>h) is the sum

which is a tensor of type (m - 1, n- 1).
For a tensor of type ~ (a linear operator), the trace Sp T = T'i is invariant (a

scalar).

3. Product of tensors. Given two tensors T
I

J
".1 ....im and p~1 ... ~k of ranks
1"'Jn "1"'''i

(m, n) and (k, l) respectively, we define their product to be a tensor of type (m + k,
n + l) with components

i 1 ... ina cr.1 ... cr.k _ i 1 ... im cr.
1

... cr.kA· . A R - T· .• PA A
Jl ·''In "1'''''i Jl ···In n ... "i

So, we have three invariant operations on tensors, namely, permutation, contraction
(tracing) and product. Now let us consider several examples.

1. A vector (~i) and a covector (Tlj)' Consider their product which is a

second-rank tensor ry = (~i Tl,;) and its trace

We obrain the scalar ~i Tli from the vector and covector, which is their scalar product

A= ~i Tli'

2. A vector (~i) and a linear operator (A~). Consider their product (Tlk
) =

A~ ~i. This is a tensor of type (2, 1). The trace (contraction) of this product

is again a vector - the result of application to the initial vector (~i) of the operator

(A ~). To justify the definitions proposed, we have to prove the following assertion.
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LEMMA 1. The contraction ofany tensor oftype (m, n) with respect to any pair of
indices (upper and lower) is again a tensor oftype (m -1, n - 1). The product of
tensors respectively oftype (k, f) and (m, n) is a tensor of type (k + m, I + n) which
depends on the orderofthe cofactors.

The proof of the lemma involves immediate verification of the tensor
transformation law as applied to the results of contraction or product.

EXAMPLE 2. Suppose we are given two vectors (~i) and (TJi) and a quadratic form
(gct.p), i.e. a tensor of type (0, 2). Then we can consider the triple product

T~~ = ~iTJigct.~ and after this the double contraction

Thus, any tensor o~ type (0,2) determines the scalar product of vectors.

EXAMPLE 3. Suppose we are given two covectors (~i) and (TJi) and a tensor (gct.p)

of type (2, 0). Consider the product

TCi!-P. = gct.~J:..T1.
I) ':11'1)

and then the double contraction

As a result we have obtained the scalar product of two covectors using a tensor of
type (2, 0), One of the most important operations of tensorial calculus is the
operation of raising (lowering) indices.

4, Lowering indices, If in our space we are given a Riemannian metric (gi}

and an arbitrary tensor T)i.1 .. , ~m relative to some system of coordinates (xl, Xl, ... ,
1 ... )'1

~), then we may consider a new tensor; for example,

i 1 ..·i ki 1 ···i
T.. m =gjJcT. m

1)1 •• , j 'I )1 •••j 'I •

We can readily see that this is again a tensor (the composition of operations of the
product by the tensor (gij) and contraction). The result of this operation is called

lowering the index i1 using the Riemannian metric (gij).
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Thus, all the indices can be lowered if there exists a Riemannian metric (gij)'

Fo: ins~ce,~ the Euclidean metric given in Euclidean coordinates, gij = 5ij. Hence
12 .•. 1 1

1
,,,£

T: J' •m =TJ· •m. Thus, in Euclidean coordinates, we may assume all indices to
-I 1 .. ,J '" 1 ...J '"

be lower if we lower them using the metric gij =Sij'
5. Raising indices. If we have the Riemannian metric (gij), then to raise lower

indices we should necessarily consider an inverse matrix (gij). such that

By definition.

(the operation of raising an index using a Riemannian metric).
Let us now fix the following fonnal (generally accepted) rule for handling

tensors: the summation sign in perfonning the operation of contraction is omitted.
but the indices that undergo summation (it is always one upper and one lower index)
are marked by identical symbols implying summation. For example:

1) (l;. Tl) =gcr.p~cr. ~p (vectors);

2) (l;. Tl) =gcr.p~ Tlp (covectors);

3) (A ~)cr. = A ~ ~p (operator on vectors);

4) (A ~)p =A ~'lcr. (operator on covectors);

5) if A = (A p) (operator). then Sp A =A::;

6) ifel. e2• •..• e" are basis vectors. then any vector has the fonn l; = ~i ej_
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2.4 Symmetric and Skew-Symmetric Tensors
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In Section 2.3 we introduced the basic algebraic operations on tensors:
1) permutation of indices (only among upper or only among lower indices).
2) product of tensors (non-commutative).
3) operation of tracing (contraction) one upper and one lower index..
If a space comes endowed with a Riemannian metric (g ij) relative to some

coordinates xl, Xl, ...• ra, then the trace of the tensor Tile is given by

In the right~hand side of the formula, gijTij is. by definition. the sum over all the

values of the indices (i.}). that is, a double trace.
Obviously. the trace Sp(Tjlcl is a metric invariant. and its definition requires the

Riemannian metric on which its value depends. Recall. as an example, that on a
surface in space x = x(u. v), y = y(u. v). z = z(u. v). where u = xl. v = x 2• there
occurred two quadratic forms:

1) the metric gij dJ~ gives a tensor (gij).

2) the second quadratic form biflJdJ gives a tensor (bij).

By definition we assume that:
the Gaussian curvature

det (b..)
K - IJ

- det (g ..) •
IJ

the mean curvature

where bi = gijbjlc. This is the trace of the tensor (bij). Thus, the mean curvature is

the trace of the two-dimensional tensor (bi) provided that we have the metric (g ij).

We have pointed out all the invariant algebraic operations on tensors
(permutation of indices, product. trace. sum. product by a number, raising and
lowering indices using the metric gij).

detb..
EXERCISE. In the tw~dimensional case n =2. express K =r in

etgij

terms of invariant tensor operations.
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Undoubtediy, K is an invariant! The detenn.inant det (fij) is generally not an

invariant. On the contrary, the detenninant of a linear operator (~) is an invariant,

for example, for n = 2 we have 2 det (~) = nl1-~t k (in a plane, for n = 2, where

all i,i, k, 1- I, 2).
There exist two especially important operations on tensors of type (2, 0) or

(0, 2) associated with the operation of permutation of indices:
1) alternation bij =T[iJl =1/2(Tij - Tji). The symbol [iJl implies that

b· o = - b·· .IJ Jl '
2) symmetrization qjj =1/2(Tij + Tjj) =T(iJ)' The symbol (ij) implies that

qjj = qji .

We always have T ij =bij + ~ij, and this separation is preserved under all

changes ofcoordinates.
Given a linear operator T~, it is useless to speak of symmetry or

skew-symmetry of this tensor ifwe have no Riemannian metric.

Given a Riemannian metric gij' we can omit the index Tij =g~.

DEFINITION 1. A linear operator 7) in a space endowed with a Riemannian metric

(gij) is said to be symmetric (skew-symmetric) if for the tensor Tij =gu.T'j there

holds the symmetry T·· =T· (or the skew-symmetry T·· =- T··)lJ Jl lJ Jl .

We can make the following simple assertion.

THEOREM 1. The linear operator in a space endowed with a Riemannian metric is

symmetric (skew-symmetric) ifand only if/or any vectors ~ = (~j). TJ = (TJi) there
holds the equality

(~. TJ) = (~. TTJ) (symmetry)

(~. TJ) =- (~. TTJ) (skew-symmetry).

Proof. Since (~i= ri;:}. it follows that always

where giJc~ =Tjk since the summations over distinct indices are independent. If

Tik =+ TtI' then T;/,iTti =TiJcTJ" ~i. Inversely. if T;/,~i = Tj"TJ" ~i for all vectors
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~ and TI, then Tik = Tki.' For the symmetric case, this completes the proof. For the

skew-symmetric case, the proof is identical, and the theorem follows.

Let us touch upon another simple fact. Given a Riemannian metric (g ij)' we

are given the scalar product of vectors (~, TI) = ~TI = gij ~i.r{, ~ =(~i), TI =(Tl
i
),

and that of covectors (~, TI) = ~TI = gij~iTlj' ~ = (~i)' TI =(Tli)' where gijgj1 =ai
k by

definition.
There exists the operation of "raising and lowering indices":

(~i) ~ (~i) = (g if 'fj)

(~i) ~ (~i) = (gij~j)'

THEOREM 2. The following equality holds:
for any pair ofvectors ~ = (~i), TI =(Tli) and a corresponding pair ofcovectors

A A A

(~i) =~ =(gij 'fj), tl = (~i) = (gij ri) the scalar products coincide: !;ft =~TI.

A A

Proof. Since ~TI = glj ~i ri and ~~ =gli ~i ~j' then we have

as required. Thus, the scalar product on covectors has been introduced proceeding
from the requirement that after lowering indices we obtain the same scalar product as
for vectors. Co.ncluding the purely alge~raic theory, of te.nsors, we think it is
instructive to make the following remark. An important role is played by special
types of tensors which possess additional symmetry properties under permutation of
one-type (upper or lower) indices.

For example, for rank-two tensors we had two classes:

T .. =- T·· (skew-symmetric)IJ JI '

T· = Too (symmetric).IJ JI

Symmetric tensors of rank two have already been repeatedly encountered. in the fonn
of quadratic forms on vectors. Of independent interest are any rank skew-symmetric
tensors of type (0, k) or (k, 0):

i l '" i1T i • or T .
1 .., 11
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T' TI2 ... isI'.... ·

DEFI~1TION 1. A skew-symmetric tensor T
I
, • or Til'" iA; is a tensor that
I-'IA;

changes sign under an odd permutation of indices and preserves its value under any
even permutation of indices.

For example.

In a three-dimensional space with coordinates Xl. Xl.i3. a skew-symmetric
tensor of rank three is specified by one number

(the other are equal to zero).
Similarly. in the two-dimensional case. a skew-symmeoic tensor of rank two is

given by one number (the coordinates being xl. Xl):

Conclusion. Skew-symmetric tensors of rank equal to the dimension of the
underlying space are specified by one number. while those of higher rank. are equal
to zero (since at least one pair of indices necessarily coincides).

How will skew-symmetric tensors transform under the change of coordinates?

THEOREM 3. Skew-symmetric tensors of rank equal to the dimension of the
underlying space are transformed under the change of coordinates x = x(z). x =
(r. Xl• ... ). z = (zl. z2. '" ) by the following law:

T' = T • J. T' 12... = TI2 ... r l •12... 12 ...

.vhere J = det (aX~) is the Jacobian ofthe change ofcoordinates.
a/

the component of the tensor in coordinates (zl. z2• ... ).

Proof. (To make the notation shoner. we shall resoict ourselves to the case of three
dimensions). From the general transfonnation rule. we have
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However, by virtue of skew symmetry we always have i;J:j;J: k, and all the Tijlc will,

in this case, coincide with TI23 up to the sign ofpennutation:

Recall that the determinant of any matrix a~ =A is algebraically defmed as

where (_1)Ct. is the sign of the permutation (~ 2 .. , n J
'li 2 ···i n

Obviously, this implies the theorem. For tensors of type (3, 0) we use the same
arguments with the same result

Thus, the quantity j{xl , xl, x3 ), which under the change of coordinates
x =x(z) is multiplied by the Jacobian!(zl, z2, ?) =ft..x(z)) • J is a skew-symrneuic
tensor of type (0,3). We arrive at the following conclusion: in fact, in the analysis

we determine the integral over the region 111f dididl of a skew-symrneuic

u

tensor which in the analysis is denoted by the sign [f dxlttx2ttx3] since under the
change ofcoordinates it is multiplied by the Jacobian. In the sequel we shall return to
the theoI)' of integration of skew-symmetric tensors of type (0, k).

Here' we shall mention, in' addition, the concept of the element of volume
associated with the Riemannian metric: on a surface with coordinates xl,,x2 and a
meuic gij there is introduced the quantity (g)112 dxlttx2, and the area of the region U

is equal to 11 (g)ll2dxldx2. Thequantitygisequal to det(gij)' WecaneasiIysee

u
that under the change ofcoordinates the quantity g =det (g ij) transfonns as

x = x(z), x = (xl, x 2, .•• ,,xn), z = (zl, z2, ... , zn),

g' = det (g'ij) = P det (gij),

i

where J is the Jacobian of the coordinate change J = det (aX,).
a/
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Therefore the quantity g1f2 transfonns by the law

PART II

Conclusion. Under coordinate changes, where J > 0, the element of the volume
behaves as a skew-symmetric tensor of rank n, where n is the dimension of the
underlying space (this case is of imponance for n =2, 3). The tensor here is of type
(0, n).

The volume of a region in space of arbitrary dimension n endowed with a
Riemannian metric gij is defined, as in the case of two dimensions, by the formula

C1(U) =JJ (g)1f2dx
1

... dx/'l. The element of a volume will sometimes be written a~
u

(g )1/2 dx1 A '" A dx/'l, where dx i A tb! + dY! A dxi = O. For more details see

Section 2.10.
For convenience in our further calculations it is instructive to scrutinize the

tensor Ei
1

... i/'l defined as fpllows: the cOIJ;lponent. Ei
1

... i/'l is other than zero if iUld

only if there are no repeated indices among i 1, ••• , i/'l; given this, we have

__ { + 1, sgn (i1, ••• ,in> = + 1 (even permutation)
E· .

11 ... '/'I _ 1, sgn (iI' ... , in> =- 1 (odd permutation)

(Of course, Ei
1

... i/'l is a tensor only under coordinate transformations with Jacobian

J;:; 1.)

Clearly, for any skew-symmetric tensor TI• I' in a space of dimension n the
1 -. /'I

equalityT I· I' =T 12 EI' I' holds.
1"'/'1 ·-n 1-'/'1

Suppose in a region of space IR/'I we are given a metric gij' Then we may

define the essential operation * which pennits identification of skew-symmetric
tensors of type (0, k) with those of type (0, n - k), that is, tensors of complementary
ranks. .

DEFINITION 2. If T I• I' is a skew-symmetric tensor, then by *T we denote a
1'" k

skew-symmetric tensor of a complementary rank n - k given by the formula
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Given this, Til·'· it is a tensor obtained form the tensor T
I
• I' through raising1 ... j;

.. . i1 ••. it i1i1 i~t
mdices, I.e. T =g ... g T}· }..1 ••• j;

The expression glf2 EI• I' is a tensor already under all regular coordinate
1·- n

changes (with a positive Jacobian). Thus, the expression *T is a skew-symmetric
tensor.

We can easily verify the fonnula:

*(*n = (- 1)k(rH:) T.



188 PART II

2.5 Differential Calculus of Skew-Symmetric Tensors of Type (0, k)

Most of the physical laws are represented as differential relations between physical
quantities. Many of these quantitites are tensor fields (in particular, vector fields) in a
space or in a region of space. It is, therefore, of interest to us which differential
operations on tensors generally exist that, in a certain sense (specified below), do not
depend on the system of coordinates. For example, the simplest of the operations is

as follows: if a functionj{x, ex) or a tensor field T~~ :::;: (x, ex) depends on a point

of space x =(xl, Xl,.x3) and on a certain parameter ex not associated with the space,
then we can take the partial derivative with respect to the parameter

aj (x, ex)
aex aex

at each given point. In classical mechanics, this parameter is time t =ex. This
operation is not connected with the geometry of space (xl, Y?-,~) and is performed
separately at each point. Another well-known differential operation not connected
with the Riemannian metric is the gradient of a function (scalar field):

This is a covector constructed in an invariant manner from the functionjin the sense
that under coordinate changes its numerical notation changes according to the tensor
law

aj aj ai
x=x(z) -=-0-t • • ••

axl ai ai
A frequently encountered case is a multi-dimensional extension of the gradient to
skew-symmetric tensors.

DEFINITION 1. If T10 I' is a tensor which is skew-symmetric with respect to all
I'" k

indices in an n-dimensional space with coordinates (xl, ... , x"), iq = I, ... , n, then

its gradient (VST»), )")' is a skew-symmetric rank-(k + 1) tensor of type
I '" '" k+1

(0, k + 1) with the components
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k+l aT. ~ .
"" )l' ····)q.' ..·,)k+l q

(VST)jl ... i.e:+l = ~ (-1)
q=l aiq

(the hat overiq in the numeratorh, ... ,/q, ... ,ik+l implies here that the indexjq is

omitted).
Before turning to verification of the fact that VST is a tensor, we shall consider

some examples.
1. If k + 1 = 1 and T = f(x) is a function, then, by definition,

S 'i:JIevn. = -. ,
I axl

i.e. this is the usual gradient.
2. IfT = (Tj) is a covector, then

S 'i:JI i aT. s
(Vn· = -. - ---?- = -(Vn·..

I ai axl )1

This tensor is often defined as the curl of the covector field, (VSn =rot T ifT is a
covector. (The alternative term for the curl is "rotation", which is responsible for the
notation rot n. The curl is a skew-symmetric rank-two tensor of type (0, 2).

REMARK. If n =3, i.e. the space and the coordinates xl, Xl, X3 are Euclidean, then
it is customary to associate the tensor (Vsnij with the vector ('11 k

) = rot T, where

3. Given a skew-symmetric tensor T ij =- Tji in a Euclidean 3-space, the

third-rank skew-symmetric tensor VST has the form
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aT12 aT13 aT23
=---+-

ai ai ax1

PART II

REMARK. If the coordinates (xl, Xl,,.3) are Euclidean and if according to the
above mentioned role of association of the skew-symmetric tensor with a vector

111 = T23,112 = - T13, 113 = T12, then we have

dTl
l

dTl
2

dTl
3

dTl
i

(Vn = -+-+- = -
123 ai ai ai aJ .

In Euclidean coordinates, the operation associating a vector field (11 i
) = 11 with

i

a number div 11 = dTl. is caIled divergence. There holds
axl

THEOREM 1. The gradient VST ofa skew-symmetric rank-k tensor of type (0, k) is

a skew-symmetric k + I-rank tensor of type (0, k + 1).

Proof. Suppose we are given the coordinate change

. . 1
Xl = xl(z , .., ,z"), i = I, ... , n.

By definition

= :r. (-l)q
q

aT. ~ .
II' ... , Iq• .... Ik+1

iax q

in any coordinate system.
Let T

"
I' be components of the tensor in coordinates (x) and let 'F). }' be1 ... k 1 .., k

those in coordinates (z).
By definition we have

(1)

Next, by the definition of the tensor gradient,
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cJT "
= L(-l)q ".~q'"

a/q

aT "
"" (_ If '" Ip •• ,

(V"7)i1 ... it = ~ i

ax p
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(2)

To prove the theorem. it is necessary to substitute formula (2) into (1) and
make sure that the gradientVST is expressed in terms of VST by the tensor law.
Since the corresponding calculations are cumbersome. we shall present a complete
proof for k =1. k + 1 =2.

aT. aT.
If T. is a covector and (Vn.. =_I - _J • then

1 IJ ai axi

and we have

(VT> = art _ aTi =~ (T. aXi
) _ ~ (T. rd) =

ki ai al ai 1 al al J ai

aTi axi ixi aT. ai . ii= T. J -+T.--=
a/ al 1 aial al ai J alai

=(aTi at) ai _ (aTj aXq
) ai

ai' ai al axq al a/

(only indices k.l are not summed). Let us denote p in tenns of j in the fIrst summand
and q in terms of i in the second summand. Then we obtain

.. i' . ..

aTi ax axl

_ aTj ax ax = (aTj _ aTj ) ax = (Vsn .. axl ax .
al azl al azi al azi al ai axi

IJ al azi
This completes the proof for k =1. k + 1 =2.
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(0

In the three-dimensional case there also exists the case k = 2, k + 1 = 3. The
third-rank tensor (V~nij" in a three-dimensional space has the fonn

s aT12 aT13 aT23
(Vn 23 =---+-

1 ai ai ax1

On the basis of Theorem 3 of Section 2.4, we shall prove that under the coordinate
change

where

a i
J = det(~).

a/
It is useful to consider

(IT)

LEMMA 1. Under the change of coordinates x = x(z) the components of a
skew-symmetric tensor ofrank two are transformed by the law

where

.kl =J ..
I)

is the minor ofthe matrix (ax?').
az~

Proof. Since

ax" ax'T.·=TIcl --
I) ai aJ

it follows that

ai ax"and 1' .. =-1' .. = -TILI) )1 ",--,

azi aJ

as required.

(ill)
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Substituting formula (ill) into (I) and making use of the fact that the
detenninant of a matrix is equal to the sum of the elements of the row multiplied by
the additional minors, we obtain formula (TI). We shall not present a detailed
derivation of this formula. We have, in fact, carried out a complete proof of the
theorem for covector field gradients (k =1, k + 1 =2) and also pointed out the useful
formula for transformation of skew-symmetric tensors of rank two.

We should like to draw the reader's attention to another useful property of the
gradient of skew-symmetric tensors, namely, to the property that the square of the
operation VS is equal to zero.

THEOREM 2. In an n-dimensional space (n is arbitrary), two successive
applications oj the gradient operation to a skew-symmetric tensor yield identical zero:
Vs(Vsn =o.

We shall prove this identity for a plane n =2 and for a space n =3.
1. n = 2. We should show that for any function j{x1, Xl) there holds the

identity VSV'l = o.
s d/ ...,s dT. dT. d/

Since (V'j). = -. and (v T\. = -~ - ~, we should substitute T. = -.
I dxl IJ di dXI

I dXI
and verify the identity

This relation is familiar from the imalysis 'and ccimpletes the proof for the case n =2.

2. n = 3. Here, two cases exist:
a) VSV'l= 0 for the functionj{x1,.x2,r) or rot grad/: O.

Indeed

b) if (Tj ) is a vector field, then

VsvsT ;;; 0 (div rot (n iii 0).

Indeed,
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amS a....,s as
== -\V 1)23 - -(v 1)13 + -(V 1)12 =

ai ai ai

PART II

This proves the case n = 3.
(For all n > 3 the proof is similar.)
We have, in fact, included in our consideration, all the differential operations

on tensors which are not in any way related to any space geometry, in particular,
metric.

We shall point out, in addition, a frequently expl(\iJr"li essential fact for tensors
in IR": in Euclidean coordinates of a Euclidean space fUI ;IllY tensor the upper and

il···i il···i ll",j
lower indices are indistinguishable: T

J
. . m = T. m n = T i .. .

- I '''In 1···lmll···Jn

since gij =liij' There naturally exists a partial derivative

T i .. . =
1 ,.. ImJl '" In.1c

aT. .. .
II ... In/I ..·In

ai
and the divergence of the tensor

a il·.. i :::k, ••.• i
- T..q m = divTax" JI '''In

(with respect to the index iq). Note that these operations are carried out in Euclidean

coordinates only.
For example, the divergence of the tensor Tij in Euclidean coordinates has the

fonn

div T = ~ Tij (the sum overJ).
a1

We shall, very soon, proceed to a more detailed investigation of the differential
operations on tensors connected with the geometry of space (in particular, with
metric).

The gradient operation upon a skew-symmetric tensor, which we have
considered above, has the following properties.
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1. The result of the operation is again a tensor.
2. This operation applies exactly the same fonnulae relative to any coordinate

system not related to any additional geometrical structure of space. The skew­
symmetric gradient proves to be the only operation possessing such properties in the
sense that all the rest may be derived from this and from the above-mentioned purely
algebraic operations on tensors.

As an example we shall consider a four-dimensional space-time, coordinatized
by}J = ct, xl, Xl, J.3 (c is me speed of light), and endowed with a pseudo-Euclidean
metric

o 2 3 . 2 2 (- 1 0 0 J "
- (dx) + L (dx

l
) = (tIs) or g.. 0 1 0 = g lJ.

I lJ 0 0 1

It turns out that the electro-magnetic field is a skew-symmetrir tensor of rank
two, type (0, 2), i.e. the field is equal to (Fij), i, j = 0, 1, 2, 3.

The components FQj = Ei are called the vector ofan electric field, E = (EI , E2,

The components Fij =(Hi}' i,j =1, 2, 3, are called the skew-symmetric

te nsor (axial vector) of a magnetic field, and HI =H23' H 2 =H 31' H 3 =H 12;

H = (HI' H 2, H 3 ).

Under the coordinate changes x =x(z) with the time unchanged jJ =zO, i =
xi(zl, z2, ~), the electrical field E.i and the magnetic field H =(H ij) behave as a

vector and a skew-symmetric tensor.
The first pair of Maxwell's equations has the fonn VSF ij =0 or

S aF." aF'1; aF..(V F) .." = _J 1_ + --'!.. = O.
IJ axi ai ai

In components we have

or



196 PART II

aH.
I = O. div H = O.

2) ai
aH 1 aH

VE + - = O. rot E =- - - .axo c at

We see that the fll'St pair of Maxwell's equations has no relation to pseudo-Euclidean
geometry and always has the form VSF =O. As for the second pair of Maxwell's

equations. it is related, unlike the first pair. to pseudo-Euclidean divergence

3 aF.. aF·o 'f aF..
div F.. = L --!L - ~ = t ~

(4) IJ j=1 aj ai ax'

and a four-dimensional vector of electric currentj = Vo.h.h.h). wherejo =pc. p is

the charge density and i =vl.h.h) is the electric current vector in the usual

three-dimensional sense.
The equation has the form

di F
41t .

v(4) ij = cJ·
Expressing the operator in terms of E and H we have

3 aE.
div E = L --!. = 41tp

i=l ax
(here div implies the usual Euclidean divergence).

H
I aE 41t.,

rot +-- = -J.c at c

Thus. the concept of the divergence of a tensor depends essentially on the metric.
whereas the concept of the gradient does not. On this account. the first pair of
Maxwell's equations is equally written in any coordinates as VSF:= O. while the
second pair requires that the space be endowed with a metric (moreover. it requires
Euclidean coordinates in order that the skew-symmetric tensor Hij could be identified

with the vector H). Recall that the Lorentz force / acting upon a charge in an
electro-magnetic field F ij = (E. H) is calculated as/= eE + e[vlc. Hl. where v is the

velocity and [ ] is the vector product It is just this formula that implies that E is a
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vector and H is a skew-symmetric tensor, which allows them to be united in a single
four-dimensional skew~symmetric tensor.

REMARK. The vector product of two vectors (covectors} of an n-dimensional space

i,j=I,2, ... ,n,

is given by

,... ",... ,..,
[-n, ~]!i = lli ~j - ~illj ~ - [11, ~]ji .

This is a second-rank skew-symmetric tensor. It can be associated with a vector in
Euclidean 3-space only.

Given a skew-symmetric tensor T!i = - Tji of rank two in Euclidean space
(relative to Euclidean coordinates), the vector product of the vector (Vi) by the tensor

Tij (= ~.) has the fonn

[T v]. = T.v. = T ..v· = - T ..v· = - [v TJ·, ') ) 1 IJ 1 )1 1 ' ')

Le. the product [T, v] is again a vector, which is the result of an application of the
operator T to the vector v. For example, we had the Lorentz force!=eE + ele [v, H]
understood as a vector, v= (e, vi, V2, 'V3), T = Fije-1.
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2.6 Covariant Differentiation. Euclidean and General Connections

PART II

In Section 2.5 we have examined the gradient operation on a skew-symmetric tensor
(tensor field) leading to a skew-symmetric tensor of rank higher by unity than the
rank of the initial tensor. This operation had the fonn (in components)

k+1 dT. {t. •

(VST). . = L. (-l)q II '- Iq ... IA:+I
11 ..·lk+1 q=1 I

dx q

In particular, for k =1 we had

S dT. dT.
(V n.. = _I - --4- .

IJ d:J dXI

It was pointed out that vsr is again a tensor (this was derived rigorously for

k = 0, 1). It was also emphasized that the operation VS is the only one not related
to any geometry. The differential operations on tensors are reduced to this one and;
the purely algebraic operations discussed above (permutation of indices, summation,
product, trace).

Concerning the usual extension of the gradient of a function of tensors

i
l

..,i
T, ,m =

JI ••. J/'I

transforms as a tensor under all linear

in a space with Cartesian coordinates (~h, we have already said that the resultant
"tensor" is really not a tensor. Since this operation is used rather: frequently, we shall
point out the class of transformations under which its result transforms as a tensor.
These are linear transformations of coordinates.

THEOREM 1. /fin a space we are given coordinates and a tensorfieldT= T~: ::: ~~:'
i l ... i

m
,.. dT"
11 , .. 11 JI,.. J/'I

then the field Til ... jj:.k =----
dl

coordinate changes

~ =a}i, a~ = conSl,
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Proof. For linear transformations, we have

axl
i ii- =a. =const. and = 0,

aJ} alai'

azi i . . .
- =b. =const., a}~~ = 5~.ai }

By the defInition of a tensor, we have
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where

(I) = (ii' ... , im), (k) = (kl , ... , km),

(j) = (il,'" ,in)' (1) = (/1"" , In>.

Since a~ = const., lI" = const, differentiating formula (l), we obtain

""(k) ci~~ 'iJT~~ (j) (k) _ 'iJT~~ ai' v) (k) r(i)av)aPb(k)

T (l)q = al = al a(l)b (i) - ai' iJzq a(l)b (i) = ()) (l) q (I) •

This is the transformation law of a tensor, which implies the theorem.

(l)

ii
In the proof we have essentially used the fact that x == O. Consider, for

alai

example, tensors of type (0, l) or (l, O):

aT. at·} - T _....,I
- - "/;' - - lk"ai J' ai

By virtue of the theorem just proved, Tik and rik transform as tensors under linear

coordinate changes. Under general changes of coordinates Y! =Y!(zl, ... , 1'), i =1,
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eli
2, ... , n, where x: 0, we obtain

ala!

aTi a:1' ai i xi
=---+T.--=

a:1' i)zq aJ I azqal

PARTll

Here, as always T are components in the coordinate system (z) and T are components
in the coordinate system (x). Thus, the general transformation fonnula has the fonn

(2)

2 .

The summand T. .!...i.- is not of tensor character. As deduced in Section 2.5, the
I azqaJ

expression

is a tensor. But the symmetrized part

is already not a tensor relative to arbitrary coordinate systems
Similarly, for rCi we have
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= at ai' aJ + t a21 axq
(3)

ai' ai axi aiaxq az'

As we can readily see, this is not a tensor because of the second summand.
Foxmula (3) implies

aTT) =
aJ

=

REMARK. The expression a~ =-f is often called (in Euclidean coordinates) theaxl
I

iivergence of a vector field. We can see that the expression r j is not a scalar if the

::hange of coordinates is non-linear.

EXAMPLE. It is customary to use this fonnula to calculate the divergency in terms
Df Euclidean coordinates (xl, Xl, x3) only. The meaning of the divergence, as is well
known, is as follows: given small displacements of points in a space

the element of a Euclidean volume (/xl A dx'- A {}y}, after the displacement of the

region, takes on an additional term r j A xl A Xl A x3. Indeed, the new volume is

equal to
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We shall recall here that by definition ~ A d:/ = - dxi A d:1, and, in particular

dJ- A dX: = O. as is natural in the fonnulae for the volume element. By virtue of
this,

(quadratic and cubic expressions of the components rk).

In the the case where r(x l
, Xl, XJ) and r k are small, we have approximately

or, more precisely, in the case~ --";~ + trexl , Xl,-XJ) = x-i, where t is a numerical
parameter, we introduce the "volume element distonion" function

axl A dx..J]. A iX3

----- = ft.t).
axl

A dx
2

A dx
3

Then the following equality holds

df I . I 2.~ .
dt ,=0 =Ti(x ,A, r) = div (1").

where

. it
T = [-]dt ,=0

and (Xl. Xl. XJ) are Euclidean coordinates. The reader is no doubt familiar with this
from the analysis. We have dwelt on this remark specially just to recall the concept
of divergence of a vector field in Euclidean geometry.

Let us now return to our subject connected with the gradient transfonnation law

i I '" iT. .m~_JI ... }/'I .... -
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Let us agree, on the basis of the theorem proved above, to apply this operation only
in tenns of Euclidean coordinates (~h and any other coordinates differing from
Euclidean by the linear change

:t = "I, a~ = const.

We have already said that applying this operation by means of the same
fonnulae in terms of another coordinate system which differs from (x) in a non-linear

~kl ••• k .rii)
change, we obtain the expression 1 i I ... i:.q related to l~) through a non-tensor

transformation law.
Now let us approach this question from another point of view. How do we

know that the gradient operation should ..l1ways be applied using I"', "Id the same
fonnula? We may assume that

a) this operation is essentially related to Euclidean geometJ: .
b) it is applicable by this fonnula in terms of Euclidean coordmates (x) only;
c) the result of this operation is a tensor.
What are the consequences of these hypotheses? What are the fonnulae to be

used to apply this operation in tenns of other systems of coordinates related to a
Euclidean non-linear change? To deduce corollaries from these hypotheses, we
should first calculate the result of the applicaton of this operation to a tensor field Tin
Euclidean coordinates (:t) and only after that transfonn this result, using the tensor
law, into another coordinate system: ; = ;(zl, ... , z'I), i = 1, 2, ... , n.

Let us do so:

(j) =VI' ... ,j,J.

By definition Tt1p is assumed to be a tensor. Therefore,

(5)

where
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The question is, what operation in the coordinate system zV) is used to transform the

components T~t~ into T&k!q.
Consider, for the sake of simplicity, vector fields ('f) and covector fields (1]).

In this case

(6)

Since T~ = at ,from formula (6) it follows that
ai'

Recall that -r = TP ax
i

• Formula (1) implies the equality
at

~ = at az~ = ~(n-:t ~ (aZ~).
q i)zq axl al i)zq axl

• -ri .....p ai b . th final aliSmce 1 =T -, weo tam e equ ty
at

Now let us introduce the notation

(7)

(8)

(9)

(to)
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Formula (9) asumes the form

~ _ a? r..i ';p
J"'--+ pqrq ifzq •

We have proved
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(ll)

THEOREM 2. If the gradient of a vector field Cr} transforms as a tensor and is
applied in a natural way in terms ifEuclidean coordinates (.x):

. at
~ =-1;'ax

then in terms ofany other coordinate system (z) the gradient is given by

-I: a? ~ ';p
Tq = - + pqJ-,

al
where the coefficients ~q are calculated byformula (10).

COROLLARY 1. The divergence ofa vector field, div rI'} is defined as contraction
ofits gradient, and in terms ofany coordinat system is given by theformula

where

=-------
at azq axiaxm

Here T are components in the coordinate system (z), and .t(z} are Euclidean
coordinats asfunctions ofthe coordinates (z).

The corollary follows immediately from the theorem by means of the
substitution k = q.

We can similarly transform expression (6) for a covector field:
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So we have come to

THEOREM 3. If the gradient ofa covector field (Tj ) transforms as a tensor and ijin

dT.
the Euclidean coordinate system it is calculated in the usual manner. T ik = _I,

dX"
then any other coordinate system (z) it is given by theformula

....,
...., dT....., -r-4
T ... = _I -T l~..

I... "q I...

dz

where the set~ " is the same as for the vectors Cr) in Theorem 1 and is calculated

using formula (10).

Thus, the application of the gradient operation based on the fact that its result
behaves as a tensor under any coordinate changes x =x(z) yields distinct fonnulae
for vectors and covectors:

dT. -r-4"'"
=_1 +1.- T

at" I" q
(for a covector),
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-;;; _ar ~ T""q
lie --+11:ac Ie q

(for a vector).
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However, the set rqk is common for them.

We shall not carry out detailed calculations for any tensors of type (m, n) but
only give the result.

THEOREM 4 (without proof). If the gradient 7(;1;q of any tensor field 7111 ofrype

(m, n) behaves as a tensor under any coordinate changes and if, in a Euclidean
coordinate system it is determined by thefonnuJa

7<D = atv~
~ (j);q ,

acq

then in any other coordinate system x = x(z), it is calculatedoy the formula

'T(k)
~ (i );q

lej m ""lei .•. Ie
r pq - L, Til'" ij=p ...in • rP

ijq ,
p=1

(12)

where the set offunctions rPkq is calculated by the sameformula (10).

For example, for tensors or rank two

aT.
1) 7}1e = ax~ +T] ripk -T~ I} Ie. '

2)

3)

aT..
T1·'J·.... = --JL. - T .rp. .. - T· rP· ..'" axle P} I'" IP}'" ,

The operation of calculation of the gradient of a tensor :Iii1 is always denoted

by

gradient 7(;1 = 7(;1;1e (l) = (il"'" i"J,

(j) = VI' ... ,j"J.
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We should like to emphasize that the operation introduced is essentially related
to Euclidean geometry. The point is that we have defined this operation proceeding
from two requirements:

a) the result of the operation is a tensor,
2) in Euclidean coordinates it is calculated by the formula

arb~ _ (i)

ax" - T(j):): •

From the point of view of this operation we can say that we call affme such
coordinates in which the gradient of any tensor is calculated by the' formula

These coordinates differ from Euclidean coordinates by an affine transformation.
We should find out how the set Iij(z) changes in a given coordinate system (z)

under the change zi =zi(y), i =I, 2,3.
If there exist Euclidean coordinates (xl Xl r)
i = i(z) =i(z(Y»,

then, according to formulae (10), we assume

In the coordinate system 0') we shall have

?
pq

From formulae (10) and (11) we obtain

~ at (jzq _ il ai a) at (jzq

----- --- --
pq ftym ftyn axial at (jzq ftym al

il' axi al iz" az" iJ
= - --=- + ---:-

axial ftym ftyn ftymiJyn ai ftymftyn
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since

Therefore

r..i at iflq i z" az" axi

pq aym al + ilymilyn = axi ilymal

whence there follows the equality
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ilyS az" a2j
=

azk aj aymilyn

Finally we arrive at the ttansfonnation formula

=

(13)

The covariant differentiation which we have introduced in Euclidean space is
symmetric, that is, r jk = ri

kj• This follows from the explicit formulae for the

Christoffel symbols expressing these symbols in terms of fIrst and second partial
derivatives of the new coordinates with respect to the old coordinates. It turns out
that the concept of covariant differentiation can be introduced on an arbitrary smooth
manifold. This operation can be defined using formulae (12) and (13). It should be
noted now that the Christoffel symbols do not necessarily have the form (10) and
(11). We shall conclude this section with the following definition

DEFINITION 1. A general operation ofcovariant differentiation (taking the gradient)
of tensors of arbitrary type is said to be defined if we are given, in terms of any
system of coordinates zl, ?, z3, a family of functions ~q(z) which transfonn under

arbitrary coordinate changes z =z(y) according to formula (13).
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It should be emphasized that in going over to the definition of the general
operation of covariant differentiation, we have taken, as the basic one, only the
transfonnation formula (13) and renounced the requirement of the existnece of "affine
coordinates", in terms of which the Christoffel symbols Ijt are equal to zero. Such

coordinates may not exist for general connections.
For vectors and covectors, the operation of covariant differentiation of the

gradient is specifted by the formulae

. at ..
~ =-+rt 1',a/ J

aT. .
Ii;le = ---+-r'ik Tj ,

ax
and by formula (12) for general tensors. Given this, the transformation law (13) for
components~j is detennined from the requirement that the covariant gradient of a

tensor be agaIn a tensor. (In spite of the fact that the components ~j themselves do

not form a tensor.)

REMARK 1. An operation of covariant differentiation (of a gradient) is often called a
differenrial-geometric connection, or affine connection.

REMARK 2. A connection is said to be Euclidean if there exist coordinates (~) in
aT(i)

terms of which Iij =0, Le. such that Ji,~;.t = ~). These coordinates are called
ax

affine since they are defined up to an affme transformation.

If an affine connection is given beforehand, it may so happen that for it there
exist no affine coordinates. This will be the case, for example, if a connection is
non-symmetric. Indeed, if for such a connection there existed affine coordinates, we
should have, in terms of these coordinates, the equality r~k =0, and since the

difference rjk- rkj =~k always forms a tensor (and this can be verified), it follows

that the symbols ~k will become identical zeros in any regular coordinate system,

which would mean that the connection is symmetric.
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2.7 Basic Properties of Covariant Differentiation
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(1)

In the preceding section we gave (without prooO the fonnula for covariant
differentiation of tensors of arbitrary rank.

In some expressions for the Euclidean case we obtain for rk

~ = ii aZm = ~(aX~),
jq a/azm axq axq ai

in other expressions, as we have seen in the previous section, we have

LEMMA 1. There holds the identity

i/ axa ax~ ii azm
~q = - azaal -a/-' -di-fl = a!azm axq

for an arbitrary transformation

i _ i( 1 ")X-XZ, ... ,z,

(2)

(3)

where x(z(x» = x, z(x(z» = z and the matrix (~rx) has a non-zero detenninanr (the
zp

Jacobian is not equal to zero).

Proof. . ai ax.« l: i
Smce - - = u. = consL, we have

aX! al J

which proves the lemma.
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Thus, we have two distinct expressions for Christoffel symbols r~k of

Euclidean connection

ai-=- (4)

We shall recall the definition of the general concept of covariant differentiation
(already not Euclidean).

DEFINITION 1. Covariant differentiation of vector (covector) fields is an operation
which in each coordinate system (zl, ?, z3) is given by the formula

. at ..
T =- +~ T (for vectors)

:q i)zq )q (5)

(6)
aT. .

T. =~ -PinT). (for covectors),
I;q i)zq ..,

where ~q are some functions in a given coordinate system. Given this, the

transformation law for the quantity a}q) under coordinate changes t = tei, ... ,y'I)

is specified proceeding from the requirement that the result of the operation of
covariant differentiation be a tensor.

REMARK 1. Affine coordinates for the operation of covariant differentiation (if
these coordinates do exist) are (:t), where;,} = ;,}(z), such that, in terms of these
coordinates, the following fonnula holds

. at i
T =- or r. = o.

;q axq )q

REMARK 2. The operation of covariant differentiation is often denoted by the

symbol V

. j

Vq'r == T;q (by definition).

The fIrst point to be clarified is the transformation law for the symbols Pjq

under the change z = z(y). There holds
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THEOREM 1. Under the change ofcoordinates z =x(y) the quantities rjq transform
by the formula

Proof Since the expression

is a tensor under the change z =z(y), we have (using the equality t =To: ai );
aya

(7)

aT "" ~
= -+rar .

U/ ap

Thus, we obtain

~) ~2i m qr = _vJ'. ( CJ z +ri ~ ~),
ap azl ayaal ""l dya al

and the theorem follows.
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COROLLARY 1. Symbols Pexp transform as tensors only under linear or affine

i/
tranadormations ofcoordinates z =z(y), where - =0 for all i, a, p.

(lyV

COROLLARY 2. The alternative expression

is a tensor (the "torsion").

Proof. From fonnulae (7) we can see that under pennutation of indices I and p, the

(lyk i/
summand - remains unchanged. Therefore, the transformation law for

ai a/al
rip -~l will not contain this summand. Hence, this is a tensor (called "torsion").

On the basis of the result of Corollary 2, we introduce

DEANITION 2. A covariant differentiation of f1j is called symmetric if the torsion

tensor r~j - I1i is identical zero in each coordinate system or r~j = I1i .

EXAMPLE. If there exist affine coordinates (xl, Xl, ... ,:x!'), where rilcj =0, then

relative to all coordinate systems (z), the torsion tensor is equal to zero and we have

Indeed, in the coordinate system (z) we had, earlier, the formula

axfJ" ax13----
al a.J

(8)

This expression is symmetric with respect to (k, J).
Next, the operation of covariant differentiation of a vector field enables the

divergence ofa vector field to be defined by the formula

. . at ..
div (n = T~ = ---;- + r ..T'.

I ai JI

For the Euclidean covariant differentiation, where (~ are affine coordinates, we have
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f rlx a ai
=

Jq
axiazq axa

Therefore,

~
rli azm

= ..
Jm a/azm axl
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We shall now present fonnulae which define covariant differentions of second-rank
tensors:

aT..
T .... = VLT.. = --!L-T r'!L - T. r!. ,

IJ;" .. IJ al l{] I" III J"

(9)

where r)q, the Christoffel symbols, are the same as for vector (covariant) fields.

What is, generally, the relation of a metric tensor to the manner of covariant
differentiation defined by <Iij }?

These two entities have been introduced for different purposes. The metric gij

has been introduced to. determine metric relations in space - first of all the lengths of
curve segments and the angles between them at the points where they intersect. The
symbols (~j) have come as the only possible way to construct the differential

calculus of tensor fields (in particular, vector fields). We have seen that the fonnula
of covariant differentiation involving ~i appears already for vector fields:

. i at .v:r = T;k = k+r'q/cTI.
az

In fact, for functions (zero-ran..1{ tensors) we had the gradient operation

V1= a~ and the derivative with respect to direction: given the vector (~i) = ~ at a
'oz.

I

point P and a function f(zl, ... , zrl}, its derivative with respect [0 the direction ~ was

the expresssion
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at the point P. Given a covariant differentiation we can detemrine the derivative with
respect to direction for vector fields 1'.

DEFINITION 3. The covariant derivative ofa vectorfield (1') (or a covectorfield
(TJ) with respect to the direction ofthe vector (~~ at a certain point P = (zl, ... , z")

is the expression V~ (1') =~"Vit at the point P (or the expression V~Ti =~"v"Tj

at the point P for a covector field). The result of covariant differentiation of a vector
field with respect to the direction ~ at a certain point P is the vector at this point P.

REMARK. Similarly, for an arbitrary tensor field, the covariant directional
derivative at a point P in the direction ~, is given by the expression ~"Vt1'J1,
calculated at the point P, and is again a tensor of the same type at the same point P.
. - When the derivative of a function with respect to a certain coordinate is
identically zero, we know that the function does not depend on this coordinate: when
moving in the direction of this coordinate in such a manner that the other coordinates
remain unchanged, we shall see that the functions remain constanL To put it more
generally, if we are in motion along some curve in space

Zl = let), i =1, 2, ... , n

and if the directional derivative of a function fin the direction of the velocity vector of
that curve is zero, then the function is constant along the curve, i.e. if

1 n
df(z (l), ... , Z (t» =~" df == 0,

dt dZ"

"where ~k =~t is the velocity vector, thenf(z(t}) =conSL

Is the situation similar with vector and, in general, with tensor fields? The
difficulty we come across, in this case, is that a vector, and generally a tensor, has
different components in different coordinate systems; it is therefore rather difficult to
compare two vectors, or two tensors, detennined at distinct points of a space. The
operation at least requires some additional definition and additional geometric
structure in the space, namely, the structure ofcovariant differentiation.



BASIC PROPERTIES OF COVARIANT DIFFERENTIAnON 217

Suppose, in a space, we are given some coordinates (Zl, ... , z'I), a covariant

differentiation V determined by Christoffel symbols (Pkq) and an arbitrary smooth

curve t(t), a S; t S; b.

DEFINmON 4. We shall say that a vector (or, more generally, tensor) field Tis

covariantly constant or parallel along the segment as; t S; b of a Clln'e t = t(t) if the
directional covariant derivative of the field T at points of the curve in the direction of
the velocity vector of the cmve is equal to zero:

V~T = ~lcrvkT = 0, as; t S; b,

"J:." = dz
~ dt'

For vector fields we have

, 1:-' at -i )
v~r = ~ v"r = ~i -+ J.,,1' !!! o.., al J

It should be emphasized that the concept of parallelism depends, generally
speaking, on the curve. Only Euclidean geometry is an exception to this rule: in

Euclidean coordinates xl, x2, ". ,XII we define parallel vector fields as fields
possessing constant components in these (Euclidean) coordinates, These fields are,
obviously, parallel along any curve. Since the result of covariant differentiation is
independent of the choice of coordinates, the same fields will be parallel in terms of

any coordinate system (zl, ... , Zll), although in a new coordinate system the
components of these fields will depend on the point

Thus, we see that the concept of parallelism of vectors attached to distinct
points depends both on the way the covariant differentiation (or, to put it differendy,
on the differential geometric connection) and on the path joining these two points. In
the section following this, we shall investigate this question in more detail. Here, we
shall only ask, once again, the question which was formulated earlier: what is the
relation between covariant differentiation and the Riemannian metric?

DEFINITION. 5. A covariant differentiation ~j) is said to be compatible with a
Riemannian metric (gij) if the covariant derivative of the tensor field gij at any point' ,

and in any direction is identically zero:

gij;k = VkEij = 0

(the tensor gij is covariantly constant or parallel along any curve).



218

In Euclidean geometry and in Euclidean coordinates, we had

agr
g .. = const V.O·L = _I} == 0IJ ., KoOI" k 'ax

PART II

ifrlj =O.
In the section which follows we shall show that the symmetric covariant

differentiation Iij =I1i compatible with the metric gij is uniquely determined by this
metric.

The next item is supplementary.

Gauge fields. The most general concept of (affine) differential geometric .
connection is defined locally as a linear operation of "covariant" differentiation of
N-component vector functions in a certain region V, coordinatized by coordinates
(zl, ... , 1'), which is given by the fonnula

k dTlk ...Jc I
(V. TI) = -.+!l··TI (z),

I azl I

i = 1, 2, .,. ,n; l, k = 1, 2, ... , N, (10)

or in vector notation

(11)

where the matrix r j acts in an N-dimensional space of the values of the fields which,

probably, have no relation to the tensors in the z-space. With respect to coordinate
changes in the z-space, the set (ri) transfonns as a ~ovector. Given this, the basis in

the space of values is assumed to be constant.
Suppose we are given a non-degenerate linear transfonnation a(x) = (~(z»,

det~ ~ 0 in an N-dimensional space. Let us change the basis of this space:

TIt = at ~l. Then the following simple lemma holds:

LEl\AMA 2. In the new basis, the operation (10) is given by theformula

, q dftq .:...,q , I ", -1 " -1 az
(V.TI) = --:- + iii:·· TI(z), r. = a r a + a -.

I azl I I ai (12)
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Proof In vector notation we have

( em -1 ' -1 az ';') ,
= a ~ + a r.a 11 + a ~'I = a V'j11

ai I azl

and the lemma follows immediately.
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DEFINITION 5. A gauge field or affine connection is a family of matrix functions r j

with the values within an N-dimensional space, which under the change of basis in
this space transforms by the formula

(13)

(14)

(these are "gauge transformations").

EXAMPLE 1. If N =n and the matrix a(z) is the Jacobi matrix of the change of
coordinates in the z-space, then fonnula (13) coincides with the transfonnation
formula for Christoffel symbols under tha change of coordinates.

EXAMPLE 2. If N =1, then 11(Z) is a scalar function. Suppose that a(z) =exp

(<I>(z». Then we have

" " a<I>
f". = r· + -.I I .

ai

DEFINITION 6. The curve is the commutator of covariant derivatives

LEMMA 3. This Commutator is a zero-order linear operator. Under gauge
transformations it transforms by the formula Rij = a-1Rija(z). This Commutator

determines the "curvature tensor" R~jl' where i,j = 1, ... , n; k, l = 1,2, ... ,N.
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The folloWing formula holds

PART II

" "" ar. ar. " A.

R . - _J ---!'+[r r]
rj - azi aj i, j'

The proof is obtained by means of the obvious substitution. In the language of
differential fonns we have

" ""
dr =R + [r, n/2,

" "
where r =r i di, R = L Rij dt A dt. The quantities r, R are respectively

i<j

called "the form ofconnection" and "thefonn of curvature". These are differential
fonns with the values in the manices. For more details concerning the differential

" "
forms see Section 1.10. The commutator of two I-fonns [r, n is the 2-fonn
A" "A

[r, r] =rr i , rd dzi A d~.

EXAMPLE. For N =1 we have [r, r] =0,

R = dr.

The form of curvature may be an arbitrary closed 2-form.
General connections which extend to the electro-magnetic field are of great

importance in the mathematical apparatus of the modem theory ofelementary particles
"

("gauge fields''). The case N = 1 corresponds to an electro-magnetic field where R ij
"

is the field srrength and r is the vector-potential.
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2.8 Covariant Differentiation and the Riemannian Metric.
Parallel Transport of Vectors along Curves. Geodesics
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The concept of covariant differentiation of vector (covector) fields was defmed in the
preceding sections. With respect to local coordinates it has the fonn

rf = V.; = at +r i TT
;k k k qk'

az

aT.
T.." = VLT. = _I -~kT. (I)

1iA- ... 1 al 1 q

Under the change of coordinates z = z(y) the transfonnation law for rtij is defined

proceeding from the requirement that r;k be a tensor

li = T i i}zq. a!
;k ;q ayk ai

Therefore

.... ay/11 axq az' a2za
m=-(ra--+ ).
(yfP aza (zf al al ay1IaY' (2)

In this case, when~ :5 0 (or when z are affme), we obtain from (2) our old fonnula

for Euclidean connection

ay/11 a2za
=----

aza. CJ/aj

Inversely, under linear transfonnations, where a
2z

a == 0, the transfonnation law (2)
ayPay"f

becomes tensorial.

The "torsion tensor" ~l - rc:-q =~, always transfonns as a tensor; for the

symmetric case, this tensor is equal to zero by definition: ~, == O. Covariant

differentiation of tensors of any rank (connection) is determined by the following
requirements:

a) a covariant differentiation should be a linear operation (where the derivative
of the sum is equal to the sum of the derivatives) and should commute with
contraction;
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b) the covariant derivative of a zero-rank. tensor (of a function) should be the
ordinary derivative

v1= (af );
az"

c) the covariant derivative of a vector (covector) field should be given by
fonnulae (1);

d) the covariant derivative ofa product of tensors should be calculated by the
Leibniz fonnula for differentiation of a product:

(i),v) - (i) - v)
where T (k).(1) = T (k) • T (I) is the product of tensors.

As basic examples, we consider second-rank tensors r j
; ~; Tij' There holds

THEOREM 1. If in a space we are given a connection (or the way of covariant
differentiation of vector (covector)fields) and if che differentiation of second-rank
scalars and tensors is determined by the requirements a), b), c) and d) (listed above),
chen the differentiation in an arbitrary coordinate sysem (z) is given by theformu/ae

i of . q .
V ..T). = --4- + t ...T. - ~..T ,... az'" q...) )... q

aT..
V..T.. = --!L_ r'!..T . - ~..T.

... I) al I... tlJ )... Ul
(3)

Proof. We shall carry out the proof for tensors of the form Tij; it is exactly the same

for the other cases.

LEMMA 1. Any tensor field rt1 can be represented as a linear combination of

products of the first-rank tensors.

Proof. Let us choose a convenient basis in the space of tensors.
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Let ej be basis vector fields and let t be basis covector fields. Here the fields

ei are unit vectors of the coordinate system (t), where any vector field has the form

r =r ej' (r are components). The covector fields ei are specified by the formulae

ei • ej = l}ij , and any covector field T =T;, where Tj are components. Let us

consider the product

jl i,
ei 0 ej.., 0 ... 0 ej 0 eo ... 0 e
1·~ k

for all sets (II' .., , i,,), (iI, ... ,jJJ. These are basis tensors of type (k, f)~ any tensor

of type (k, l) has the fonn

(4)

where T = T~: :::~: ~e components in the coordinate system (z). Hence, any tensor

field is of the form

which is a linear combination ofproducts, as required.

On this account, a tensor field Tij in a sufficiendy small neighbourhood of an
arbitrary point can be represented in the form of (4), where Tij(z) are functions

(numerical) of the point
It suffices, therefore, to prove the theorem only for products of the form

-=
T·· = cx(z) T -T .IJ I J'

By definition, according to requirement d),
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- =-= -vJ!.. a(z) TiT j) = Vt ( aT j)T j +aTi (VkT j) =

CJn ""= "" = ,..,,=
= - (r:if·T·) -aT7 ·rP:k-aT·T P~t =al I) ) I I P )

which implies the theorem.

EXAMPLE 1. If T i is a vector field and Tj is a covector field, then the scalar

field T'Tj (the trace of the product of tensors) is determined. To meet the

requirements a) to d), there holds the formula

a
rrTi ) = (V,;r)Ti + r(Vtr) =

al

From this formula we can see that the components rikl of covariant differentiation of

covector fields must have opposite signs (and coincide in the absolute value) with the
components of differentiation ofvector fields, so that for the scalar TTi the following

formula holds

at (TiT j ) = (VkTi)Ti + Ti(VkTi).
az
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EXAMPLE. 2. If in a space. a Riemannian metric gij is given. then the connection is

said to be compatible with the metric provided that the following formula holds (by
definition)

V~ij == O.

Therefore. for any tensor field Tt1 we have

(5)

(6)

This formula follows from the requirement d) and from formula (5) since V~kJ=O.
Since the differentiation operation is linear. we have

COROLLARY 1. If a given connection (a way of covariant differentiation) is
compatible with the Riemannian metriC gij. then the operation of lowering any tensor

index commutes with the covariant differentiation.

Indeed. we have

V (g. r1.(i» = g (V T1,(i»
k II (j) kJ q(j) •

Finally. we are led to an important

THEOREM 2. If the metric gij is non-degenerate (i.e. ifdet (gij) =g ~ 0). then there

exists a unique symmetric connection which is compatible with the metric gij.

Whatever the coordinate system (z). this connection is given by the formula

.....q qj(agjk agij agik )·
l:k = 1/2g -.+-+-..

I az' az" al

Proof. By definition

(7)

1)

2)

I1k = I1:i •
ag..

V'Pij = --JL. -f'!.o ·-N.o. = 0
/(01 az" Il0qj Jlrblq •

We shall attempt the solution of the equation V~ij =0 with respect to rh. By the

definition of lowering indices. we have
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rj;ik = ~ kiqj'

The equations have the fonn

ag ..
rj;ik + ri;jk = a}'

Given this, rj;ik =rj;ki; ri;jk = ri;J::j' Pennuting the indices i,j, k we obtain

[a]

agld

aJ
[b]

[c]

Obviously, by virtue of the connection symmetry, there holds the equality

[b] + [c] - [a] = 2rk;ij'

Hence

(a
g

k • agt' ag..\
r k;f = In. ---;! +-.J + -1}-1 = gj.~~ •

t) a/ ai al ...., !1

Since i gjq =5~ we have

r4 _ kq _ gkq (ag
ki agkj agij \

1:. - g rk;" - -+- +-1·
I) IJ 2 aJ ai al

This completes the proof.

From the theorem there follows

COROLLARY 2. If the coordinates are so chosen that at a given point all the
first-order derivatives ofgij are equal to zero, then at this point the components I1j

are equal to zero (for a symmetric connection compatible with the metric).
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EXAMPLE 1. Let us consider the case of a surface situated in a three~dimensional

Euclidean space with coordinates xl , = x, Xl = y,,.3 = z (Euclidean coordinates):

At a given point of the surface, let the,.3-axis be orthogonal to the surface and let the
xl. and :x?--axes be tangent to the surface. In a neighbourhood of this point the
surface is given by the equation

where zl =xl, z2 =:x?-; moreover, since the ,.3·axis is onhogonal to the surface at
the point P =(0, O), we obtain

aj I = 0, aj I = 0 dfI 0or gra 0,0 =ai 0,0 ai 0,0

at the point P = (0, O).
For the metric gij we have

aj aj
g.. = 5..+--,

IJ IJ azi a!
It should be recalled that gij didt = (dx}2 + (dy}2 + (dz}2 = tV? + dy2 + (df)2, At

the point P, where Cf =0, we have g.. =5.. andazi IJ IJ

Therefore with respect to these coordinates, at the point P all the components 11k =0

for q, i, k =1, 2. These coordinates at the point P were chosen in Pan I; they were
convenient for different purposes. The axis z = ,.3 is onhogonal to the surface
xl =u =zl, x 2 =v = z2.

EXAMPLE 2. The divergence of a vector field (r) has been defmed as
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For a symmetric connection compatible with some Riemannian metric we have

where

We can verify that g =det (gij).

Question. What is the formula for the divergence in general coordinates?

Answer.

. at dg at fI'v:t = -+ 1I2g-'fl =-+-~
I ai iJzq azi (lgl) 112

A more convenient form is

In (lgl)1/2

iJzq

at dg 1 av:1 = - + 1/2- '['l = -. «lgl)112:1).
I ai iJzq (lgl}ll2 azl

Conclusion: the divergence of a vector field Vir has the usual form

vi = at
I • ,

ai
if and only if the volume element (lgl}ll2 dz1 A dz2 A dz coincides with the Euclidean

one: (lgl}ll2 = 1, where g = det (gij).

Now we already have a definite relation between the connection (the way of
covariant differentiation) and the Riemannian metric gij' which can be interpreted as

follows: any Riemannian geometry gives rise to a cenain symmetric way of tensor
differentiation with respect to which the Riemannian metric itself is a constant.

How can we distinguish between Euclidean and non-Eudlicean geometries?
Can we find coordinates (J), where g ij =8 jj and plij == O? What geometrical

properties distinguish Euclidean geometty from non-Euclidean?
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In order to link up our present geometrical ideas with the most basic concepts
from school geometry, we recall the so-called fifth postulate of Euclid: "Given a line
through a point P, and a point Q not on the line, there is exactly one line through Q
parallel to the given line".

The reader may know from school mathematics that the appearance of
Lobachevski geometry is due to distrust ofprecisely this postulate, i.e. to its validity
in a real space on a large scale.

We shall fonnulate this postulate in a (perhaps, not quite fonnal) way

convenient for our further purposes: given a vector Cr)p at a point P in Euclidean

geometry, at an arbitrary point Q there exists only one vector (T i)Q which is parallel

to and has the same length as the given vector.

It is relevant no to ask: what exactly do we mean by parallel vectors attached to
different points P and Q? By definition, a vector Oike any tensor) is attached to a
given point.

Recall that for any tensor field Cf) and any vector ~a. at a point P we have

determined the directional derivative

This is the vector at the point P.

Ifwe are given a curve zi =/(t) and ~a=d~a , then the derivative of the vector

field r along the curve takes the fonn

. d2 a i
V~ t = -d V T .

..,(i) t a

By definition, the vector field is parallel along the curve if and only if V~(t)-r5 0 at

all points of the curve.
We shall now give the definition of the important concept ofparallel transpon

of a vector (ri) from a point P into a point Q along a curve zi(t), where t(O) = zJ(P)

and zi(1) =zf(Q).

DEFINmON 1. Parallel transpon of a vector rip from a point P = (zJ, ... , z8) to a

point Q =(zl, .. , , zi) along a curve zi =i(t) joining P and Q is the vector field r
dza .

given at all points of the curve and parallel to itself along this curve: - V t = 0
tit a
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for all 0 ~ t ~ 1. When t = 0, the vector field (7") at the point P must coincide with
the initial vector rr)p. When t = 1, the vector field r at the point Q is the vector

(r)Q' and is called the result of parallel transport of the vector (7")p along the given

curve t =t(t) from P to Q. We can see that parallel transport of a vector along a
curve depends on the connection (Iii) and thereby on the metric gij provided that the

connection is symmetric and compatible with the metric.

With respect to coordinates zl, ... , -fI we obtain

(8)

This is the equation ofparallel transpon. The initial data (for t = 0) has the fonn

Equation (8) is linear in 't. From the existence and uniqueness theorem, for any
smooth curve t =t(t) we obtain the following result.

THEOREM 3. The result ofparallel transport along any smooth fixed curve exists,
is uniquely determined by the initial vector rir and depends linearly on the initial

vector rir •

For connections compatible with the metric gij' where VJij == 0, there holds

THEOREM 4. If 1-i(t) andTi(t) are parallel vector fields along a curve t =zi(t),

rheir scalar product is constant: dd (giT i(t) Ti(t)) =0 providing V g .. =O.
t 'J a. IJ

Proof. Since VJij == 0, it follows from the definition ofcovariant differentiation for

the product of tensors that
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and this implies the theorem.

231

Thus, the concept of connection compatible with the metric has appeared for
the property that parallel transport preserves the scalar product of vectors, Le. is an
onhogonal transfonnation.

If the geometry is Euclidean or~k == 0, we are led to

COROLLARY 3. In Euclidean geometry and in Euclidean coordinates, vectors
attached to different points and having identical components are paraIlel along any
curve. In any coordinates, the result ofparaIlel transport ofa vector along a curve
does not depend on the curve provided that the geometry is Euclidean.

The difference between Euclidean and non-Euclidean geometries is already
intuitively clear now: parallel transport of one and the same vector fonn P to Q along
different curcves (if curvature exists) yields distinct results.

In a real space the geometry is detennined by the gravitational field, but this is
the geometry of a four-dimensional space-time.

How should curvature be measured numerically? This will be our concern in
the next section.

What lines are straight? They are called "geodesics" of a given connection.
i

Given a line t = z(t), the tangent vector field -r = ~t = T along this line is defined.

DEFINITION 2. The geodesic line of a given connection, t =t(t), is such a line

. dzi
that the covariant derivative of the vector field T = dt along this curve is equal to

zero:
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dzi (d) dzi (a d . aZa)o = 'YIn = -'Y. - = - - -+p - =
dr I dr dr ai dr ai at

; j . dz a dzi j.
=-+P' - - = K (f) = O.

dt2 ai dt dt g

The equation for geodesics has the form

PARTll

; j + ri dz a dzi = 0 (9)
dt2 ai dt dr .

Parallel transport of the velocity vector of a geodesic along the geodesic itself is again
a velocity vecor (this is an alternative definition of geodesics).

Geodesics are given by equation (9). If r == 0, these are oreHnary straight lines,
as they should be when the geomelry is Euclidean.

. ; j . dz a dzi .
REMARK. The vector 'YT rr) = - +P -d -d = K} (t) is frequently called the

d
2 ai t t g

t .

vector ofgeodesic curvature of this line, t = dzdI. Given the metric g." the curve can
t v

be detennined in terms of the natural parameter I, where

dz a dz a 2 dzi d
dl = I dt Idt, ITI = gij(Jt fIt;

the vector of geodesic curvature is often detennined only with respect to the natural
parameter:

. ;j . dza dzi ....,
K}(l) =-+P - - = 'Y (T)

g 2 ai dJ d -'d T

a
Ta = dz , iii = l.

d

Geodesic curvatw"e is the length of the vector ~g(l):

where I is the natural parameter.
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In this language. we can say that geodesics are lines whose geodesic curvature
is equal to zero

K~(t) = O.

Let us compare the equation for geodesics (9) (in a given connection) which we
derived in this section with the one obtained in Section 1.15 proceeding from the
variational principle. Recall that in Section 1.15 we defined geodesics as locally the
shortest curve segments for a given Riemannian metric. To compare these equations,
we have to consider on a manifold a connection compatible with a Riemannian

metric, Le. a connection specified by the condition Vdij = O. Then, we arrive at the

conclusion that equation (9) derived in this section and equation (1) of Section 1.15
coincide. In the case of general connections, their geodesics are not already obliged
to be locally the shortest in a Riemannian metric if the connection is not compatible
with this metric.
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2.9 Riemannian Curvature Tensor. Gaussian Curvature as an Intrinsic
Invariant of the Surface

In the preceding section we have explained that in a non-Euclidean space, the parallel
transport of a vector is path-dependent. At the same time, the result of parallel
transport of a vector T along a path z(t) is given by the transport equation

the solution of which requires some skill.
It would be much more convenient if, instead of solving this equation, we­

could find the local characteristic of the depanure of the given connection <I1.0 from

being Euclidean. What characteristic is this? What is the way to find whether or not
there exist coordinates (xl, Xl, ... , :J!I) in tenns of which the Pjk vanish identically?

Of course, if the connection is not symmetric, then ~k =r~k - r i
kj is a non-zero

tensor, and therefore we cannot introduce coordinates with respect to which the I1i
vanish identically. In this case we may understand Euclidean coordinates as such

coordiriates (yj) that I1k = 1/2'0t> that is, the ~k is skew-symmetric with respect to

the lower indices (the symmetric part Pkj + r}k 5! 0).

How shall we find out whether or not there exist Euclidean coordinates? We
shall attempt the answer in respect of symmetric connections. We are- acquainted
with the important property ofpartial derivatives in the usual analysis:

a Cf a Cf if
--=--=
aJ axi ai aJ axi aJ .

If the connection admits Euclidean coordinates xl, Xl, XJ, ... ,:J!I, then, in tenns of
these coordinates, the tensors are differentiated using ordinary fonnulae

(&) _ ar&~
VkT(}) - -a-'

~k

Therefore,

or, equivalently,
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This property is valid relative to any coordinates, as long as ~;k;iis a tensor. Lei us

examine the general connections.
Let a manifold Mil be endowed with local coordinates xl, ... , Xli in a

neighbourhood of an arbitrary point. Consider vector fields r on M and consider the
differential expression VtVi-ViV /co where V is some differential-geometric

symmetric connection. We apply this expression to the vector field r, to obtain

V"; = at + T'r i
t i pi 'ax

2 .

V V~t) = a t + aT' r" +
k aial a/ pi

and so

. (a· a .)
(V V - V V'T = T' -r - -r' -k i i ~ k pi i pkax ax

In the case of symmetric connection Iik =r i
kj we have

where

_Ri = ar;i _ar~k + rP r" -rP r"
q,kJ a/ al qi pk qk pi •
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Thus, for symmetric connections we are led to

In the case of general (non-symmetric) connections

"i Cat i )
('VkVi-ViVJJT = -TlR q,l:l -~-~) a:1' +T'lrqp =

= - TlR~,1d - T"1d(Vp T i
).

PART II

Here T"kl = rPkl - rPik is a tensor called the torsion tensor; Riq,ki is a tensor

called the Riemannian curvature tensor. So, ultimately, we have

and for symmetric connections

It rums out that R~,kJ is a (Riemannian) tensor. It is called the Riemannian curvature

tensor. For symmetric connections T"tl == 0, and, therefore, in the symmetric case,

there holds

1HEOREM 1. For syrrunetric connections andfor any vectorfield T the expression
(VtS'i-ViVJJ'f takes the form _RiqJdTl, where Riq,ld is a Riemannian tensor, and

the following formula holds

If the connection is Euclidean, then the tensor R~.1d is identically zero; at points where

~q=Owehave

i ari
i af k

-R =-q---q-
q,ld ai' ai

What are the properties ofthe curvature tensor?
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1) Obviously Jiq):1 = -Riq,E" in all cases;

2) Let Riq.kJ = gq,RPq,kJ, where gip is a Riemannian metric.

There following theorem holds
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THEOREM 2. If a connection is symmetric and compatible with a Riemannian
metric gij. we have the symmetries

Given this, the Riemannian metric determines the curvature tensor by theformula

2 2 2 2

C
agji ag" agi/c agE)

R. '.r = 1/2 + ---!L. - - - q +
"1 1U

". E E .", .alaz az1az azqaz a1'az

The proof ofTheorem 2 for symmetric connections follows from the formulae which
express r~q in terms of the metric (gij)' We omit this calculation.

Theorems 1 and 2 imply

COROLLARY 1. If a Riemannian tensor does not vanish, we cannot introduce
Euclidean coordinates with respect to which gij:: 5ij and rtj :: O.

REMARK. We can arrive at this conclusion in a different way. Consider the
tansfonnation law for components Iij :

in the case z = z(Y). the following formula holds

Suppose the connection is symmetric r~t =r~q' We shall seek (Euclidean

coordinates) y. such that ~P =O. We obtain the equation for zao =zao(yl.r.....
y")
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Are these equations soluble? If they are, we have

We can verify that this is the condition on the right-hand side of the equations. Its
validity is equivalent to

R~,kl == O.

The curvature tensor is a tensor of rank four. It is naturally obtained as an operator
on vector fields which depends on the pair (k, l) in a Skew-symmetric manner:

at
- R~,klTl = R

i
q,IJcTl = (VkVi - V /VJJ'r - '[P kl

at
where '[Pkl =rP

kl - [Pi k is the torsion tensor.

In the symmetric case '[Pkl =O. If the connection is symmetric and compatible

with the metric gij' then the components~ and Rtf);! are expressed in tenns of gij

and their derivatives, and the symmetries hold

2) Riq,kl = g~mq,ki = -Rqi );!,

3) Riq,kl = Rkl,iq'

5) R~,kl+ ~i,qk + Rik,iq = O.

Theorem 2 also implies an important

COROLLARY 2. The curvature tensor Riq,kl determines the symmetric bi-linear

fonn on the vector space whose elements are skew-symmetric tensors of rank two
with upper indices,

Elements of this space are customarily called bi-vectors. Simpe bi-vectors are
those of the form
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(that is. and exterior product of two vectors: T = ~ A 11).
, "

The scalar product of two bi-vectors T and T. by virtue of the Riemannian
tensor. is given by the fonnula

,,, "'"Id " ,
(T. T)R = TIJ T Rij,ld = (T •T)R .

A Riemannian tensor is called strictly positive (strictly negative) providing (T.nR is

strictly positive (strictly negative) for a non-zero T.
The curvature oftwo-dimensional direction generated by tangent vectors 1; and

11 is the quantity

(T.nR
R(~.11) = .

<T.n
where T =~ A 11 and (T.n is a usual scalar square.

Riemannian space is called the space ofpositive (negative) sectional curvature
if the curvature of all its two-dimensional directions is positive (negative).

EXERCISE. Prove that the curvatures of all two-dimensional directions in a
Euclidean space, in a sphere and in a Lobachevskian plane, are constant and are a
zero, a positive and a negative constant (number). Prove that any Riemannian metric
with this property is locally isometric to one of these three metrics.

-How many components are there in a Riemannian tensor?
Let us consider the two-dimensional and three-dimensional cases.

I. The two-dimensional case. From the symmetry condition

R ;/7 Lt =- R· 'L =- R . &.1 =R Lt •....."" Iq,,,,- ql..... "".&q

it follows that the Riemannian tensor is determined by the single non-zero component
R 12,12' All the other components are either obtained from it by pennuting the indices

or are equal to zero.

DEFINmON 1. The Ricci tensor is the expression Rqi =: Riq,ii - the trace of the

Riemannian tensor.
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DEFIN1TION 2. The scalar curvature is the traCe of the Ricci tensor:

R =: giqRqi = g!qRiq,ii.

An important theorem holds.

PART II

THEOREM 3. For two-dimensional surfaces in a three-dimensional space, the scalar
curvature R is twice the Gaussian curvature. It follows that, unlike the mean
curvature of a surface, the Gaussian curvature is expressible in terms of the
Riemannian metric ofthe surface itself, i.e. is an intrinsic invariant ofthe surface.

Proof. Let the surface be parametrized by coordinates x = x(u, v), y = y(u, v),
z =z(u, v), where (x, y, z) are Euclidean coordinates of the space and (u, v) =
(zl, z2) are coordinates on the surface. We choose at a given point P, where the

z-axis is normal to the surface, u =zl =x, v =z2 =y. Then in a neighbourhood of
the point P the surface is given by the equation

z = fix, y), where gradflp = 0, P = (0. 0).

For the components of the metric on the surface, we obtain

g.. = 5.. + af af , zl =x, ? =y.
IJ IJ ai a!

In panicular, at the point P =(0, 0) all agi/a'; =O. Hence, at this point, rtj i =O.
So, according to Theorem I of this section, we have at this point

(Theorem 2 of this section).
From this we obtain (zl =x, Xl = y):

2 2
= I/2Ca gl2 + a gl2 _ agll _ agn )

axdy axdy (jy2 ai·
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Given this, the following equalities hold

gJl = if%)2 + I, g22 = (/y)2 + I, g12 = I~y,

a2 a2 a2

~I = 2",)2 ~I = 2",)2 ~I ~
2 P vry' 2 P vry' ax~' p =1d Jy +Jxy •

dy ax VJ

Finally, we are led (at the point P) to

R J2•12 = ifdyy + fry - Jiy - /yy) =

=Idyy -fry = det (/= Iry J = K.

fy% Iyy
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By defInition, K = det (/= Iry ) at the point P, where aij =gij relative to the
I y% I yy

chosen coordinates. However, the Gaussian curvature K is a scalar and R12•12 is a

component of the tensor. They are equal only in the panicular given coordinate
system, where gij =aij, det (g ij) = 1 =g. From the definition of R, where

R = gqlRiq,il' we can readily see that

R = 2 det (gqf) R l 2,12 = d 2(g)' R12,12et .,
IJ

2
= gR12•12 = R.

In C?ur coor~nate system g = 1 and R12,12 = K. Therefore, relative to this system the

equality R =2K holds; since R and K are both scalars, this equality is always valid,
and we have reached the desired conclusion.

REMARK. The conclusion concerning the Riemannian tensor components implies

Hence, the Gaussian curvature K is invariant equal to R/2, where R =gqfRiJ if for.
n = 2.

We shall consider several examples:
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1) The metric of the Euclidean plane dP =~ + dy2;

R~.jJ == 0, K =R/2 = 0;

2) The metric on the sphere dP = d,2 + sin2 !... dtl; here
TO

R 1
K=-=->O2 2

TO

that is, we have constant positive curvature.

3) The metric in the Lobachevskian plane dP = d,2 + sh2 !... dtl,
TO

R 1
K = - =-- < 02 2

TO

and we have constant negative curvature.

4) The conformal Euclidean metric

dP = g(x,y) (~+ dr), g> 0,

gij = 5ij' g(x, y).

PART II

Such coordinates x, y are called confoTmal (see Section 1.13). In these coordinates,
the Gaussian curvature is given by the simple formula

1 1 a2

K = - 2g b. (In g) = - 2g ami (In g)~

b. = i i
=-+-;

ai rty2

We invite the reader to derive this fonnula. In Pan I we have shown the visual
meaning of curvature when it is positive or negative.

We shall present some more fundamental facts from the theory of surfaces
which we have not proved here.
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1) If on a surface with coordinates ZI, z2 we·are given a closed curve t(t),
i = 1, 2, which bounds a region U, then the following theorem holds:

.1$ = JJK(g)l/2d:i 1\ di = the angle of rotation of the vector under parallel

u
enclosure along the curve i(t), i =1, 2.

2) If this curve consists of three geodesic arcs, and if the curvature of the
surface is constant, then

if -1/2 1 2.1$ = K (g) dz 1\ dz = Kcr,

u
where cr is the area of U. We invite the reader to derive, from this, the following
relations:

a) The sum of the angles of a geodesic traingle is eqaul to 7t + Kcr < 7t, where

cr is the area of the triangle, K is the curvature, K = const (a Lobachevskian plane).
b) For the sphere, the sum of the angles of a geodesic triangle is equal to

7t + Kcr > 7t, where cr is the area of the triangle (sphere).

n. The three-dimensional case. Here the situation is more complicated. Let us
consider a metric gij in a neighbourhood of a point P, and construct a tensor

R iq.kl = q i"IFq,kl' The Riemannian tensor

R iq.kl = - Rqi,J:l; Riq,lJc = Rkl,iq

at each point may, by virtue of these symmetry relations, be regarded as a quadratic
form on ~e ~ee-dimensio~ linear space of all skew-symmetric,rank-two tensors.

If we denote the pair [k, 1] =- [I, k] by A, B, then

R[iq] [kl] = R AB = RBA-

The Riemannian tensor is thus detennined by the six numbers. Consider the Ricci
tensor Riq,il =R ql =R lq' This is a symmetric tensor of rank two which is also
detennined by six numbers Rq1 with q ~ I. The scalar curvature R is one number

R = gq1Rq1 = gq1Riq,il' In contrast to the two-dimensional case, the scalar R does

not determine the whole of the tensor R~,kl' However, in the three-dimensional case

it suffice~ to know the Ricci tensor since the following formula holds

Rot.py6 = Rot.~P6 -Rf3Sgot.'( -Rp~a.6 + R/2(ga.6gpv - got.~p6)

(prove this!).
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The scalar curvature is the trace of the Ricci tensor Sp(Rq/) = gqlRql• There also

exist invariants ~l' ~2' ~3 which are the eigenvalues of the Ricci tensor. These
invariants are given by the equation

and we have ~1 + "-2 +~ = R.
When we say "a space of positive or negative curvature", we mean that the

Riemannian tensor RAB is a positive definite quadratic form on skew-symmetric

rank-two tensors.

ID. Thefour-dimensional case. The Riemann tensor is not determined here by
the Ricci tensor which, nonetheless, remains to be of great importance. For example.
in four-dimensional space-time the gravitational field is taken to be the metric (gij)' i,
j =0, 1, 2, 3, and all the other properties of maner are thought of as involved in the
"energy-momentum tensor" ~Tij. where ~ is a dimensional constant

The Einstein equations for the metric of space-time have the form

R·· - l/2Rg" = ~T..· ~.p. = 0I} I} I}' '} I •

The same equations in the absence of matter become

R .. -1/2Rg .. = 0
I} I}

(or Rij =0 - check it!). The detenninant of the metric gij is not equal to zero. but

the metric is indefinitie (in the diagonal fonn it has three minuses and one plus).
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2.10 Skew-S}'mmetric Tensors and the Theory of Integration

245

The reader is already acquainted with the usual concept of multiple integral: given a
region U and a function /(zl. z'-, ... , zn) in an n-dimensional space, we have the
defInition of the integral of the function over the region
If, in addition, we are given the coordinate change

z = ZeY),

then the fonnula for the change of variables is
We have already mentioned that the integrand is, in fact, a skew-symmetric

II· i/ IitZ) dz
1

••• dzn = II. v' If (zeY» d/ ... dlJ,

where J = det (0<) is the Jacobian.
al

tensor of rank n. In the coordinate system zl, .,. , zn the component T1 ... n of this

tensor is. by definition,/(z) =T1 ... n'

Recall that under the change of coordinates z =zeY) we have proved the,
formula T 1 •.. n = JT1 ... Pl' where
for skew-symmetric rank-n tensors in an n-dimensional space.

The formula for the change of variables for a multiple integral, as is
well-known from analysis, has the form
where V is the same region as U but written in the coordinates yl, ... ,yz.

II .i/ IitZ) dz
1

, •• dzn =II .it .If (zeY» dyl ... dlJ,

,
We can see that T 1 ... n =f(z) • J =T 1 ... n • J. Thus the integrand is a

skew-symmetric tensor.
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EXAMPLE 1. Given a Riemannian metric (gij)' the detenninant g = det (gij)' under

the coordinate changes z =z(y), behaves as

, ' (al ai) .2
g = det (g ij) = det gkJ --:- --:- = J • g.

ay' dI
Therefore, under coordinate changes with positive Jacobian, the expression (lgl)l/2
behaves as a skew-symmetric tensor. Recall that the area of a region on the surface is

cr(U) = II (lgl)l/2 du dv, u =zl, v = z'l, n =2.

u
Suppose we are given a surface :t =:t(z), i =I, 2, 3, z =(zl, z'l) in a space with ­
Euclidean coordinates(x1, Xl, x!). If we now wish to take the surface integral of
some scalar functions.f{x(z» whose defInition is essentially related to this surface (let
it be, say, its Gaussian curvature), this integral will be defined as follows: the
integral over a region U on the surface is equal to

II~x(z» (lgl)1/2dz1A dz2,

U

where II $(z) dz1dz2 is the usual multiple integral. The expression (lgl)1/2dz1dz'l is
u

sometimes called the measure (the element of volume) on the surface and denoted
by dcr.

EXAMPLE 2. Let Kbe a Gaussian curvature and let 11K ~lgl)l/2dzldz'l be its
u

integral over a region on a surface; the surface is given by:t = :t(z). The region U
in the coordinates(zl, z'l) is bounded to a closed curve r = (t =t(t), j = 1, 2,

t(O) = t(l) (Figure 46).

Figure 46.
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The value of the expression II K dcr is given by the following theorem

(without proof).

THEOREM 1. The angle of rotation of a vector under parallel enclosure along a
closed curve r from the beginning t =0 to the end t =1 is calculated by the fonnula

~$ = If K (lgl)1/2dz1d?

u

(the connection is symmetric and compatible with the metric).

So, we arrive at the following conclusions:
1) In an n-dimensional space for any bounded region U the integral

is defined, where T is a skew-symmetric rank-n tensor of type (0, n), T = (Tj .).
l· .. ln

2) In coordinate notation this tensor is written as

T = T1..... ndz1A ... Adzn

(or TI ..... ndz 1
••• dzn if we omit the sign A).

3) If TI •.... n =f{z) is a scalar function of a point, then under the change of
coordinates z =z(y) we have

II .i/ Y(Z) dz
l

A ... A dzn = II 'c/ I f(z(y» J dyl A ... A dyn;

4) Ifwe wish to integrate a function $(z) over the space, it is necessary that we
have a given and marked skew-symmetric tensor T in the space (such a tensor is
called the volume element or the measure); then, by definition, the integral of the
function $(z) is the integral of the tensor$(z)T

If ·.. f$(Z) T = If·· .f$(Z) T1 dz
l

A ... A dzn;u u ..... n

5) Given a Riemannian metric (gij)' such a marked skew-symmetric tensor

T = T I .._.• ndz 1 A ..• A dzn (under changes with a positive Jacobian) can be

represented in the form
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and the integral of the function cj)(z) is given by

JJ.i/ Jcj)(z) T = JJ.i/ Jcj) (z) (lgl)l/2 di /\ ... /\ dzn;

6) The sign /\ implies that di /\ dzi = - dzi /\ di; under the changes of

variables / =icy); ifdi = az
j

d! then from the equality #/\ dyi =- dyi /\ dlaJ '
we obtain

h 1,1. th . fth J b' . az'. u1 r k hwere (J) IS e mmor 0 e aco lan matnx --:-; 10 partie ar lor =n we ave
aY

dz l /\ ... /\ dzn = J dyl/\ ... /\ dyn,

where J is the Jacobian;
7) In Euclidean coordinates we usually have (lgl)1/2 =I, and therefore

d = dxl /\ ... /\ dxn•

We should distinguish between two expressions:

a) "the integral of a skew-symmetric rank-n tensor over a region". This
integral always has sense. We call it "the integral of the second kind";

b) "the integral (of the first kind) of a function over a region": for this integral
we should know over which volume element (measure) the integration is carried out­

we should first multiply the function by this volume element (which is a
skew-symmetric tensor) and then integrate. Obviously, this integral is reduced to the
first one.

Now let us tum to arbitrary skew-symmetric rank-k tensors of type (0, k) in an
n-dimensional space. To begin with, we choose convenient symbols for co-vectors
(k = 1) and vectors. We have already mentioned the convenient basis in the tensor

space provided we are given coordinates zl,?-,~, ... , "'.
The basis fields for vectors are el' ... , en' T ='t ej, ej =r1;ej (the components

ej are equal to &;).
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1 " j j i'The basis fields for covectors are e , ... , e , T =Tie, e =S Jel (the

compoonents e
j
are equal to S).

The basis fields for tensors of any rank are ei 0 ••• 0 ej 0/
1

0 ••• 0/
1,

1 Ie

jl ... i le jl jl
T = T. . ej 0 ••• 0 ej 0 eo ... 0 e .

Jl···JIe 1 Ie

Let us recall what we understood by the term "vector".
In each coordinate system the vector at a given point is given by a set of

numbers r, i.e. by the set of its components in the basis ei:

Under the change z = z(y), this set of numbers varies by the law

I. • al .. I.

T) = 'r or'r='r=TJ
at

-.
al

I I

In the case where e l' ... , e "is the basis in the system (y), we have

I I. I. I I ayq
T = (TJ) = TJ ej, whereej = eq _.

az'
Indeed

We can see that rej = TIe~ Ie is the same vector provided that

I ayq
e.=e -.

I q ai
It should be noted that differentiating any function /(z), we had, under the

coordinate change z =z(y), the equation

at at aylX-=----.al aylX azq

In other words, the operators~ satisfied the relation
CJzq
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a dya a
-=---.
azq azq dya

Let us associate the basis field e. in the system (z) with the operator~ and the field
I azl

;i in the system (y) with the operator~ .
aI

We obtain two relations

dyq ,
e. =- e q •

I azi

a aya a-=----
azi ai dya

This is one and the same transformation law! Hence, the operators a/di are, in fact,
the basis vector fields ei'

Recall that for any vector l; the operator V~ = l;a 1..... (on scalar functions) is
." aza

called the directional derivative of this vector,

We have the assignment a/dz j
H ei' V~ H l;Cl.eCl. = l;. Vectors are often said to

be differential operators of the form l;a1.... on scalar functions.
aza

Now we shall return to the covectors of interest: T =(Ti) =Tji. What did we

begin with when we introduced the concept of a covector? The components of the

gradient of a function T. = a~ do not form a vector, they form a covector. We know
I azl

from analysis that the differential of a function is the expression

af d adf=-z.
aza

aza ,
Given the change za = za(y), we have dza =~ dY

aI
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df = af dza. = (.!.- ~) d/ = a~ dl.
aza. aza. ay d/

What is the meaning of the symbols~ and #? The basis covectors i, which we
introduced before, were transformed by the law

where

We can see, again, that the basis covectors e~ transform by the same law as dz~:

a. ' .
ea. H dz, e H dY.

So, we can say that the symbols dx~ are the basis covectors e~. The covector
(TtJ = Tcan be written in two ways

The covectors e~ or dz~ are detennined from the identities e~ej = Bj= (~, ej). To

say it in a different way, dz~ = e~ are basis linear forms on vectors; any covector is a

linear form (on vectors) expanded in the basis e~ =dz~. Under the change z =z(y), ,
we simply go over to anothe~ basis e ~ and e ~ =if at each point of the space.

REMARK The value of the linear form af dza. on the vector (~~) =(IllYe is equal,
iff a.

by definition, to (.!... dza., ~~) = L (~za.). As is well-known, this is called the
aza. aza.

principal linear pan of the increment of the functionf due to the shift along the vector.
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By virtue of the correspondence between the covectors e~ and the

"differentials" dz~, the covector fields (T~ =T~e~ =T~dx~ are called "differential

fonns" of the first degree (first-rank tensors of type (0, 1».
Why did the tenn "differential fonn" appear? It turns out that the expression

T~~ can be integrated along any curve:

i = t(r), a ~ r ~ b.

Indeed, let us consider the expression

b b

JT ddfl' dr =JT ~a dr,
a a r a a

where ~~ = i~ is the velocity vector.
This expression is tenned the integral of a differential fonn along an arc (called

in analysIs "the integral of the second kind").

The differential fonn T = T~di'" is given in a space, and it can be integrated

along any arc in this space.
The situation is different when we are given a curve (arc) t = t(r) and a certain

scalar functionJtz(r», for example its torsion curvature, which is essentially related
to this particular curve. Then we introduce the measure on the curve - the element
of its length dl = I i I dr, and the integral of the functionJtz(r» along the curve is the

expression tJtz(r» dl (in analysis this is the integral of the first kind). The ele~ent

of length on the curve dl = , i I dr is, in fact, the one-dimensional version of the
general "volume element" dcr =(lgl)l/2 dzl A ... A dlfl already introduced above,
since, for n =1, we have

where gIl = I i ,2 (for n = 1, where ris the only coordinate on the straight line).

Concerning the integral of the second kind, that is. the integral of a covector
field (of a differential fonn) along any arc, it P9sseses the following properties:

1) it does not depend on the choice of the curve. on which the parameter is
introduced:

b b'

JT dd
za

dr = JT dza. dt.
Q a. r Q' a. dt

where r =t(t) and t varies from a' to b' with r varying from a to b;
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2) The result of the integration does not depend on the coordinates in space; in

the case z = z(y). Ti = TtL a~ and i(t) = i(Y(t)), the following equality holds
iiy'

fb dza Jb
, ~ ~

T -d dt= TR -de.
a a t a .. dt

Indeed, TtL dztL =TPdyP, and therefore both the integrals coincide along one and the

same curve ztL = ztL(t) or yP = y~(t), where z(t) = z(y(t)).

So, we already have the integration of a skew-symmetric rank-n tensor over an
n-dimensional region in an n-dim~nsional space and the integration of a covector field
along any curve.

It turns out that skew-symmetric rank-k tensors of type (0, k) are integrable
over k-dimensional surfaces in an n-dimensional space. Suppose a k-dimensional
surface is given parametrically as

i i(l /c). Ix = x z •... ,z , 1 = "", n.

Suppose, also, that we are given a region U in a k-dimensional space with
coordinates zl, ... , ~.

How should we introduce the integral of a skew-symmetric tensor T =
(Ti("i

k
) in n-space with coordinates Xl • ••• , X' over a region U in k-space with

coordinates zl •...• ~. if we are given an embedding (a surface) xi =i (zl•.., • ~)?
To begin with. for the sake of convenience. we shall use the language of

differential forms for skew-symmetric tensors. We have already introduced the
symbols dx l • •.•• tJX1 and dz l • ...• dfl which are basis covectors in corresponding
coordinates. Covector fields (Tj ) are written in terms of Ti dxi•

We shall associate with, a skew-symmetric tensor (Tit"'i/c) in any coordinates

<xl....,X') the formal expression

and assume. by definition, that dxi 1\ dx! = - dxi 1\ dxi• We shall define the
operation of restriction of a tensor of type (0, k) to the surface. For a surface
1 =xi(zl • ...• I) consider the expression (on the surface)
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where Tjt'"jk (x(z» is expressed in terms of zl, ", , I at points of the surface and

d1 = al dl, by definition. At points of the swfacex =x(~)we have
al

i 1 ,.. ik ai
J being the minor of the matrix (----:-), This expression is' called the restriction

1 ... k at
of the skew-symmetric tensor Tj ".j to the surface x = x(z), This is already a tensor

1 k
of rank k in a k-dimensional space,

DEFINmON 1. The usual multiple integral of the restriction

J J( ~ jl,·,jk\ 1 k

, • • . £oJ. ~ i J 1,..k) dz 1\ .. , 1\ dz
U '1<"'<'k 1''' k

of the tensor Tjt'"jk over a region U on the surface is called the integral of the

skew-symmetric tensor field Tj , •. j , in an n-dimensional space, over the region U on
1 k

any surface

i i(1 k), 1x = x z , .. ' ,z , 1 = ".', n.

REMARK The expression

itself is called the differential form ofdegree Ie; we are already familiar with one of the
forms of writing skew-symmetric tensors of rype(O, k).
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The integral of the fonn (of the tensor) over a region on the surface possesses,
as before, two properties:

1. The integral does not change under the change of variables on the surface
,

zq =tl(z), q =1, .. , , k. Indeed, the restriction

i1··JI:\ 1 Ie<. L. ~ i J L.A:) dz A ... A dz
'1<···<l1e C'Ie

is a tensor of rank k in a k-dimensional space zl, ... , z~ under the change of

variables tl = zq(; 1, ••. , ; Ie) we have the usual change of variables in the multiple
integral over a region U in a k-dimensional space.

2. The integral does not change under the change of coordinates

Xi =x i(; 1, •.. , x'n) in the n-dimensional space itself, where xi =i(z 1, .,. , i)
and .t(z1, ••• , te) =.t(x' 1(Z), ... ,;n(z». This result is immediate, as it is also for

,
k =1, from the fact that under the change x =x(x) there holds the identity

i ai 'j ,
where dx = -,. dx , and the components Tit "'jle are obtained fonn Ti1"' ile by the

ax)
usual tensor law.

In a space of any dimension n, the differential fonn of degree 0 is simply the
scalar function T(z). By a zero-measure oriented region U we understand a tuple of

points {pa,} with the assigned signs cr(prJ = ± 1.

By defmition, "the integral of a zero-"'f<inn T over a zero-dimensional region if'
is the quantity

JT = L T(p ) cr(p ).
U (a) a a

In a two-dimensional space we can integrate covector fields along curves rand
also skew-symmetric tensors of rank two over regions U on the plane.

In the three-dimensional case, we can integrate

a) covector fields (forms of degree 1) Ta,li.?" along curves,

b) tensor fields of type (0, 2) (forms of degree 2) over surfaces,
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c) tensor fields of type (0, 3) (forms of degree 3 or an expression of the form
f(x) dx1 A dY? A~, wherej(x) is a function) over regions. Forms of degree 2 in a

three-dimensional space with coordinates Xl, Xl, x3 are given by

where!;i are the components of the skew-symmetric tensor (f;j) = ~. hj~ A dxi .
1<)

The tensor!;j in Euclidean coordinates is often associated with the "vector" T1 =123,
T2 =-/13' f3 =/12' As a concluding remark, we shall explain the assignment of the

bo .1_i1 A iq b . PI ~ssym Is (U. ••• A dz to the tensor aslS elX..1 0 ••• 0 elX.. 0 eo • •• e • We
p

know that the symbols i correspond to di. What does the symbol di A dl!
correspond to? We have two basis tensors eiei and eiei• The expression
di A di = - dl! A di is skew-symmetric with respect to (i, J). There exists a

skew-symmetric expression (i"ei - ei~i) composed of basis tensors. It is only to this
expression that we assign the symbol dt A dt:

We shall verify this. The skew-symmetric tensor can be written in two ways:

T = (T.) = L T.. di Ad! = LT.. ei
; = T.it

iT i<j I} ij IJ I}
(all pairs i,J).

This is valid for any pair (i,J), where i *j.
Thus, we obtain that dt A dt =id _dei• Similarly, for tensors of any rank,

we have

i1 i = ~ rtJj1 •.•• j i i1 iqdz A ... A dz q £.J (- 1) eo • •. 0 e •
i 1····jq

where VI' ... ,jq)) is permutation of the set of indices (i1' '" • iq) and aV1' .., ,jq) is

the sign of the permutation. For example
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We have introduced, above, the following symbolism for writing skew­
symmetric tensors of type (0, k):

i1 ikT
"

I" dx A .. , A dx ,1 ... k

where dx i A dxi =- dxi A dx i•

We have also introduced the operation of restriction of a skew-symmetric
tensor (of a differential form) to a q-dimensional surface:

i_ i(1 q)X -x Z, ••"z ,

~ i 1 ik= LJ T," I' (x(z» dz A.,. A dz ,, 1 ... k
i1<···<lk

. ai, " .
where dx,' =- d?! and d?! A dt' =- d'l! A d?!. This operation was defined

aJ
and needed, only for q =k in the theory of integration where the tensor T is the k-th
rank tensor in a k-dimensional space with coordinates zI, ... , ! (however, the
restriction operation itself is also meaningful for q '¢" k).

DEFINITION 2. The integral (of the second kind) of a skew-symmetric rank-k
tensor T of type (0, k) over any k-dimensional surface x = ;(zl, ... , -I) or over
a region U on this surface is a usual multiple integral in the k-dimensional space....,
(zl, .. " -I) of the restriction T of this tensor T to the surface with the coordinates
iiI kX = X (z , ... , z ).

The basic invariance properties of this integral are as follows:
1) the integral is independent of the coordinates on the surface: its value,

remains invariant under the change z = z(z)~

2) the integral is independent of the coordinates in space: its value is invariant,
under the change x = x(x),
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This is the integral of a tensor (of a differential fonn), given in the entire
space, over a region on any surface which depends neither on the coordinates in the
space nor on the coordinates on this surface.

In Euclidean space on a surface xi =Xi(zl, ... , zk), i = I, ... , n, the
Riemannian metric is defined as follows: if (xl, ... ,,tJ) are Euclidean coordinates,

i' n q2. i" .
theng.. dzd1 = L (dx) ,g.. beingequaltog .. anddzdt =d-!dz',

IJ q=:l IJ JI

The volume element on the surface is given, as always, by

dcr = (lgl)lf2 dz1 A . " . A fitS, g _= det (gij)'

Let an arbitrary functionj(zl, ... , zn) be given on a surface.

DEANITION 3. The integral (of the f11'st kind) of a functionitz1, ... ,z'I) over a
surface is the integral of the function over the element dcr of volume on the surface:

the integral of the first kind = J. u.Jitz1, ... , zn) (lgl)lf2 dz1 A •.. Adz",

(on the surface).

It is important to note that the integral of the second kind is not related to the
Riemannian geometry in space or on the surface, whereas the integral of the first kind
is related to it through the volume element (lgl)l~ dz1 A ... A dzn, which is a
skew-symmetric rank-k tensor (under changes with a positive Jacobian) defined only
on the given surface by the Riemannian metric. The Riemannian metric itself is
detennined by the Euclidean metric in the entire space.

EXAMPLE O. A trivial example of the "integral" of a zero-rank tensor (a scalarj(x»
over a surface of dimension 0 (over a point P) is, by definition, the value of the
functionj(x) at this point P: "the integral" is equal toj(P). We have made this trivial
remark. intentionally - it will be useful when we come to discuss the general Stokes
fonnula.
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EXAMPLE 1. We have already discussed the integral of a covector field or of a

differential fonn of degree 1 (TtJ =Tf4. tJX4 along a curve:t =:t(t), a ~ t ~ b. The

b IX

integral along a curve (of the first kind) =Ja TIX ~ dt.

EXAMPLE 2. The integral of a tensor field (Tij) = ~. Tij~A d:i (i.e. of a
'<J

differential form of degree 2) over a surface:t =.i(zl, ?), i = 1, ... , n, is given by

the integral over the surface = If It T.. dx
i

" d,
i<j 'J

U

. ai . .. ..
where Tij =Tji (x(z» and d:t = a/ dzl, dz' "dzl = - dzl Adz'.

In a three-dimensional space (n = 3) with Euclidean coordinates Xl, Xl:?,
where (df)2 = It (M)2, these integrals are usually written as follows:

1. The integral of a covector field along a curve ("circulation") is given by

where ~ = i, T =Tf4. =T'" (relative 'to Euclidean coordinates the conceptS of a vector

and a covector coincide, and this is also the case under rotations),

p = (zl(a), ?(a), ~(a»,

Q = (zl(b), Z2(b), ~(b», a ~ t ~ b,

T~ =(T, ;) is a scalar product.

2. The integral of a skew-symmetric tensor field of type (0,2) (i.e. of the fonn
of degree 2) over a surface (sometimes referred to as "flux'') is given by
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II . . II ai aiT.. dx' A d1 = T.. (x(z» (-dz
q
) A (- dzq) =

IJ IJ arl arlu u z z

(on the
surface)

= II[LT..(~ ai _aJ ~)} dz1 Adz2

;d IJ 1 a 2 a 1 a 2u""it Z Z Z Z

PART II

(on the
surface)

N th ai aJ aJ ai jif. . f ( "") b' . aiote at - - -- - = 12 1S the mmor 0 a 3 x _ Jaco 1an matrIx--,
i al az1 al azq

i = 1,2,3, q = 1,2. Therefore, we finally obtain

II [ .. 1 2
= ~ Tij 1:2] dz A dX .

u
In a three-dimensional Euclidean space, with Euclidean coordinates Xl, r-,~ on a
surface:t =:t(zl, ~,z3), the vectors

ai
-e"az1

I

ai
2 ej7

az
form a basis for the tangent plane at each point of the given surface. In this Euclidean
context the vector product [~, 'Ill of these vectors is nonnal to the surface.

The vector product is essentially the tensor ji = (sir{ - ~.Lrti), to which the
"vector" is assigned

J1 = J23, J2 = _J13, J3 = J12, J = (J1, J2, J3).

It is obvious that Ii = X~.

The vector (I) =J is nonnal to the surface. Its length is equal to (Igl)l/2 where

., 3 i2 i ai .
g =det (gij)(on the swface) and gij dtdz' = L (dX) ,dx = --:- dt' (see Part I).

;=1 at'
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Therefore, the integral over a region U on the surface:t =xi(zI , ?) in a Euclidean
space relative to Euclidean coordinates (xl, Xl, ~) reduces to the form

II i' II(~ .. 1 2Tijdi Ad1 = f.Tjj Ji2)dz Adz =
u U <J

II 1 2 II If2 1 2= (T, [;, n]) dz A dz = (T, n) (Igl) dz A dz ,

u u

[/; n] [J, n]
where n is the unit vector of the nonnal, n = ' = - __,

I [/;, n] I (Igl)If2·

REMARK. In a fOUTMdimensional space n = 4, the integrals of fonns of degree 2
over swfaces (k =2) cannot be reduced to operations on vectors only, even if the
space is Euclidean.

For the three-dimensional case, we have proved

THEOREM 2. In Euclidean 3-space the integral ofaform ofdegree 2 over a surface
coincides with the integral of the second kind:

II Tij d:i A aJ
u

(on the
surface)

II If2 1 2= (T. n) (lgl) dz A dz •

u

where n is the unit normal to the surface, T is the vector, in Euclidean coordinates
(xl, Xl,~) associated with the tensor (Tj),

g .. did! = i (dxi )2. dxi
= (aX~ dt). (T. n)

IJ i=I at
is the scalar product, the surface is given by

. . 1 2 .
x' = x'(z , z). 1 = 1, 2. 3.

This fonnula has been derived above.
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Since, in the three-dimensional case in Euclidean coordinates (xl,:il, il),
skew-symmetric tensors (forms) of type (0, 2) are associated with vectors and
vectors are associated with covectors, we usually consider the integral of a vector

field TIX. =-rot.:

a) along a curve th T dxa
Jr a '

b) over a surfaceII (T, n) (lgl)112 dz
l A di, where n is the unit normal.

u
Let us recall the definition from analysis.
A. If a curve r is closed (Le. r has the form i(t), WhrTf' ../(a) =:t(b), i =1,

2,3, a ~ t ~ b), then the integral of a covector field

is calledfield circularion along the curve r.
B. If a surface U = (j(xl,:il, il) = const} is closed in the sense that it is the

boundary of the region f{x l , r-, x3) ~ C, which is bounded in space, then the

integral II Tij di A d:J! is called the totalflux through the surface ofthe tensorfield

u
(Tj) = - (Tjj ) or, in the Euclidean case, the flux of the vector field T = (TI , T2, P)
through this surface: TI =T23' T2 =- Tl3, T3 =Tn provided that the coordinates

xl,:il, x3 are Euclidean.
It is possible that a surface as a whole cannot be given parametrically in the

fonn :t = :t(zl , ?) if it is given by the equation F(xl,:il, il) = C. However, this
can be done in a neighbourhood of each non-singular point. The integral does not
depend on the choice of coordinates on the surface. Therefore, in calculating the
integral over the entire surface, we should divide this surface into pieces in such a
way that each piece, separately, is represented parametrically; then we should take the
sum of the integrals by pieces. A sphere, for example, can be divided into two
pieces, namely, the upper and lower hemispheres. NoW we shall turn to the
operation of skew-symmetric gradient which we introduced above.

For functions VI- = 'Of.
I ai
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5 aT. aT.
For covectors (V n.. = -~ - ~ .

I) ai ax·
For any skew-symmetric tensors of type (0. k)
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a)

1\
where i. implies that this index is omitted.

J

The skew-symmetric gradient was not related to the metric. and therefore this
operation is simpler than the covariant differentiation of any tensors (see Part I).

How do we write this operation in the symbolism of"differential forms"?

Ifftx) is a function. then its differential has the form df = af tJX4. In
axa

analysis (for functions) the gradient operation in the differential symbolism was
denoted by the letter d. We shall follow this notation in the symbolism of differential
forms of all degrees.

If we are given a form of degree 1 (a covector field) TCit. tJX4. we can apply to it

the operation d (by definition) by the rules

ar .
tIT = --!!. J J. ax.

a ai

b) d(dx~ == O.

Applying these fonnulae and differentiating the fonn TCit. t:b!"', we obtain

aT .
d(TCit. tJX4) = tITCit. " tJX4 = ~ dX " dx

a
.ai

Next. we require the following:
c) a Leibniz type formula should hold in differentiating a product.

d(j(x)T) = df" T +fdT,

whereJtx) is a function and



264

i1 't
T.. dx A .•• Adx

'1'" 'k,

PART II

is an arbitrary differential form.

Indeed. we have

d(Ta. tJx!I") = tIl'a. A fb.A + Ta. d(tJx!I") =

dT aT aT
= (--!J;.dxP) A~ = L (-Jl---l!.) dtl A dxP.

axtJ a<:p axtJ arx
This is the skew-symmetric gradient. or the curl. as already introduced. represented
as a differential form.

We now impose the last requirement
i1 ik\.

d) for all k: d(x A ... A dx } ;: O.

Proceeding from the requirements a). b). c) Cl!ld d) we can calculate tIl'. where
T is a fonn of arbitrary degree.

EXAMPLE 1. Let n =3. k =2. How shall we calculate tIl'. where

T = (T.,) = LT.. dxi Ad?
if i<j I}

By definition

d(~. Tij~Adxj) = ~. d(TjjdJAd:t) =
I<J I<J
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Here T1 =T23' 'fl =- T13, f3 =T12•

In the Euclidean case a'fta:t is called the divergence of the vector field ('f).
Instead of the tenn "curl" we sometimes say "vortex".

EXAMPLE 2. (a simpler one). On a plane (xl,~) we have

aT aT
d(T dX") = (_I__2) dx1 A di.

a ai ax1

We recommend the reader to verify, directly, the important property of the operation
d (which coincides with the operation of the skew-symmetric gradient of tensors of
type (0, k)):

d(aI) == 0 for all k,

where

Thus, the operation d is our skew-symmetric gradient which is written using
the differential symbolism.

We now introduce the most general concept of the integral of the second kind
over k-dimensional swfaces in an n-dimensional space (in a manifold) proceeding
from the requirements of integral invariance under coordinate changes both in space
and on the swface (see above).

DEFINITION. The general non-linear k-fonn is a smooth fuction ro(x, Th,· .. ,11.0,

such that

a) ro(x, 11i
1
, ••• , 11i

t ) = ro(x, 111 A ... A 11.0,

for A. ~ O.

Here x is a point in an n-dimensional manifold and 11 l' ... , 11tis a tuple of k

tangent vectors at the point x.
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A particular (linear) case of the non-linear k-forms are the differential k-forms,
i.e. skew-symmetric tensors of rank Ie. The operation of restriction of the general
non-linear k-fonn to an arbitrary sulrmanifold is defined similarly to the restriction of
the differential fonn.

Under the coordinate changes with positive Jacobian. the general n-fonns in an
n-dimensional space behave as ordinary differential n-forms. Thus, they are the
ordinary n-forms on orientable manifolds.

The restriction of a general non-linear k-form to a k-dimensional orientable
surface determines an ordinary differential k-fonn on this surface, which can be
integrated over any region on this surface.

Hence. we have defined the integral of the genrral non-linear k-form over.
k-dimensional orientable surfaces. This integral is III' .riant under coordinate
changes (preserving orientation) in space and on the surf,,, .

EXAMPLE 1. Let gij(x) be any Riemannian (pseudo-Rimannian) metric on a

manifold. The metric ~ves rise to the element of k-dimensional area

oo(x. Th. A ... A llV = (Idet y;))l/2

where Yij =(l1i' llj> is the scalar product of vectors 11; and llj in this Riemannian
metric gij' For k = 1, we obtain the element of length, for k = n we obtain the
volume element The integral of this quantity over any k-dimensional surface is its
k-dimensional volume.

EXAMPLE 2. Let k = I and let the function CJJ(x. 11) be strictly positive for any

11 ;= 0:

oo(x. A.ll) = A.c.o(x,l1) for A. >O.

oo(x. 11) > 0 for 11 ;z!: O.

In such a case we say that on a manifold we are given a Finsler metric.
The Finsler length of any smooth curve Y= x(t) is given by the formula

l.(y) = Joo(x. x·) dr.
y

Obviously, l.(y) > 0, and the quantity l.(y) does not change under a

monotonic change of parameter: t = t(t). dtldt > O.
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EXAMPLE 3. Let k = 1. as in Example 2, and let a Riemannian metric gij and a

differentiall-fonnA =A j d1 be given on a manifold. For any smooth curve y=x(t)

we put

where A. in constant number (&Ia charge'').

EXERCISE. Prove that on a compact manifold this fonnula detennines a Finsler

metric for all sufficiently small A..

Functionals of this type play an important role in the description of motion of
charged particles in electro-magnetic fields.

Consider Oocally) a manifold of dimension n + 1 with the following metric
which does not depend on the coordinate x"+l:

gab(X) = (gjj I~j)·
AAj

Prove that after being projected onto the space Xl, •.. , x", the "horizontal" geodesics
of the metric coincide with the exttemals of the functionall.(y) from Example 3 (the

Kaluza theorem). See Appendix 5 which contains elements ofvariational calculus.
Thus the class of objects which can, in an invariant manner, without a

Riemannian metric, be integrated over surfaces is appreciably wider than the class of
differential fonns. However, no analogue of the operator d on general non-linear
k-forms'can be deteimined. '

EXERCISE. We shall caIl a general non-linear k-fonn closed if its surface integral
has an identically zero variation, Le. does not change upon a small variation of the
surface. Prove that any closed smooth general k-fonn is linear, i.e. is an ordinary
closed differential fonn. Stokes type fonnulae which we discuss in the foIlowing
section also have sense only for ordinary linear differential fonns.

REMARK.. There exists an important modem generalization of geometry, essential
for quantum theory. This is the so-called "super-geometry" in which most natural
analogues of differential forms, including closed ones, are already not tensors and are
non-linear.
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2.U The General Stokes Formula and Examples

PART II

As noticed in Section 2.10, the definition of the integral of a fonn of degree k over a
k-dimensional surface in an n-dimensional space does not necessarily require
parametrization of this surface as a whole in the fonn:t =.t(zl, ... ,I>. Since the
integral over the sum of regions is equal to the sum of the integrals, we can
sub-divide the surface into several pieces and then coordinatize each piece separately.
After this, and having integrated over each piece, we should sum up the results and
obtain the integral over the surface.

Another remark is that on a surface we can introduce coordinates zl, ... , t'
(always) which have singular points (see Part I) on a set of smaller dimension,
making no contribution to the integral of the form of degree k. Such coordinates are
often employed in the theory of integration. For example, such are polar coordinates
r, $ on a plane (the singular point is r =0), cylindrical and spherical coordinates in a
space:

r, $, z are cylindrical coordinates; singular points are r = 0:

r, 9, $ are spherical coordinates; singular points aie r =U and 9 =0, 1t, r is
arbitrary.

On a sphere there are coordinates (9, $) where singular points are 9 = 0, 1t.

The sphere is the simplest surface on which we cannot, in principle, introduce
coordinates (a unique system) without singular points. In all of these examples the
set of singular points of coordinate systems was smaIl, making no contribution to the
integration, so we could ignore it

In any case, we can detennine the integral of a fonn of degree k (a tensor of
type (0, k» over a region on a surface of dimension k in an n-dimensional space.

From the course in analysis, the reader recalls the relation between the integral
over a surface and the integral over the boundary of the surface. We mean Green's
formula for n= 2, Gauss-Ostrogradskii formula for n =3, k =3 and Stokes' fonnula
for n = 3, k =2. We shall now tteat these fannulae from the point of view of the
theory of skew-symmetric tensors (differential forms).

In view of the additive character of the integral, it suffices to know the basic
definitions of pieces of surfaces. Suppose we are given a region U in k-dimensional
space zl, ... , t' in the form of the inequality f(zl, ... , t') ~ C, and suppose r is the

boundary of this region specified by the equationf(zl, ... , t') =C.
Suppose that we are also given an embedding of this region together with the

boundary into an n-dimensional space (xl, ... ,xfI),

. . 1 t·
X' = :t(z , ... , z), 1 = 1, 2, ... , n.
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We obtain the parametrically given surface, the region U on the surface, and the
boundary r of this region which is a surface of dimension (k- 1).

What is the relation between the integral over the region U and the integral over

the boundary r of this region of the various forms of degree k in an n-dimensional

space (Xl, ... ,XZ)?
A particularly simple case is k =I, where :t =i'OO, zl =t is a curve, U is a

segment a ~ t ~ b, its boundary r is a pair of points (t =a) and (t =b), the point a

being taken with the minus sign and the point b with the plus sign.
Specifically mentioned is the trivial case of the "integral" of a scalar (Le. of a

form of degree 0) over a zero-dimensional surface consisting, by definition, of
several points with signs.

"The surface of dimension 0" is a formal sum of point\; L ± Pi' where Pi are

points of the space. The "integral" of a function.f{x) over "a surface of dimension 0"
is, by definition, the sum of the values of the function at these points with
corresponding signs:

the integral = L ±f(P.).. ,,

If in a space we are given a curve :t(t) and a sement of the curve U (a ~ r ~ b) with
boundary r = Q - P, then, as is known from analysis, the following formula holds

J J
b Cf dxa

f =f(Q) -.f{P) = rh df = - -dt.
r r u ad~ ct

This is the simplest "Stokes' formula", familiar from the fIrst course, relating the
integral over the boundary to the integral over the region.

The multi-dimensional Stokes type formulae are, in a sense, its direct
generlization and, moreover, can be fonnally reduced to it.

We shall now rerum to the general case of a region U in coordinates zl, ... , -/
on a surface :t =:t(zl, ... , -/), i =I, ... , n, with boundary r given by the equation

/(zl, ... , -/) = C (the region U is specifIed by the inequality.f{z) ~ C).

If in a space Xl, ... ,xn we are given a form of degree (k - I), i.e. a
skew-symmetric tensor of type (0, k - I), written as
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it can be integrated over the (k - I)-dimensional swface r, which is the boundary of

the region on a surface .t(zl, ... , I), i= 1, ... , n.
The general theorem holds.

TI-lEOREM 1. For any differentialform

with smooth coefficients Til'" i
k
' any smooth surface .t(zt, ... , t') and a bounded

region U (on this surface) with a sooth boundary r consisting ofone piece, there

holds the formula ±f
r

T = f
u

D.

The trivial version of this formula for k = I, k- 1 = 0 has been given above.
Here D is a form of deaTee k (the skew-symmet:J;ic D'r-ldient of the tensor (T," I' - )

. . b' b'- 1'" k-1

or the differential of the form of degree k - 1).
The various two- and three-dimensional cases of this formula are named after

Green, Gauss-Ostrogradskii, and Stokes, and are usually given separate proofs in
analysis courses. We shall now examine these cases. The reduction of the general
fonnula to these cases is just the proof of the theorem for n =2 and n =3.

I. The planar case (n =2). Here r is a closed curve on a plane 7! =7!(t),

where .t(a) =~(b). Suppose this curve is bounding a region of the plane (Figure
47).

Figure 47

! = 2

j"()r
L __

.r: •.;;:

For any (co)vector field Ta. dX'- ( fonn of degree 1) the integral around r is dermed.

If the fonn Ta. tb!'- is defined and has no singularities inside the region U, then either
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f dxa JJ(aT1 aT2) 1 2T -de = --- dx Adx
r a de u ai ax1

or

This is Green's fonnula which is a particular case of the general Stokes fonnula.
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EXAMPLE. Consider the supplement referring to the complex variable. Suppose
;2= -1 (i is imaginary unity), z :<: X + iy, dz = dx + idy andf(z) =f(x, y) = u(x, y)

+ iv(x, y) is a pair of functions u and v, or one complex-valued function.
Consider the integral

~ f(z) dz = ~ (u + iv) (dx + i dy) =
r r

= ~ (u dx - v dy) + i P(v dx + u dy).
r r

Applying Green's fonnula

~f(Z)dZ = ff(~ +~) dxAdy+i ffe: -:;) dxAdy.
u u

we arrive at the conclusion that the identity ~r (z) dz =0 holds provided that every­

where inside the region U the functionf(z) is smooth, and the identitites

are satisfied. In this casef(z) is called a complex analytic function.

Note that for the functionsf(z) =t' for any integer n the following identities
hold

rh n rO
jZ dz = ~

l21ti

if n ~ - 1,

if n = - 1 and the contour ofr embraces O.
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(Verify this by choosing r in the fonn of a circumference Izi = 1). This underlies the
important residue formula.

II. The three-dimensional space with coordinates Xl, x2, x3• Here we
distinguish between two cases: k =2 and k =3.

1. Suppose k =3, U is a region and r is the boudary of this region. In this
case

If .. IfI aT aT aT 2 3LT.. dx' /\ di = (--!1. +-2!._~) dxl
/\ dx /\ dx .

kj I} ':'I. 3 a 1 a 2u U aX X X

If the coordinates Xl, x2, x3 are Euclidean, if T is :'l "('ctor where T; = T 23'

T2 = - Tl3, T3 = T12 and n is a unit vector of the normal k to the swface r then,

according to the theorem of Section 2.10 and to the general Stokes formula, we
obtain

II:r. Til dx
i
/\ di =II (T, n) (lg1)112 dz

l
/\ di,

u <J u

where zl, il are coordinates on the swface, dcr = (lgl)ll2 dz l /\ dil is the element of

area on this swface.
Next,

aT12 aT13 aT23 at .
---+- = -. = divT.
al ax

l
ax

l
ax'

We finally come to

II (T, n}(lgl) 112 dz l
/\ dil = II (T, n) dcr = III (div n dxl

/\ d.x?-/\~.
r r r

This is the Gauss-Ostrogradskii formula in Euclidean 3-space.

2. Suppose now k =2, U is a region on a swface ~ =~(zl, il), i =1, 2, 3, r
is a (curve) boundary of this region. We have
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In the Euclidean case, where we need not distinguish between vectors and
covectors, and where we can assign to a skew-symmetric vector (Tij), a vector

T =Cr), we obtain (the Stokes fonnula)

pT~ tJxA = ff (rot T, n) (lgl)112 dz l A dil,
u

where rot T is the vector assigned to the skew-symmetric tensor

In all these cases the general Stokes fonnula has transfonned into different
integral fonnulae from the course in analysis, which means that it is proved for the
three-dimensional space.

As a concluding remark we note that in the fonnulation of the general "Stokes
Theorem" it is not necessary to assume that the boundary rconsists of one piece. If

the boundary r consists of severai pieces, then the integrals over the different pieces

will enter with either plus or minus sign which should be chosen appropriately. This

has already been mentioned for the trivial case k= I, where the boundary r of a

segment of a curve consists of two pOints - one (terminal) with a plus sign and the
other (initial) with a minus sign. It is relevant to note here that the choice of the sign

in the expression II (T, n) (lgl)112 dzlA dil (or, alternatively, the "orientation" of

r
the boundary n is determined by the direction of the unit normal n.

We shall now examine another important application of the general Stokes
fonnula.

Let us consider a four-dimensional space xO = ct, Xl, Xl, y;3 with the metric
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(
-1 0 J

gij = 1 1 ' where c is the speed of light and t is the time.

o 1

PART II

Suppose Fik = - Fki is the tensor of an electro-magnetic field, i, k = 0, I, 2, 3.
Now we shall only consider the behaviour and the property of this tensor for a
constant time xO =ct, where we can lransfonn only spatial coordinates:

~. i = I, 2, 3:

In this case, the tenSQr File in a four-dimensional space is determined by the covector

of the electric field Ea. =FOrL' a = I, 2, 3, and by the tensor of the magnetic field

Ha.~ = - Hpa.' a, ~ = I, 2, 3. If the coordinates xl,:x?-, x3 are Euclidean, then the

magnetic field is determined by the axial vector of the magnetic field

In the notation of differential fOnDS, we have

d(Fij dJ A dJ) = 0 (the first pair of Maxwell's equations)

or in the three-dimensional Euclidean fonn

a)

b)

div H = all = 0. ,
ax'

1 aH
rotE+- - = O.

c at

From equation a) and from the Gauss-Ostrogradskii formula, we have (r is the
boundary of the region U)

fff div H dx
l

A dx2 A ttx3 = ff (H, n) d C'i = 0
u U

("the magnetic field flux through a closed surface is always equal to zero'').
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From equation b) and from the Stokes fonnula we have

ff (rotE. n) dcr = ~ Ea,tJr4.
u r

(on the
swface)

275

(the boundary
of the region on
the surface)

("the time derivative of the magnetic field flux through a surface is equal to the
electric field circulation along the boundary of the region on the surface").

The second pair of Maxwell's equations has the form

3 aFik 1 aFOi 41t.tt al - c --at = C )(4)i' wherej(4) = (c P,jl'j2,j3)

(the four-dimensional divergence of the tensor Fik in the metric

(

-1 0 )
Gil = 0 I I I is equal 10 the foor-dimensional vector of the electric eurren~

p is the charge density andj = (h;h,h) is the usual vector of current density):

In the three-dimensional fonn this yields

a)

b)

cliv E = 41tp.

1 aE 41t.
rotH+- -= -).

c at c

Equation a) together with the Gauss-Ostrogradskii fonnula imply

fff 41tp dx
l

A ttr2 A~ = ff (E, n) dcr
u u

(the electric field flux through the surface r is equal, with an accuracy to 47[, to the
total charge in the region U).
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Equation b) and the Stokes formulae imply

PART II

I
c II ~ nda+ II

U U

41t .
-]nda =
c

(on a
swface)

(on a
swface)

(thecwve
is a boundaIy)

("the total current through the surface ± the derivative of the electric field flux: through
this surface is equal to the magnetic field circulation around the boundary r of the

swface ").
We can see that the geometric content of the first and the second pairs of the

Ma.xwell equations is different here.
The first pair of the Maxwell equations is not related to the space metric, the

second pair of equations cannot be written without a metric. The natural form of
these equations is closely related to Euclidean coordinates Xl, x'-, x3. Further on, in
the course in the mechanics of a continuous medium and in many other places, the
reader will encounter various applications of integral formulae from analysis, whose
geometric and tensorial content we have already discussed.

We have shown above that the classical integral Green and
Gauss-Ostrogradskii formulae are particular cases of the general Stokes formula.
Now we are in a position to prove the general Stokes fonnula for the case where the
inegration region is a k-dimensional cube.

A singular cube a of a space o=r is defined as a smooth mapping a: i'~ o=r,
n > k, where lie is a Cartesian cube of dimension Ie, Le. lie = (Xl, .•. ,~ lOS XX' S

I). The equations Y!" = 0 and Y!" =I specify two (k - I)-dimensional faces I;. and

I:'. We denote the boundary of the cube lie by aI', Le. aIle = U (I:' U I;.). Let
Cit.

epu be a (k - I)-form in [R" and let d epic-I be its exterior differential. Next, let

a: [Ie~ o=r be a singular cube.

THEOREM 2. The/ollowing equality holds I ep.t-I = I deple-I. The

a(aD a<f>
orientation on the cube boundary al'is taken to be that induced by the standard

on'entation 0/ the cube I' by means ofthe exterior nonnal.
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By the integral f $ we mean the sum of integrals over all the faces of the

acaf>
cube.

Proof. Consider the form ro = cr*($}, where cr*($) denotes the form obtained

through the change of variables in the form $ by means of the map cr. From

the fact that the operation cr* and dare pennutable, we have dro = dcr*($) = cr*(d$),

and, therefore, it suffices to prove our assertion in the fonn f ro =f dro. We

at t
have made use of the fact that, by defInition of the fonn ro

f d$ = f cr*(d$) and f $ = f cr*($).
a<!> I' a(at> at

"
Suppose that ro =Qa,.(x1

, ... ,J') dx1 A ... Ad Y!" A ... Adx!-, where Qa,.(x1
, '" , ..

.. ,J') are smooth functions and the differential £b!I' is omitted. We are led to

a.-l dQ .Ie= L(-l) ~a x,
a dXa

where cfx = dx1 A ... A dxk • For the sake of simplifIcation in the following, we

assume that the functions Qa,.(x1, ... ,~) are represented in the form of products
k

Qa,.(x1, ... ,Je> = n b
q

(x
q

). Here the functions bq are assumed to be smooth
~l a a

functions of one variable~. Recall that in the course in analysis there exists a
theorem to the effect that any smooth function can be unifonnly approximated by
linear combinations of products of smooth functions of one variable. We shall not,
of course, prove this here.

We shall calculate, in an explicit follIl, the expressionf d ro;
t



278 PART II

JdCJl = J(L (_1)a.-1 dQa ) Ix =
f f a d~

= J(L (_1)a.-1~ en b
q (xq»)) Ix =

f a dXa 1f-'1 a

ba.-1( a.- 1) ba+1( a+1) b k ( k...... x X ••• X)Xa . a a

1 1 a k k... 1 "a k
- b (x ) ... b (0) ... b (X) dx A ... A dx A ... A dx =

a a a
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1 1. 1 '" "-afl.(x •...• X )1 fix /\ ... /\ fixfl./\ ... /\ fix =
zfl.=O

f 00.

01'

279

With this we have completed the proof of the theorem. As is seen from the
computation. this theorem is a simple consequence of the one-dimensional
Newton-Leibniz formula.
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BASIC ELEMENTS OF TOPOLOGY

3.1 Examples of Differential Forms

We shall first examine several especially interesting examples of differential foons.

EXAMPLE 1. A skew-symmetric scalar product of vectors in an even (2n)­
dimensional space with coordinates Xl, ••. ,xm is given by the 2-fonn

Non-degeneracy implies that the matrix gCl.j3 has the inverse gCl.j3, where

THEOREM 1. A skew-symmetric scalarproduct is non-degenerate ifand only if the
2n-form

is non-zero, i.e.j(x1, ... ,xm):;: 0 andf= (g)lfl.

Proof We wish to verify directly thatf2 = det (glX.p) = g., (The expressionf=

(det ga./l)lfl itself for skew-symmetric matrices is called ·Pfaffian'.) Indeed, by the

definition of multiplication we have

By virtue of the fact that our expression does not depend on the derivatives, we
can, without loss of generality, assume the matrix gCl.j3 to be constant Both the forms

aPl and (g)lfl trx = do are well defined (in an invariant manner) under ~e ch?nges_

We shall verify the equality an = n!(g)lfl dPlx in a special coordinate system.

Namely, we shall find coordinates (xl, yl, ... , x pl
, yn), where a = L dxi A dyi.

For a constant skew-symmetric matrix gCl.j3 such coordinates can be chosen using a
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linear change. In this coordinate system the theorem is trivial: for example, for n = 2
we have

because ({}j A #)2 = O. The verification of the theorem is similar for all n> 2, and
the result follows.

Especially important are closed 2-fonns detennining scalar products where
dO. = O. For example, in a 2n-dimensional space xl, '" x2n we can choose

coordinates ql, ... , tt, pI, ... ,pn, such that the 2-fonn 0. is given by

Such a scalar product is called Hamiltonian (or symplectic) and a space v.ith such a
scalar product is called the phase space.

EXAMPLE 2. Given a complex space with coordinates zl, ... , f1, ;1, ... , ;'1 where

zi =i + ii, z-~ =Y!'- - iYx., all the differential fonns can be written as

T = LT(P,q), p+q = k,

where the summands

T(P,q) = T· .. . dzil A ... A d/p cdl A ... A d/q
'l···'P/l··Jq

are called 'fanns of type (P, q)'.

For example, we are given a fonn 0. =T~~ dz~ A dZ~, where T~~ =- f ~~.
...,

Then the matrix (if~~) has the fonn iT~~ =T ~~ and is the matrix of the
...,

Hermitian ql!adratic fann L T~~ d~ dz ~. Thus, in the compl~" ca~s~ the Hermitian
metric is· gfven by a fonn of type (I, 1). Of particular importance here is the case of
Kiihlerian metrics, where dO. =O.

EXAMPLE 3. Let n = 1 and let the coordinates of a one-dimensional complex space
have the fonn z, z. Let there be given a 1-fonn

CD =/(z, z) dz.
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Obviously, the condition dO) = 0 is equivalent to the condition afro; =0 or to the
complex analyticity condition. From the general Stokes formula (in this case, from
Green's formula) we have

f
p

Q

JJ f(z, z) dz

along path 1

Jp

Q

- f(z, z) dz,

along path 2

provided that in the region between paths 1 and 2 the afroz is everywhere identically
zero (Figure 48).

b p

Figure 48. (J

Or, the integral along a closed path is equal to zero provided that inside the path the
functionJtz, z) is analytic, i.e. afroz- =O. It can be directly verified that for the

powersf(z) = (z -0)", where n are integers, the integrals are given by

rh { 2xi,r Jtz) dz =
0,

n = -1,

n * -1,

where z =a + ptt (Figure 49). Indeed, let us consider a differential I-fonn co = f(z)

dz and a contour 'Yembracing several singular points aI, ." , aN of the function f(z).

We may consider another contour 1, sketched in Figure 50, which embraces the
same singular points.

Figure 49. O
i"

.., z;:.(1 ... ~e )0-
f ~

•Z=(l

Figure 50.
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Clearly the Stokes formula implies the equality J/(z) dz = J...,1(z) dz. The latter

integral falls into the sum of N summands each of which is calculated along the
circumference of small radius, which embraces one singular point Each of these
integrals is calculated as follows

Therefore, for unifonnly convergent series1(z) = L (z - a)"c" the formula holds

(the contour "( embraces the point a and lies inside the region of uniform convergence
of the series)

J1(z) dz = 27tic_I; J(z - a)-k dz = 27tick-I'
y ...

For the analytic function1(z), these formulae allow us to detennine the coefficients of
its Taylor series (if all powers n ~ 0) or of its Laurent series (if - 00 < n < 00) through
the integrals.

Letft MP ~ Nq be a smooth map of one smooth manifold into another

and let T =(T,',' :) be a tensor field of rank n on the manifold JItl. Then we can
1 2"~"

defme a new tensor fieldj*T on the manifold "'P, Let us introduce local coordinates'
Xl, •,. ,~ on the manifold M1' and local coordinates yI, ••. , fl on the manifold Nt
Then/IT = (Sh.,J,,(x)}, where

)J

()y' (x)
.. , . T. . (y(X» ,

J 'I''''()x" "

Here y =1(x), i.e. I = j(xI , ••• , #), 1 S; I S; q.

Let, on the manifold J{l, there be given a differential form



284

Then the differential formj*T on the manifold MP is defined to be

PARTm

i l i . .
~ ~n ~ ~
-[j '" ~ T. . dx /\ ..• /\ dx .

} ] 'I''''ax I dX n n

EXAMPLE 4. Suppose we are given a hyper-surface MD-I in an n-dimensional
Euclidean space

F(xI , ... ,~) = 0, V F .¢ 0,

or, locally, X'- =XX' (yI, ... ,,,...,1), Here Xl, ... ,~ are Euclidean coordinates.
The "curvature form" is defined to be

K do = K (lgl)I/2 dyl /\ ... /\ dyD-I,

where K is curvature (for n = 2 this is the curvature of the curve in a plane, while for
n = 3 this is the Guaussian curvature).

Consider a sphere Sn-I given by the equation f (l:J/ = 1. We denote by
(1::1

0D-I the (n -I)-dimensional volume element on the sphere, invariant under rotation,

which for n =2, 3, has the form

n = 2: 0n-I = dcj),

n = 3: 0D-I = Isin 91 d9 dcj).

We define the Gauss spherical map of the manifold MD-I to the sphere sn-I:

consider at a point P of the manifold MD-I, the unit normal np to the surface and

transport this vector np to the origin of coordinates (Figure 51). The map P ~ np

defines the Gauss map

(the point P is set to the tip of the vector np after the vector np has been transported so

that its tail is at the origin of coordonates). The Gaussian curve of a hyper-surface is
defined to be the ratio det Q/det G, where Q and G are the matrices of the first and
second quadratic forms, respectively.
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Figure 51.

n(P)

THEOREM 2. Thefollowingfonnula holds

{

K do = f*(d$), n =2,
K do = $*n;

K (lg)l12 dy1/\ dj = f*(d n), n =3,

where do = (lg)1/2 dy l/\ ... /\ dy"-l is the element of an (n - I)-dimensional

volume in local coordinates yl, ... ,y"-1 on the surface.

Proof. The proof is similar for all n ~ 2. We give the proof for n = 3 only. We
choose Euclidean coordinates in 1R3, where the axis x3 = z is orthogonal to the

surface at a point P, and x = Xl and y =:x?- are tangent to the surface. Then yl = X,

y2 = Y and in the neighbourhood of the point P the surface is specified by the
equation z =fl;x, y), where dflp =O. In this case, we have

Ifxx fxy I
[( = det ~ I; g.. = S..

/., IJ IJ
y:x yy

at the point Pif:x =/y =0). On the sphere S"-l =S2, we choose the same coordinates

at the point $(P) = Q, where i ..1. S2. The fonn n at the point P is given

by nip =dx /\ dY. In the neighbourhood of the point Q the sphere is given by the

equation z=(l-i2 - Y2)112, where x=0, y =0 at the point Q, and the metric of the

sphere at this point has the fonn gij = Sij'

The coordinates of the normal vector at the point P' near the point P are

np = if:x,fy, - 1) ( 1:.1 i. 1/2 )
(1 + :x + y)

If:x =f y =0 at the point P).
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Therefore, in a neighbourhood of the point P the Gauss map is written as

_ 1%
X=-----

(l +i +.61/2 '
% Y

_ f
y

y=--~--

(1 +1:. +.61
/2

% y

(here P'with coordinates x, y goes over to Q'with coordinates i, y).
By the definition of cjI*(nn-l) we have

where J is the Jacobian of the map cjI at the point P. Obviously, since Ix =I y =0 at

the point P, it follows that

(the Gaussian curvature). Since Igi at the point P is equal to unity, we have, finally,
that in the chosen system of coordinates the following formula holds (at the point P)

which implies the theorem for n =3. For all odIer n the proof is similar.

REMARK. When n =2, we have nn-l =dcjl, and for a curve Xl =~(y),~ =~(y)

we can see that K (lgl)112 dy becomes K dl, where dl is the ele~ent of length (the
natural parameter).
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3.2 The Degree of Mapping. Homotopy

In the preceding section, we gave several examples of differential forms. In
particular we proved two theorems.

1. For hyper-surfaces Mn-l in Euclidean space lR" the following formula holds

K (g)1f2 dyl /\ ... /\ dyn = 1*(0.),

wheref: Mn- 1 ~ S,...l is the Gauss mar n is the volume element on the sphere (for

n = 3, 0. = Isin 91 d q. d9) and K is thl.: Gaussian curvature (fnr n = 2 this is the

curvature of the curve M1 and 0. =d 4> on the circumference Sl I

2. For skew-symmetric scalar products gct.P = - g~,. : det Igct.pl ~ 0, the
following formula holds

0. /\ ... /\ 0. = ± n! (g)1f2 dx1 /\ ••• /\ tJx'n;

a., ~ = 1, 2, ••• , n, ... ,2n; 0. = gct.P dxct./\ dxP•

In connection with Theorem 1 of Section 3.1 and with the fact that
1*0. = K (g)1f2 du dv for surfaces M2 c: IW we have mentioned the specifics of the

important case where the surface M2 is closed.

DEFINITION 1. A manifold Mn is called closed if it is compact (Le. any infinite
sequence of points has a limiting ~oint) and has no boundary.

For example, a sphere 5", a torus ra, projective spaces W n, a:P" of the group
SOn' Un' swfaces with k handles in a three-dimensional space etc. (Figure 52).

Figure 52.

Recall that a manifold Mn is thought of as oriented if it is sub-divided into

regions of action of local coordinates, M n = U U ct.; x~, ... , x~, where in thect.
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intersections of the regions U1;4 n Up functions x ~(x~, ... ,x~), q = I, ... , n, are

such that the Jacobian] > 0, where] = det (dxlldx~).

Suppose there exist two manifolds Mr and Mi (for example, both are spheres

sn). Suppose we are given a smooth map

f: Mi ~ Mi·

DEFINITION 2. A point P E Mi is called a regular point for the map f if the

Jacobian matrix] of the map at the point P has rank m.

DEFINITION 3. A point P' E Mi is called a regular value if all points PE r1(p')

of the complete pre-image are regular.

The following important lemma holds.

LEMMA I. (Sard's lemma). If the mapping f is smooth, then almost all points
Q E M 2are regular values. The words 'almost all' should be understood in the

sense ofmeasure: this means that arbitrarily close to each point Q E M2 there exist

regular values.

We do not give the proof of Sard's lemma here but refer the reader to the book
[ll.

EXAMPLES.

1. If m < n, then only points Q E M2are regular values, where the complete

pre-imagerI(Q) is empty (i.e. there is not a single point P such thatftP) =Q).

2. Ifm =n, then the complete pre-image of a regularvaluerI(Q) =PI U ..

. . U PN consists of a certain number of points P1;4' At each point P1;4 there is a sign:

sign (PcJ, where

( a:l
sgn P = sgn det-),

a fJyq

Here xP are local coordinates at the point Qand yq are local coordinates at the point P.
We shall list several essential properties of regular values.



THE DEGREE OF MAPPING. HOMO:r.aPY 289

THEOREM 1. If f: Mm
~ Mn is a smooth map and If Q E Mn is a regular

value, then the complete pre-imagerl(Q) E ~ is a smooth manifold ofdimension

m - n. Funhennore, at any point P E rl(Q) the differential ofthe mapf (the linear
"-

map oftangent spaces J: [Rll ~ !An given by the Jacobian matrix of the map f) has
rankn.

Proof. Suppose Xl, ... ,~ are local coordinates in a neighbourhood of the point Q
on the manifold Mn and y I, ... , y" are local coordinates in a neighbourhood of the
point P E rl(Q) on the manifold~. In the region served by the coordinates yl, ...

, ym, the mapfis specified by the formulae

C(, C(,(yl m)X =X , ••• ,y,

a. = 1, ... , n,

provided that the image of the point yl, ... , ym comes under the action of the
coordinates xl, ... ,~ (this is, of course, the case within a certain neighbourhood of
the point P).

In a neighbourhood of the point P the complete pre-image is given by the

equation XX'(yI, ... , y") = xoC(, (xb, ... , x8 are coordinates of the point Q), and by the

condition that Q is a regular value and P is regular point we have

rk (dXa
)

cryP
= n,

where J is the matrix (dX
a

) at points fromrl(Q). Therefore, the vectors
cryP

(dXa
, ... , d~) = n(a); a. = 1, ... , n ,

dyl crym

are linearly independent at points from rl(Q). Such a set of equations XX'(yI, ... ,
y") =0; (a. =1, ... , n) determines in a non-degenerate way a manifold of dimension
M - n (by the implicit function theorem). Hence, in a neighbourhood of any of its
points P E rl(Q) a complete pre-image is given in a non-degenerate way and is a

manifold. With this, we have completed the proof.
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COROLLARY 1. lfm =n and if a manifold Mi is compact (wheref: Mi ~M2)'

then the complete pre-image ofa regular value Q E M2 consists ofa finite number of

points Pj (j = I, ... , N); when the point Q is moved little, Q~ Q', the new value

Q' E M 2is also regular, its pre- image also being moved little in the manifoldMi.

COROLLARY 2. lfm =nand If both mamfolds Mi, Mi are oriented and Mi is

compact, then at each point of the complete pre-image P E rI(Q) the sign is well

defined:

(ax«
sgnR. (P) = sgn det -) .

.. ayP p

DEFINITION 4. The degree of mapping of oriented manifolds At; ~ ~ at a

regular value Q E Mi, where the complete pre-image rI(Q) consists of a finite

number of points P ex.> is the sum

degQf = L sgn (P ).
P ef-ICQ) IX

IX

REMARK. For non-compact manifolds M~ the class of proper maps M1 ~~ ,
such that the complete pre-image of a compact set N (in particular, a single point
Q = N) is compact itself, is defined; r I (N) is compact provided that N is compact

We recall that compact is a set of points, such that any infinite sequence Pcr. of

its points Pcr. E N, has in this set, a limiting point PEN.

For proper maps of oriented manifolds At; ~ ~ (possibly non-compact, e.g.

Mi = lR") the degree de~ (j) is defined, where Q E M2" is a regular value (i.e. a

regular point in the image)

For example, suppose we are given a map of a straight line [RI ~ [AI where y = f(x).
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Suppose Y 4 ±co in the case when x 4 ±co, then this map is proper (for instance,
ify =f(x) is a polynomial).

EXERCISE. For proper maps of a straight line IRI
4 IRI the degree of a map can

be equal to zero or unity.

EXAMPLE 1. Suppose we are given a map of circumference into circumference

This map is described by the function y = f(x), where the numbers x, as well as

x + 21tn and y = 21tm for integer n and m, define identical points of both
circumferences.

The function y =~) satisfies the condition

f(x + 21t) = Ax) + 2k1t,

where k is an integer since the points x and x + 21t coincide; therefore, the points

YI =f(x) and Y2 =f(x + 21t) must also coincide. The number k is constant since the
map is continuous. A simple equality holds:

k = deg (f)

(in this case the degree of a mapping is frequently referred to as the rotational
number). We can verify that the rotational number

2x

k = _1 if (x + 21t) - f~) = ..Lf !!. dX
21t 21t 0 d.x

coincides with the degree of mapping at any regular point Q on the circumference.
The simplest maps of degree k are linear:

f(x) = kx

(the points x andf(x) lie on the circumference).
Obviously, f(x + 21t) = k(x + 21t) = kx + 2k1t and the number k must be an

integer.

EXAMPLE 2. Suppose we are given a two-dimensional sphere as a projective
complex space (CpI coordinatized by complex projective coordinates (u, v) _

A(U, v); A:;l!: 0,

w = u/v = l/z, where z =1/w.
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Let in the z-plane there exist a polynomial of degree n

ZI = f,,{z) = llo z" + ... + an-

PARTm

This polynomial describes a map o:pl 4 o:pl. The equation zl = A =f ,,(z) for

almost all A has n roots.
Thus, the complete pre-image r 1(A) has the form (zl' ••• , z,J, and all the

]acobians have positive signs (prove this!). Therefore, we have degf= n. We are
now in a position to fonnulate the important theorem.

TIiEOREM 2. The degree ofthe map M'; ~sa ofany closed, oriented manifold onto

a sphere S" dces not depend on the choice ofa regular value Q E 5". Furthermore,
the degree remains unchanged under smooth homotopies (defonnations) of the
mapf·

We shall give an important definition: the homotopy (or deformation) of any

mapf: X~ Y, y = f{x) is a continuous map y = F(x, t) of a cylinder with base X of
length I, 0 ~ t ~ I,

X x 1(0, 1) ~ Y; y = FC;x, t),

where F(x, 0) =f, all the maps j,(x) =F(x, t) are called homotopic to the initial map

f, 0 ~ t ~ l.fo =f. We shall consider only maps of smooth manifolds and assume

the mapsitx), F(x, t) to be smooth (smooth homotopy).
We shall construct the proof as indicated in the following scheme.
We shall use Sard's lemma and its corollaries (Theorem 1). To begin with we

prove that at a given point Q (of the image) which is regular for two homotopic maps

f. Mi ~ S"; g: Mi ~ 5",

the degrees are the same: de~ (f) =de~ (g).

The steps of the proof are as follows.
Step 1. If M1 is closed and if Q E S" is a regular value, then all the points

sufficiently close to Q are regular values and have the same degree of the mapf.
Step 2. If FC;x, t) is a smooth homotopy between maps f and g, such that

F(x,O) = itx), FC;x, 1) = g(x), then there exists a point Ql arbitrarily close to the
point Q, which is a regular value for all the homotopy of the map F.



THE DEGREE OF MAPPING. HOMOTOPY 293

Step 3. If we are given a point Ql regular for the whole map F(x, t), then the
complete pre-image p-l(QI) is a one-dimensional manifold which has boundary only
when t = 0 and t = 1 (Figure 53).

Step 4. Under the conditions fonnulated in Lemma 3, the degrees deg 1f and
Q

degQI g are exactly equal to each other at the point QI which is regular for all the

homotopy F(;x, t).

Step 5. Since using a smooth homotopy we can (by rotating the sphere Sn)

carry any value QI of the sphere into any other value Q2, from the invariance of the
degree under homotopy at a given point QI there follows independence ofthe degree
ofmapping ofthe choice ofa regular value.

Steps 1 to 5 imply Theorem 2. The motivation of Step 1 can be found in
Theorem 1 and its Corollaries 1 and 2.

Step 2 is immediate from Sard's lemma.
Step 3 follows from the definition of a regular value (Theorem 1).
Step 4 is crucial. Let us view the schematic picture (Figure 54) showing the

complete pre-image p-I(QI).

l
;'1

Figure 53. Figure 54.

This pre-image is a one-dimensional compact manifold which has boundary
only when t = 0, 1 because the value QI E Mi is regular. This pre-image falls into
the following pieces:

1) a smooth line going from t =0 to t =1 (type n;
2) a smooth line with both ends lying either at t =0 or at t =1 (type ll);
3) a closed line without ends (type Ill).
Obviously, for type I the ends are points of the complete pre-images,

PI E rI(QI) and P- I E g-I(QI), These points are of the same sign. For type II

the ends of the segment are pairs of points
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which have opposite signs

The pre-image p-I(Q-I) of type ill does not intersect t =0 and t =1. Hence, the
sums are equal

which implies the assertion of Step 4.
Step 5. Suppose A(t) is a rotation of the sphere S". '" here A(O) = 1 and

A(l)Ql = Q2' Ql and Q2 being two regular values of the map.f. Mj -7 Sn.
Obv?ously, the homo~opy (defonnation) .ofthe mapfis defined to be

F(x, t) = A(t)j(x); 0 ~ t ~ I,

where F(x, 0) = j(x). Under the map fl =F(x, 1) =A(l) j(x) we hav(,

a) fil(Qi) = .fOl(Ql) =r 1(Ql) lfo = f),

b) therefore. deg Q2f1 = de~1 fo,

c) by vinue of Theorem 2 we have deg Q
I
fl = de~1 fo. whence

Thus, the degree does not depend on the choice of a regular point, as required.

COROLLARY 3. If zl =fn(z) is a polynomial of degree n, then for all zl =A the

equationfn(z) = A is soluble (Gauss theorem).

Proof. Suppose, by contradiction, the complete pre-image is empty. Then the value
f.

zl is regular, and the degree of the map ([pI ~ ([pI specified by the polynomial

zl =fn(z) must be equal to zero. There exists, however, at least a single point A,

such that the pre-image is non-empty and the roots are aliquant By vinue of the
complexity of the map, all the signs are positive, and therefore degfn *O. This is a

contradiction.
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REMARKS on Theorem 2.
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1. Theorem 2 on the degree of a mapping can also be applied to smooth maps

between non-eompact manifolds Mi~M2provided that both the mapI itself and all
the homotopy F(x, t) (0 ~ t ~ 1) are proper maps (in the case where the maps are not
proper, Theorem 2 is invalid). Indeed, lett [AI ~ !AI be the map of a straight line,

where y = arctan (x); we can see that the complete pre-imagerl(yo) is empty when

IYol ~ 1t/2; on the contrary, the complete pre-imagerl(yo) consists of one point if

IYol < rc!2; this map is, however, not proper since the pre-image of the closed segment

r l([ -1t/2; +1C/2]) is non-compact, it is the whole straight line: (- co, + co).

2. If the manifold M1 is closed (and, therefore, compact), and the manifold M2
is non-compact (e.g. Mi is a Euclidean space [An), then the df"gree of any map

I; M'i ~ Mi is equal to zero (prove this!).

3. If one of the manifolds M'i, M2is non-orientable (e.g. a projective plane

[RP2), then the degree can be defined only as the residue modulo 2 since the signs of
the points from the complete pre-image cannot be well defined.

4. A very important case of the degree of a mapping is its adaptation to
manifolds with boundary.

DEFINITION 5. A manifold N" with boundary aN is a region in a closed manifold
M" described by the equation

f{x) ~ 0,

where f{x) is a" smooth function on the manifold M", such that its gradient Viis

non-zero wherever fl;x) = O.

The boundary of the manifold N is a hyper-surface f{x) = 0; the boundary is

denoted by aN". Suppose we are given manifolds with boundaries N'i and Ni and

their smooth map f. N'i ~ Ni such that the image of the boundary !CaN'i) always

goes onto the boundary M. Then for any point Q E N2 which does not belong to

the boundary, the complete pre-imagekl (Q) E N I" consists of interior points (which

do not belong to the boundary) of W;. The degree of the map is the sum

where both the manifolds are oriented.
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We shall formulate the following theorem without proof.

PARTm

TIfEOREM 3. If the homotopy F(x. t) of the maps It = F(x. t): Nt' ~Ni is such

that the image of the boundary F(dN'{; t)for all t S 1 goes onto the boundary dN2,\

then the degree ofthe mappingIt: Nt~ Ni remains unchanged under homotopy and

does not depend on the choice ofa regular value. Moreover. if the mapf: Nt 4 Ni
is one-to-one on the boundary. then Idegjl = 1.

The proof of Theorem 3 is identical to the proof of Theorem 2 except for the
last point concerning boundaries. This point follows from the lemma below.

LEMMA 2. The degree of a smooth one-to-one mapping of closed manifolds is
equal to ± 1; the degree ofmapping ofboundaries is equal to the degree ofmapping
ofthe interior points ofmanifolds with boundary.

We shall not give the proofs of Lemma 2 and Theorem 3.
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Suppose there exists a smooth map of closed manifolds M; .4~ and suppose 0 is

a differential form of degree n on~. In terms of local coordinates (yI, ••. , yz)
this form is given by 0 =g(y) dyl " ... " fif.

THEOREM 1. The following formula holds

J f*(O) = (degj)J O.

M~ ~

Proof. By Sard's lemma, almqst all (in the sense of measure) values Q E M2are

regular. Consider a regular value QI and its small regular neighbourhood U relative

to coordinates (yI, ... ,yPl). The complete pre-image r l (U) = V I U ; .. U VN

consists of regular points if the neighbourhood U is small. In neighbourhoods Vtt. on

the manifold Mi there lie points Ptt. of the complete pre-image of the point Q:

rI(Q) = PI U U PN ;

rI(U) = VI U U VN .

Let us denote the local coordinates in the neighbourhoods Vtt. by (x~; ... ; x:);

a = I, ... , N, assuming that these coordinates xtt. are chosen corresponding to the

orientation of the manifold Mi 'and the coordinates (yI, •.. , yPl) in the region U

corresponding to the orientation of the manifold 1\12. In the regions Vtt. the map fis

given by

/ = .!itt.) (x~; ... ; xrZ); j = 1, 2, ... , n

and the degree has the form

N CJyq
degQ if) = L sgn deg (-) .

a=I a:L Po.
(0.)

For each region Vtt. v-ith coordinates xtt., by the theorem on the change of variables in

the integral, the follo\\ing formula holds
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r f*(o.) = [sgn det ( etyq )v ] f 0.,
Jv a~ a U

a (a)

where locally we have 0. = g(y) dy1 A ... A~. Summing this equality over all

a. = I, ... , N, we obtain either

ff*(o.) = (f sgn det (ayN»)v . f 0.
0.=1 a;,! a

a
or

J f*(o.) = (degj) • f 0..
l\U) U

If, from the manifold M2. we discard the sub-set of all irregular values N c: Mi of

measure zero and partition the remainder MiW into a union of regular points

U U/c =M~W, we shall come to
/c

f f*(o.) = f f*(o.) = (degj). f 0.

M" ul\U) *
since ~\N = U U/c' and the theorem follows. (Note that the fonnj*(o.) vanishes

/c

at all irregular points of MI, and these points can be discarded from M2without

changing the integral).

COROLLARY 1. IfM2 c: IW is a closed surface in a three-dimensional Euclidean
space and ifK is the Gaussian curvature, then thefol/owing formula holds

f K do = 4x x (an integer), do = (g)112 dy1 A d)

M
2

where the integer is equal to the degree ofthe Gauss spherical 17Ulp

Proof. IT e, cj) are spherical coordinates, then we know that K do =1(0.), where

0. =Isin 91 de . dcj). Next we note that
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By the theorem just proved we have

f K dcr = f 1(0.) = (degj). f 0. = (4it) degf
if if ?-

which completes the proof of the corollary.
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For curves in the plane M 1 c [R2 we also have the spherical Gauss map

f. M1~ Sl. If a curve is closed;tJ- =;tJ-(t); a =1,2; 0 ~ t ~ 2Jt, we obtain (the

curve ~~ assumed to be regular," i.e. ldi'Idtl ~ 0) f*(d<fJ) = k dl, t = 2Jt, where k is
curvature,

Jf*(d~ = f=2xk dl =
M 1=0

= (the rotational number of the normal) •Jd<fJ = 2Jtn.

In this case the degree (degj) is equal to the rotational number of the nonnal along
the curve.

DEFINITION 1. We shall call a curve ;tJ-(t) on a plane [R2 typical (in general
position) if:

a) all the points of self-intersection are double, and
b) the tangent vectors at these points are not parallel (the curve is thought of as

regular: Idxldt I ~ 0).

EXERCISE. Prove that I + I, where I is the number of self-intersection points of a
typical flatcurve, is equal to the rotational number of the nonna! (modulo 2). We can
see that for curves in a plane the degree of a Gauss map depends on the position of
the curve on the plane, and this degree remains unchanged under regular homotopies
of the curve (i.e. under such homotopies that the curve is regular at all instants of
time). IT the tangent vector of the curve becomes degenerate under deformation, then
the rotational number degf can change as shown in Figure 55. Thus it is easy to
investigate the degree of a Gauss map for curves in a plane. It is much more
complicated to calculate this degree for surfaces in a three-dimensional space
M2 c [R3.
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Figure 55.

PARTm

On the basis of Corollary 1 above, we obtainf K da =4x (an integer) =47t (degj).

M
2

We may assume at once that this integer does not depend on the embedding of the
closed surface in [R3. The point is that K =R/2, where R is the scalar curvature of

the Riemannian metric on the surface itself, and therefore f K da is an inner
M

2

invariant coinciding with 1/2JR da, where dais the Riemannian element of volume

(area).

REMARK. We have so far considered the expression JR da only for metrics of the

surface M2 induced by the embedding in three-dimensional Euclidean space IFf. As a
matter of fact, in the two-dimensional case this expression remains unchanged upon
variations of the metric, for any metrics: let M be an n-dimensional manifold and let

gt> be a metric smoothly depending on the parameter a, such that, outside a compact

region, gij does not depend on a (for example, the entire manifold is compact and

closed). The general formula holds

(1)

(see reference [27]). In particular, for n =2 we have Rij =1/2 R gij (always), and

therefore (dJda) (f R da) == O. Besides, any two Riemannian metrics can be joined

via deformation with parameter a. In particular, a torus T2 has a Euclidean metric

where if. = O. Therefore, for any metric f
T

2 R da = O. For a sphere we have
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1/2 JR dcr = 41t in the standard metric of a unit sphere. We, therefore, always
s2

have 1/2JR dcr =41t; for an oriented surface M; with g handles we have
s2

1/2 J R dcr = 41t • (1 - g) (whatever the metric).
M2

g

We shall not make use of formula (1) and for a surface in 1R3 shall investigate the
degree of the Gauss map using another method. The idea of this method is as
follows. We consider a Gauss map f: M2 -+ S2 for the surface M2 c 1R3. Suppose
that a pair of opposite points of the sphere (n, - n) are both regular values. We also
consider the "height" function on the surface g(P), P E M 2, whose value at the point
P is equal to the orthogonal projection of the surface onto the straight line going
through the origin of coordinates in the direction of n. The critical (stationary)
points of the function g(P) are points Pj, where (Vg) (P~ =O. The stationary

points Pi are, obviously, such that the vector n (or - n) is orthogonal to the swface.

Thus, we have: the set of stationary points Pi of the function g(P) isr1(n) ur1(­

n) (which is the union of two complete pre-images). It can be readily shown that the

stationary point P j is non-degenerate (i.e. det (~grayx- dy~)P. ¢ 0) if and only if the
I

point is regular for the Gauss map/: M2 -+ S2.

Let us ascribe to the maxima and minima of the function the multiplicity,
namely, a numeral 1, and to the saddles a numeral- 1. On the surface, the sum of
stationary points with multiplicities appears to be independent of the choice of the
function and is equal to a doubled degree of the Gauss map.

We shall investigate these questions in the sections which follow.
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3.4 Vector Fields

PARTm

In this section we are primarily concerned with the presentation of the simplest
concepts associated with vector fields in the plane and space. The reader is already
familiar with one example of the vector field in Euclidean space - this is gradftx),
where f is a smooth function on the space IRn. It should be noted that grad f is, in
fact, not a vector, but a covector field and can be interpreted as a vector field only if
the space is endowed with a Riemannian metric; a more thorough treatment was given
in Part II. Recall that we are already acquainted with the concept of a derivative of
the function ftx) in the direction a: dflda. We also proved the formula: dflda =
(a, grad /) (a scalar product).

Suppose we are given a smooth function ftx) on IRn; consider its level
hyper-surfaces (if n = 3, we shall simply speak of level surfaces and if n =2, we
shall speak of level lines), i.e. a tuple of all points x E lFr, for whichf (x) = c, where
c is a fixed constant The level hyper-surface is descibed by n -1 parameters (since
one constraint, namely, the equationftx) = c = const is imposed upon n parameters
in IRn), and, therefore, the dimension of the hyper-surface if=c} is equal to n - 1.

DEFINITION 1. A point Xo E if=c} is called non-singular if gradftxo) ~ 0; it is

called singular if gradftxo) = o.

EXAMPLE. Suppose on 1R2 we are given a function z = x2 - y; consider the level
line {z = O} = {x2 - y2 = O}. The level line consists of two straight lines x = ± y
intersecting at the origin of the coordinates. The point 0 is the only singular point of
this level line.

Let Xo E if=c} be a non-singular point. The vector a applied to the point Xo

is called tangent to the hyper-surface if= c} if there exists a smooth curve y(t), the

whole of which belongs to the hyper-surface if=c}, such that y(0) = Xo and

dy(t)/dt 1

'

=0 = a.

PROPosmON 1. Let ftx) be a smooth function on lFr and let Xo E if= c} be a

non-singular point. Then the vector gradftxo) is orthogonal to the hyper-suiface

if= c} at the point.:co, i.e. gradft.:co) is orthogonal to any vector a tangent to the

hyper-swface if=c}.

Proof. Since (a, grad/) =df/da, it suffices to calculate the derivative of f with

respect to the direction a, i.e. df{J:» 1,=0' However,fty(t)) = const = c since the
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whole of'V(t) lies on the hyper-swface fJ= c}, i.e. df/da = 0, as required.
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IfXo e fJ=c} is a singular point, then grad j(xo) =0, and therefore, we can

fonnally take gradf(x) to be onhogonal to the hyper-surface fJ= c}at any of its
points.

Since the direction and the magnitude of the vector gradf indicate the direction
and the rate of the function increase, we have proved that the function f always
increases along the nonnal to an arbitrary level hyper-surface fJ= c }. Now we are in
a position to fonnulate the general concept of a vector field v(x) in a space lR".

DEFINITION 2. We say that in a certain region G e IR" a vector field v(x) is defmed

if at each point x e G we are given a vector v(x) = (vI(x), ... , vtl(x)) with

coordinates VI(x), .•. , v"(x) which are functions of the point x e G. The vector

field v(x) is called continuous (respectively, smooth) if the functions vi(x), 1 ~ i ~ n,
are continuous (respectively, smooth) in the region G. The point x is called a
non·singular point of the vectorfield v(x) if this field v(x) is continuous (smooth) at a
cenain neighbourhood of the point x and if, as well, v(x) * O. Otherwise, the point x
is called a singular-point ofthe vectorfield v(x). A singular point Xo of the field v(x),

such that v(xo) = 0, is called the zero ofthe field v(x) or the equilibriwn position.

Vector fields having discontinuity points and essentially singular points play an
important role in physics and mechanics (for instance, in hydromechanics). We shall
become acquainted with such fields later.

DEFINITION 3. Let v(x) be a smooth vector field. A trajectory (a curve) 'V(t) is. .
called the integral trajectory of this vector field if -V<t) = v('V(t)), Le. if tangent vectors

to the curve 'V(t) are vectors of the field v.

Recall that by the term "curve y(t)" we always mean a curve with

parametrization and not simply a geometric image of a CUlVe y.
Let us examine the simplest examples of integral trajectories. Suppose f(x) is a

function on a plane and v(x) =gradf(x):
a) f(x) = (xI)2 + (:?)2; gradf(x) =(2x1, 2?) (Figure 56). Here the integral

trajectories fonn a bundle of rays;
b) lex) =- (XI)2 + (:?)2; grad.f(x) = (- 2xI , z.t2) (Figure 57). Here the

integral trajectories are hyperbolas;
c) f(x) = - (xI)2 - (:?)2; gradf(x) = (- 2x1,_ 2:?) (Figure 58).
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Figure 56. Figure 57.

PARTm

Figure 58.

All the fields a), b), c) have, at the origin of coordinaters, a singular point­
the zero of the field v(x). The functionftx) in example a) has a minimum at the point
0; in example c) it has a maximum at the""point 0; in example b) the pOint 0 is the
saddle of the functionJtx).

The vector field v(x) is often interpreted as aflow ofliquid through a space or a
region of space. Then it is assumed that an arrow is attached to each particle of this
liquid, which is the velocity vector of tIle particle. Singular points of the vector field
are singular points of the flow of liquid. Sometimes, the flow of a liquid through a
space is called, for brevity, simply the flow. So, for instance, in example a) the
singular point 0 of the flow v(x) is the source, while in example c) the point 0 is the
discharge.

Integral trajectories of the field v(x) are occasionally referred to as lines offlow
of a liquid whose motion is described by this velocity field.

Of course, it is not each real (physical) flow of liquid that generates a vector
field in the above-mentioned sense. The point is that the coordinates of our velocity
field vectors do not depend on time (they depend only on the point in space); in other
words, the flows of liquid corresponding to such fields are stationary flows.
Time-dependent flows are called non·stationaryflows.

Let the field v(x) be a gradient, Le. v(x) = grad f Consider an arbitrary
integral trajectory y(t) of this field and consider a function h(t) =Jt-y(t)). Then h(t) is

a strictly monotonically increasing function of all of those t for which -y(t) is. a
non-singular point of the field v(x). Indeed,

dh(t) _ d(j(-y(t)) _ df _ ( dfJ - I dfl2 0
--- --- vgra - gra >
dt dt dv '

(at a non-singular point). Thus the functionftx) increases monotonically along each
integral trajectory of the field v(x) = gradJtx).
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CLAIM 1. Let v(x) = gradJ(x). Then among integral'trajectories of the vector field
v(x) there is not a single closed integral trajectory.

Proof. If such a trajectory -y(t) existed, then moving along "( from the point -y(to) in

the direction of the field v(x). we would go back to the initial point -y(tO> within a

finite time. which contradicts the smctly monotonic increase of the function fix)

along -y(t). and the result follows.

For example. the vector field v(x) =v(x1
• x2) =(- x 2• Xl) cannot be the

gradient field for the functionJ(x) as long as the integral trajectories of this field are
closed (Figure 59).

Figure 59.•

Suppose we are given a smooth field v(x). The following practical question
arises: How shall we find the explicit form of the integral trajectories (lines of flow)
of this field? The definition of an integral trajectory leads us to a system of
differential equations. Let "(t) = (xl(t), ...• x"(t», where .t(t); 1 ~ i ~ n are the
unknown functions to be defined. Since dy(t)/dt =v(-y(t)). we arrive at the system

dxl(t) lIn
(it = V (x (t)• ...• x (t».

n
dx ( t) n 1 n

dt = v (x (t)• •.• X (t».

The solutions of this system of equations are, obviously. just the integral
trajectories of the field v(x). We should note that the right-hand sides of this system
do not contain the parameter (time) in an explicit form. Hence to each vector field
there corresponds a system ofdifferential equations. The inverse is also valid.

Suppose that we are given a system of differential equations and assume that
the right-hand side of this system does not involve time in an explicit way. Such
systems of differential equations are called autonomous systems:
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1
dx 1 PIdi'" =/1 (X , ••• ,X ),

11
dx 1 PI
-d = f (X , ••• ,X ).t PI

PARTm

Then we can construct a vector field v(x), setting vi(x) =f,{x) =f,{x l , ... ,,X'l),

where xl, ... ,:J!I vary within a certain region G c (R'I. Thus, we have established a
relationship between vector fields v(x) and autonomous systems of differential
equations. Note that the singular points of the vector field v(x) are exactly the
singular points of the system of differential equations, and vice versa. We shall use
this simple relationship for the geometric description of an important con~ept,namely,
the integral of a system ofequations.

By definition, the integral of a system of equations is a function f{x1
, ••• ,:J!I)

constant on all the trajectories, i.e. on all the solutions of this system Using this, we
shall construct a vector field v(x) in IR PI

; then the solutions of the system will be
integral trajectories of the field v(x). Let us consider an arbitrary hyper-surface
fJ= c} (where c is fixed, but arbitrary). From the definition of the integral of a
system it is immediate that if an integral trajectory has at least one common point with
fJ=c}, then the whole of the trajectory lies on the hyper-sunace ff= c}, Le. the
vector field v(x) is tangent to fJ= c} at each point of this hyper-sunace (Figure 60).

Figure 60.

Consequently, each vector v(x) is tangent exactly in one hyper-sunace fJ= c}
through the point x. This allows us to lower the initial system of equations from n to
n -1, restricting it (i.e. restricting the vector field vex» to the hyper-sunace fJ= c}.
Recall that the dimension of fJ= c} is equal to n - 1. This simple geometric
procedure of restricting the field v(x) precisely corresponds- to the well-known
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assertion that the defInition of the first integral of a system makes it possible to lower
its order by unity. If the second, the third etc., integrals of the system are known,
geometrically this means that we can continue restricting the vector field vex) to level
surfaces of increasingly small dimensions.

If it so happens that we have lowered the dimension of the level surface to
unity (i.e. we have obtained a one-dimensional curve), this means that we have
managed to completely integrate the system, Le. to find its solutions.

Since a stationary flow of liquid may be not only through a Euclidean space,
but also through a surface (for example, a liquid may spread about a two-dimensional
sphere), we can study vector fields and the corresponding differential equations on
surfaces in Euclidean space. Differential equations are of great importance, for
instance, on a two-dimensional torus (the boundary of a roll), but we shall not go
into detail. The differential equations on the torus will be discussed in celestial
mechanics.

As a concluding remark, we shall note an interesting fact that any stationary
flow of liquid on a two-dimensional sphere must necessarily have at least one
singular point (such as, for example, a source or a discharge). This distinguishes the
sphere from other two-dimensional surfaces. For example, on the torus there exist
vector fields without singular points (Figure 61).

Figure 61.

It should be noted that a vector field without singular points obviously exists
on the circumference, which is a one-dimensional sphere. On the three-dimensional
sphere there also exist vector fields without singularities. This fact is generally valid
for any sphere of odd dimension.

It turns out that the presence or absence of singular points is connected with
the global properties <;If surfaces, with the so-called topological properties.

We now proceed to a more detailed study of a certain special class of vector
fields on the plane. To begin with we shall make a statement which will be of special
importance throughout this section.
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An essential pan of the theory of two-dimensional Riemannian geometry of
swfaces in some exact sense comes out as the geometry of functions of one complex
variable.

We shall demonstrate this general principle on an example of vector fields
existing, for instance, in hydromechanics.

We shall emphasize once again that the hydromechanical interpretation of
vector fields has a deep physical meaning, and therefore we shall not divert from
using the hydromechanical tenninology in our further presentation.

Suppose through a plane with Canesian coordinates x, y there is a flow of
liquidv = (P, Q), where P~, y) and Q(x, y) are smooth functions on the plane.
Suppose also that the flow v is stationary and the liquid is incompressible; let its
density p be equal to unity (Le. p is constant). Let D be a region on the (x, y)-plane,
and let the boundary of the region D be a piecewise smooth curve. We shall denote
the mass of liquid escaping from the region D per unit time by ml(D) and the mass of

liquid emerging in the region D per unit time bY "'2(D). Suppose &n(D) =ml(D) ­

m2(D) is the change of the mass in the regionD (since the Ijquid is incompressible.

&n(D) =0, but for the present we shall not use this fact because the final fonnula for

l1m(D) which we are now going to derive is also satisfied in the case of a

compressible liquid). Consider an infinitesimal rectangle IT with sides!u. and I!..y

parallel to the coordinate axes. Then for &n(TI) we are led to the following picture
(Figure 62).

Figure 62.

Since the flow v can be expanded into the sum of two flows v = (P, Q) =
(P, Q) + (0, Q), it suffices to be able to calculate the change of the mass for each of
these two flows. In Figure 62, the region ABCD shows we "j:lrh'lrion of mass of the
flow (P, Q) (recall that the density is constant).
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By vinue of the mean-value theorem known from analysis, we derive

&n (IT) = (dP(S) + aQ(t») Ax l!.y,
ax dy
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where sandt are points situated somewhere inside our rectangle n Approximating

the region D by rectangles n, we finally come to

&n(ll) = ff(~ + ~) = ff div (v) dx dy,
D D

where div (v) = ap(i)x + aQ(i)y. The result obtained can be reformulated as follows.

Consider the region D and the integral trajectories )\t) of the flow v. Letx E D
and x = )\0); then we examine the point x(t) = 'Y(t). If we now fix some value of t,

we shall oabtain a set of points (x(t)}, where x(O) E D. The points (x(t)} form a
region D(t) which is the image of the region D under translation by t along all the
integral trajectories. Let S(D(t» be the area of the region D(t). Then we have, in
fact, proved that

:t [S(D(t))],=o = ffdiv (v) dx dy.
D

Since, in our case, the liquid is incompressible, it follows that /).m(D) = 0 for
any region D, i.e. div (v) = O.

We shall introduce another important class of flows v. Recall that if c is an
arbitrary piecewise smooth closed contour on a plane, then the circulation of the flow

v along the contour c is the integral Ie P dx + Q dy. The flow v is called vortex-free

if its circulation along any closed contour is equal to zero.
Suppose the flow v is vonex-free; then ifD is a region bounded by an arbitrary

closed contour C, we obtain by the Stokes formula

o =fePdx+QdY = ff<: -~ )dxdy
D

and by virtue of the arbilrariness of the cont0U:I' q;r'$ _h~ye ap(ay = aQ/dx. This
equality is the necessary and sufficient condition for theflow to be vonex-free.

PROPosmON 2. Let v be a vortex~free flow. Then the flow v is potential
(possesses a potentia!), i.e. there exists afunction a(x, y) such that grad a(x, y) = v.
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In panicu/ar, the form P d.x + Q dy is the total differential of this function a(x, y).
Thefunction a(x, y) is uniquely defined with an accuracy to an additive constant.

A flux v such that v = grad (a) will also be called a gradientflow.

Proof We shall integrate the follov.ing system of differential equations in partial
derivatives: P = "da/dx; Q = "da/dy under the condition that "dP/dy ="dQ /dx.

Integrating the first equation over x, we obtain a(x,y) =J: P(x, y) dx + g(y).

Differentiation with respect to y yields

"da(x, y) = ("dP(x, y) d.x dg(y)
()y Jo ()y + dy ,

whence either

Q(x ) = (CQ (x, y) d.x:'" dg(y)
,y Jo ax dy ,

or

dg(y)
Q(x, y) = Q(x, y) - Q(O, y) + dY .

From this we find

g'(y) = Q(O, y), g(y) = J: Q(O, y) dy + c,

where c = const. Finally, we are led to

a(x, y) = ~ P(x, y) dx + J: Q(O, y) dy + c.

Ifwe started our integration with the equation Q ="da/dy, we would obtain

y %

a(x, y) = J
o

Q(x, y) dy +J
o

P(x, 0) dx + c'.

The function a(x, y) is called the potential ofa flow and is uniquely defined to
an mccuracy of a constant. This function can be described geometrically.
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We shall consider two piecewise smooth paths: 1 =11 U 12 and "I =1i U 12
(Figure 63). It is clear that

a(x, y) = r P(x, y) dx + JY Q(O, y) dy = J(P dx + Q dy);
Jo 0 y

;y JC

a(x, y) = 1Q(X,y) dy +f P(x,O) dy = f (P dx + Q dy),
o 0 y'

that is, the value of a(x, y) can be obtained via integration of the differential form
00 =P dx + Q dy either along the path 10r along the path "I which both lead us form
the point (0, 0) to the point (X, y). We can make the general statement.

PROPOSITION 3. Suppose the flow v is vortex-free. Then the flow is potential,
and the potential a(x, y) can be represented asfollows:

a(x, y) = f ro =J(P dx + Q dy),
y y

where 1 is an arbitrary piecewise smooth path leading from the point (0, O)to the

point (x, y). In particular f ro is independent of the choice of the path 1.
y

Proof. To begin with we prove that the integral fP dx + Q dy does not depend on
y

the choice of path (under the condition that the initial and the final points are fixed).
Indeed, let "I be any other path from (0, 0) to (X, y); examine

a. = f 00-J00 = J 00;
y y' yv(-y')
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here by (-1) we denoted the path 1 oriented in the backward direction (Figure 64).

.!I

Figure 64. Q

Then f (P dx + Q dy) =1(P dx + Q dy) since C = yu (-1) is a closed
'!'V(-y') C

contour and the flow is vortex·free. So, a =0 and f 00 =J00. Since we have
v v·

proved the indpendence of J00 of the path y, it follows that to fmd lhe numerical
v

value of the integral f 00 we can, say, take one of the paths depicted in Figure 64,
V

which will give us the equality f 00 = a(x, y). This completes the proof.
V

The change of the initial point of the integration path, obviously, changes the
potential a(x, y) by and additive constant.

Now let the flow v be both vortex-free and incompressible (which is exactly a
flow of incompressible liquicl). Then the coordinates P, Q of this flow satisfy the
folloYting equations

whence we find ;la +;la = O.
i)i ay2

DEFINITION 4. The linear differential operator IJ. of order two, IJ. = ;jlfcJr'- +
i)2RJ1-, is called the Laplace operator. The functionftx y) satisfying the equation
IJ.f= 0 is called harmonic.
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Thus, we have proved that the potential of a vortex-jree and incompressible
flow is a harmonicfunction on a plane (X, y). The potential a(x, y) is conventionally
considered in pair with another potential, b(x, y), which is called a conjugate
potential or the potential of a conjugate flow. To define this potential, we shall

consider the following system of differential equations: ~ = - Q; ~ = P. The

function b(x, y) is the solution of this system (if this solution does exist) and is called
a conjugate potential. We shall now prove the existence of a solution and its
uniqueness to an accuracy of an arbitrary additive constant. We introduce a new
notation: P=-Q; Q= P. Then we have dbfc)x =P;db/dy=Q under the condition

""'" ".., ,.., ""'"

that ~ = - :; ~ = : . This system of equations and conditions we

recognize as the one that we have just integrated to find the potential a (x, y).

ConsequentlYJ..th~potential b(x, y) exists and plays the role 01 the P2te.ntial a(x, y)
for the flow (P, Q) = (- Q, P). We should note that the flow v = (P, Q) is called
conjugate to the flow (P, Q). Obviously, the inverse is also valid: the potential
a(x, y) is conjugate to the potential b(x, y), that is, a potential doubly conjugated to.....
a(x,,y) coincides with the latter. Note that the flows v and v are orthogonal:
(v, v ) = - PQ + QP = O.

We shall now take an important step in the study of the geometry of our flows.
Consider a plane (X, y) as a plane of one complex variable z = x + iy and

consider the following complex-valued function: fix, y) = a(x, y) + ib(x, y), where
a and b are the potential and the conjugate potential of an incompressible flow
\I =(P, Q). In the sequel we shall write, for simplicity, gy' g;x instead of dgj()y,

CJgfc)x, respectively.
Since a;x =P; ay =Q;_ b;x =- Q; by =P, it follows that ax =by; ay =- br Such

functionsftx, y) - a + ib are called complex analytic functions and the equations for
the functions a(x, y) and b(x, y) are called the Cauchy-Riemann equations
(conditions). The functions a(x, y) and b(x, y) are respectively called the real and
imaginary parts of the function f and are customarily denoted by a = Re if) and
b = Irn if). We shall recall some properties of the complex analytic function.

Suppose z =x + iy; z- =x - iy; then x = 1/2(z + z), y =- i/2(z - z-), and
therefore any function g(x, y) =u + iv can be written in the form g(x, y) =g(z, z).

By the rule of differentiation of a composite function

similarly we have ~ = 1.(~+ i!...) From among all the functions g(z, z) we
dZ 2 ax dy.
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shall identify those which depend only on z ( i.e. do not depend on z). Analytically

this propeny can be written as dg(Z, z) =o. Only these functions are called complex
z

analytic; they can be expanded only in power series of the variable z (this is one of
the possible defmitions). Since dgfi)z = o. it follows that g JC + i g y = 0,
Le. u,; + ivJC +i (Uy + ivy) = 0 and we arrive at the conclusion that the condition

dgldZ =0 is exactly equivalent to the Cauchy-Riemann equations: u,; =vy; Uy =- vr
Thus, we have proved the following statement.

lHEOREM 1. Any vonex-free incompressible flow v = (P, Q) can be represented in..... ..... .....
the form v = grad (a(x, y)), and the conjugate flow v = (P , Q ) in the form.....
v = grad b(x, y), where the function f(x, y) = a (x, y) + ib(x, y) is complex
analytic and is uniquely defined up to an arbitrary additive constant. The inverse is
also valid: iff(z) is an arbitrary complex analytic function, then the flows v = grad
Re /(z) and v = grad Irnf(x) are vonex-free and incompressible and are, in addition,
mutually conjugate.

.....
The integral trajectories of the flows v and v are orthogonal to one another at

each point. The functionf=a + ib is called the complex potential of the flow. Let
/(z) =a + ib2e an analytic function. How shall we go about fmding the zeros of the
flows v and v? From the Cauchy-Riemann equations we obtain

This implies the assertion: the points at which the derivative f z vanishes coincide.....
with the zeros of the flow v (or, which is the same, with the zeros of the flow v) ......
Hence, to find the zeros of the flows v, v, it suffices to solve the equationf;(z) =O•.....

The flows v, v may have singular points other than zeros (points of
discontinuity), which are not of course roots of the equation/z<z) = O.

We ask a practical question: if v = grad Re /(z), where /(z) is the kown
analytic function, then in practice how shall we find the integral trajectories of this
vector field? It turns out to be unnecessary to solve, in an explicit form, the
corresponding system of differential equations.

PROPosmON 4. Let f = a + ib be a complex analytic function, v = grad (a);
-; = grad (b). Then the function b(x, y) is a first integrfflfor the vector field v, and
thefunction a(x, y) is afirst integralfor the vector fleld v, i.e. the integral trajectories
of the flow v are exactly all the level lines of the function b, and the integral.....
trajectories of theflow v are exactly all the level lines of the functions a.
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Proof. It suffices to calculate the following derivatives: da/dv and db/dv. For
example, db/dv = (v, grad b) = azbz + ayb y = bybz - bzby = O. Similarly,

"""
da/dv = 0, Le. the functions a and b are constant on corresponding integral
trajectories. This completes the proof.

We shall give some examples. LetJ{z) = z!', k~ 2; f = Jd--l,f(z) = 0 only
at the point 0;/=~ (cos k$ + i sin k$); i.e. a = ~ cos k$; b = ~ sin k$. Figure 65
shows the integral trajectories of a flow grad (a) (for k= 4), The origin of
coordinates is a singular point which can be obtained through merging of several
singular points of higher order.

Let/= z-k; k = 1,/= ~(cos k$ - i sin k$). Figure 66 shows the integral
trajectories of a flow grad (a) (for k = 4).

Figure 65. Figure 66.

LetJ{z) =In z. Figure 67 shows the integral trajectories of flows v and;,
An example of a more composite function is depicted in Figure 68. (The

Zhukovsky functionJ{z) = z + 1/z.)

~Figure 68.~~
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We shall give another example: f{z) = (In (z + a) -in z)/a (Figure 69).
On this example we may demonstrate how singularities merge. Let a ~ O.

Then clearly f{z) =(In z)~ =lIz, and geometrically it is also obvious that thejield of
the dipole becomes the field of the flow corresponding to the first-order pole
(Figure 70).

Figure 69. Figure 70.

We have considered vector fields on the plane; all these fields can, however, be
mapped onto a two-dimensional sphere 52. Recall that a stereographic projection
(see Pan I) establishes a one-to-one correspondence between all points of a
two-dimensional sphere and points of an extended complex plane (an extended
complex plane is a plane of one complex variable endowed with an infmitely remote
point). It is sometimes more convenient to view vector fields on a sphere rather than
on a plane.

In conclusion, we note that a constant flow v on a plane (i.e. v = grad (z» has
the only singular point at infinity; more precisely, infinity for this flow is a first­
order pole. A panicularly illustrative example may be the sphere 52 (Figure 71). The
flow forf = z + lIz on the sphere is given in Figure 72.

Figure 71. Figure 72.
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As an exercise we recommend constructing, on a plane, a qualitative picture of
the behaviour of integral trajectories ofthe fields grad Ref{z) and grad Imf{z) for the
following functionsjtz):

(a+i ll) In (az +~ );
cz+

lIz + In z ;

/, + In z.
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3.5 lFunctions on Manifolds and Vector Fields

Suppose we are given a smooth function on a manifold M".

PARTm

DEFINTI10N 1. A point Pis called critical or stationary (extreme) for a function! on
a manifold if (df)p = 0 or, in terms of local coordinates (Xl, ... ,X"), we have

Ci)ftax l , ... , dffi)x") =o.

DEFINITION 2. The critical point P of a functionfis called non-degenerate if (in

terms of local coordinates (Xl, ... , x"» the matrix (d1fi)XS'dXP)p is non-degenerate

(det;t 0).

DEFINITION 3. A functionf on a manifold M" is called typical (or in general
position, or a Morsefunction) if all its critical points are non-degenerate.

We shall describe an important class of functions. If a manifold M" is
smoothly embedded in Euclidean space lR'" and if a straight line S"(t) goes in n- or

- n-direction through the origin of coordinates in IR'\ then we defme the function
g"(P) (the "height" or "coordinate" function) whose value at the points of the

manifold is equal to the orthogonal projection of the points of the manifold onto the
straight line S"(t).

We shall enlist the properties of the height (or coordinate) function.
1. Such functions are in correspondence with pairs of diametrically opposite

points of the sphere sn-l(n, - n) or, equivalently, with the points of the projective
space (this is obvious).

2. A point P E M" is a stationary point of a height function g" if the vector n

(or - n) is orthogonal to the manifold J.r at the point P (this is obvious).
3. We should discover conditions under which a critical point P of a height

function g" is non-degenerate.

LEMMA 1. For hyper-surfaces M" c IJ1'I+I the Gauss map M" ~ S" ~ IRP" is
defined; the point P is a non-degenerate critical point of a height function g(FI, _")

(= gJ if it is a regularpoint of the Gauss map F: M" ~ lRP", where the vector n is

orthogonal to the surfaceM" c IJ1'I+I at the point P.

Proof. We take the vector n to be the x"+l-axis and the vectors Xl, ... ,x" to be
tangent to the manifold M". In a neighbourhood of the point P the manifold is given
by the equation x"+l =~(Xl, ... ,x") and (d ~)p =O. In the region near the point P
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the coordinates Xl, ••. ,;{I serve as local coordinates on the surface; the "height" gn

in that neighbourhood is the function $(xl, ... , ;{I) =xn+l of the point on the

surface. Similar coordinates xl ,.,. ,in are chosen on the sphere in a neighbourhood
of the point n (or - n). Repeating the calculations, as in the proof of the theorem
saying that K dcr =f* n, we obtain that in coordinates Xl, ••, ,;{I, £1, .,. , in at the

point P, the matrix

i 2 ~
( gn ) = ( a$ ) = (~)
arxa.J p aXtaxP p a.J P

and

Therefore, the condition of regularity of the Gauss map at the point P, namely

-a i
(aX ) ~ 0, is equivalent to det ( gn) ~ O. This completes the proof of the
a.J aXtdxP

lemma.

An embedding Mn c IAN, where N > n + I, defmes a "normal manifold"

whose points are pairs (P, np), where P E Mn, np.L M" at the point P. This nonnal

manifold is denoted by N(Mn) and has dimension N - 1. The Gauss map is defIned
to be

N(M") 4 S"-l 4 ~-l,

(P, np) 4 np 4 (n, - n).

The lemma is also valid in this case: if a point (P, np) and a point P are regular, then

the "height" gnp has P as a non-deenerate critical point The proof is identical to that

of the above lemma. Carry it out for a circumference 51 in space IFf.
The lemma implies

THEOREM 1. A height function g(n.-n) on a hyper-surface Mn c (R"+1 is typical

(i.e. all of its critical points are non-degenerate) if and only if the Gauss map

F: Mn
4 IRPn has (n, - n) = Q as a regular value. Almost all heightfunctions are

typical.



320 PARTm

Proof. The lemma implies that the point P E p-1(n, - n) is non-degenerate for the
"height" g(n, _n) if and only ifP is a regular point Therefore, the theorem follows

from the lemma, from the definition of a regular value (all pre-images are regular) and
from Sard's lemma (almost all the values a E lRP" are regular), This completes the
proof.

Thus, the set of critical points of a height function gn is a union of two

pre-images under the Gauss map F: M' -+ lRPn; this union coincides with

DEFINITION 4. A non-degenerate critical point of a function is called a point of
rype (k, n - k) if at this point a second differential (d2g)p is a quadrati. .., 'II with k

positive and (n - k) negative squares in the canonical fonn (obviously, th~ sign of the

detenninant det (rY-gtaXJ' axP)p is ~qual to (- 1)n-A:).

The following theorem holds

THEOREM 2. Suppose we are given an oriented hyper-surface Mnc 1Rn+1 and a
rypical heightfunction gn; iffis a Gauss map, then the "sign of a point" P for the

map f (i.e. the detree offat the point P) coincides with the sign of the determinant

sgn det (rY-gnldi'"dXP)p =(_1)"-.1:), where the point P has rype (k, n -k). lfn is

even, thefunctions gn and g-n =gn are ofthe same sign. For even n =21 the degree

of the Gauss map is calculated by theformuJa
2

2 degf = L (sgn det ( d gn )) = L (_l)n-J:
p dXadX~ p

where P is a critical point, and the summation is over all the critical points of the

"height" gn'

Proof. The sign of the point P E r1(Q) is defined as the sign of the Jacobian of the
map fin local coordinates near points P and Q. In terms of the chosen coordinates on
the hyper-surface, where ;n+1 =g(x1, ... , x n) and (dg)p = 0 and on the sphere

i n+1= «;1)2 + ... + (.i~2)1/2, where (din+1)Q = 0 we had
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Therefore, the sign of the point P for the map f coincides with the sign of the

determinant det (~gtaXJ-axP)p= (- 1)11-1. If n is even, we have (- I)n-.t = (_1)1.

Under the change g 1-+ - g the numbers k and n - k in the type of a critical point
change places

(k, n - k) 1-+ (n - k, k).

From this we have

degf = L
-1

Pej (II)

2

( ag ) 11-1sgndet II P= L (-1) .
axlXaxf3 per1

(1I)

Similarly, at the point - n we have (since g-n. = - gil)

For even n we obtain

2 degf = :E
-1 -1

Pej (lI)vj (-II)

This completes the proof of the thoerem.

EX~les are given in Figures 73,74 8.!ld 75.

P,

Figure 73. Figure 74. Figure 75.
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1) The sphere (the boundary of a convex figure - Figure 73):

2 degf = 2 = IP
1
+ IP

2
;

2) The torus (see Figure 74):

2degf= Ip
1
-lP

2
-1P

3
+1P

4
= 0;

3) The pretzel with g handies (see Figure 75):

2 degf = 2 - 2g, degf = 1 - g.

PART ill

We have illustrated such embeddings (positions) of a surface with g handles
for which the fonnula degf = 1 - g is satisfied. But the fonnula for the degree of
the Gauss map is not yet proved for all embeddings of a surface. For example, a
torus can be knotted (Figure 76). A torus embedded in such a manner cannot be
deformed regularly into a usually embedded one.

Figure 76.

On any manifold M n with a Riemannian metric (gij) a smooth function g

defmes the vector field Vg-gradient by the formula (in terms of local coordinates)

(V )a = gaP dg .
g a.J

The critical points of the function g are such that (Vg)p = O. Each point is

ascribed the sign (- l)rH, where n - k is the number of negative squares of the
quadratic fonn (d2g)p. In calculating the degree of the Gauss map (for even n) we

considered the expression

L (_1)11-.I:,
P

where (k, n - k) is the type of the critical point P of the height function g. Now we

shall examine an arbitrary vector field (!;Cl.) on the manifold M".
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DEFINITION 5. A point P is called singular for a vector field (I;IX.) if I;IX. = 0,

C( = 1, ... , n.

DEFINITION 6. A singular point P of a vector field is called non-degenerate if

det (dl;<1) ;t 0, where (xl, ... , ,X'l) are local coordinates and (1;1, ... , 1;11) are
d.J

components of the vector field in terms of these coordinates.

DEFINITION 7. The sign det (d l;IX.jdxP)p =± I is called the index of a non­

degenerate singular point P of the vector field (I;IX.).

A simple lemma holds.

LEMMA 2. Let a Riemannian metric be positive and a vector field (;IX.) be the

gradient I;IX. = gIX.PdgJdxPofafunction g. If P is a critical point, then thefollowing
equality holds

where (k, n-k) is the type ofthe critical point P.

Proof. If the metric is Euclidean, gij =Ojj' then I;IX. =dgjdJ!1, and the lemma is

obvious. If the metric gij is not Euclidean but (gIX.p)p =0IX.P and (dgIX.~i)p =0,

then the lemma is also obvious. On the surface M2 c: IFf we could always choose
coordinates Xl, ... ,:x!' in a neighbourhood of the point P, such that (fIX.p)p =0,

(dgIX.pJdJi)p = O. This implies the assenion for surfaces M2 c: 1R3 (similarly, for

hyper-surfaces Mil c: lJi'I+l). In the general case, for any (positive) metric gIX.P in

coordinates Xl, ••• ,,X'l we can consider the defonnation

gIX.p(t) = (l - t)gIX.P + t OIX.p, 0 ~ t:S;; 1.

For all 0 :s;; t:S;; 1 this metric gIX.p(t) is positive and

The sign sgn det (dl;IX.jdxP) remains unchanged for all O:S;; t:S;; 1 since for all

those t we have det (dl;IX.jdxP);t O. This completes the proof.
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DEFINTI10N 8. A vector field on a manifold M FI is called utypicar' (in general
position) if all of its singular points are non-degenerate.

Let ~ct.(xl, ... ,~), a. = I, ... , n be a vector field in a region of Euclidean

space with coordinates xl, ... ,~. Let Tlct. be a constant vector (independent of

Xl, .,. ,~). The foIlowing theorem holds.

THEOREM 3. Almost all of the vectorfields (~+ Tl)ct. =Tlct. + ~ct.(x1, ... ,~), where
ct. . ITl = const., are ryplca .

Proof The components ~ct.(X1, ... ,~) define the map of the region U:

I/)~: U~ IR", where 1/)~(X1, .., ,~) = ~ct.(x1, ... , xn ).

A simple lemma holds.

LEMMA 3. A point P c U is regularfor a map I/) ifand only if

a~a
det(-)p ~ o.

axil
The proof is obvious by definition.

Next, the value 0 (the origin) is regular in [Rn if and only if all points Po of the

pre-image 1/)-1(0) are regular. This means that the value is regular if and only if the

vector field ~ct. is typical. Sard's lemma tells us that almsot all values Q e [R" are

regular. Suppose Tl is a vector going from the origin 0 into a regular value Q e IR".
Then the vector field ~ + Tl is such that I/)~+FI(O) =~-1(0). Since Tl =const., we obtain

that for almost all 11 the field ~ + Tl is typical, as req~ired.

Suppose now that we are given an arbitrary vector field (~ct.) in a region U of

Euclidean space [RFI. Suppose V c U is a sub-region in which the vector field ~ct. does

not have singular points ~ = O.

The "spherical" map V ~ S is defined by the formula

~ ( 1 FI) _ ~
,~x, ... ,x - -.

I~I

This fonnula has sense in the region V, where ~ ~ O. On the sphere sn-1 we have

defined the form n of degree n - 1 (the volume element) and also defmed the
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expression Q~ =f*(Q) (in the region V). The fonn Q~ has degree n- I in the region

V of n-dimensional spacE..
If P is an isolated singular point of a field I; in a region U, then in a small

neighbourhood of the point P everywhere I;¢ 0 except at the point P. Consider a
sphere

where E is a small number> 0 and xb, ... , x8 are coordinates of the point P.

Everywhere on the sphere we have I; ¢ 0 and in the interior of the sphere P is the

only singular point. On the sphere S;-l the "spherical" map is defined to be

~: Sp-l -+ Sn-1.

DEFINlTION 9. The degreeI;, is called the index (the rotational nwnher) of a vector

field at a singular point P..

IT a(n) = J 1 Q ¢ 0, then (by the theorem on degree) the following formulasn-
holds

P If.
degf ~ = a(n) f ~ (Q).

For n = 2 we have n - I = I and Q = dell. For n = 3 we have n - I = 2 and

Q =Isin aida dell. Let all singular points of the vector field I; in a region U of space

!An be isolated (for example, non-degenerate). Let M n- 1 cUe !An be a closed
hyper-surface on which there is not a single singular point

The following theorem holds:

THEOREM 4. The integral a:n) J...-I; (0) is equal to the sum ofthe indices of

all singular points ofthe field I; which lie in the interior ofthe surface Ar""1 , where

a(n) = f Q.
~1

Proof. The fonn Q on the sphere tt-1 has degree n - I and, therefore, is closed:

dQ = O. Consequently, the form Q is also closed in the region V c [R'" where I; ¢ 0
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since ~(d!l) =d<t!(!l) = O. Consider the region between the spheres V

surrounding each singular point Pi in the interior of Mn-l and the Mn-l itself. The

boundary of the region V is~1 U Srp-l U .•. U snp- 1, where N is the number of
1 N

singular points in the interior of~1. By the Stokes formula we have

and the theorem follows.

On the plane [112 the theorem becomes more illustrative since the index of a
singular point is the rotational number of the vector field in going round this singular
point.

For a vector field ~or.. at a non-degenerate singular point P the matrix

ap= (a~or..tax~)p and its eigenvalues 1..1, ••• ,'An are defined. Let Re 1..i';; 0, i = I, ... ,

n. We have k eigenvalues 1..i' where Re 1..i > 0 and n - k eigenvalues, where

Re 1..i < O. The type of the singular point is (k, n - k). Reduction to the canonical

form yields

d~a n-t
sgn det (-)p = (- 1) .

dXP

We have the following theorem.

THEOREM 5. The index ofafield ~ at a singular (non-degenerate, Re 1..i :;II!: 0) point

P is equal to (- 1)n-.t.

Proof. In a neighbourhood of the point P we have ~or..= (Iii xP+ ~or..cx), where ~or..

have a higher order of smallness, ali' = (a~or..raxP)p.

Consider a field ~or..(t) =alixP+ ~or..(l - I), 0 ~ t ~ I, in a small neighbourhood

of the point P non-degenerate for the reason that det (ap' ,;; O. For t =1 we obtain
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1;CI.(l) = ap xP, where ap =const.
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Under defonnation 0 ~ t ~ 1 the index of the point P remains unchanged. The field

1;CI.(I) is linear. Obviously, the degree of a singular point is the degree of the linear

map (on spheres, since under the map x ~ a(x) a ray is transformed into a ray):

Obviously, this degree is det ap, and the result follows.

EXAMPLE. On the plane (n = 2):

1) a knot, a focus, a centre have index equal to I,
2) a saddle has index equal to - 1.

Next, let on a plane 1R2 there exist a curve such that:

a) either the field is everywhere tangent to the curve (a periodic solution),
b) or the field is nowhere tangent to the curve (a contactless cycle).

We arrive at the following corollary.

Inside such a curve there necessarily exists a singular point. Rotation of the
field along such a curve is equal to I, and the theorem given above tells us that the
rota~onalnumbC?r of the field around a curve is equal to the sum of the indices of all .
interior singular points. Note that the index of a non-singular point is equal to zero
(verify it).
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3.6 Singular Points of Vector Fields. The Fundamental Group
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For an arbitrary closed, oriented manifold M n and for a vector field ~, on this
manifold, with isolated singularities it turns out that the sum of the indices of these

singular points L indp ~ is independent of the vector field; this sum is called the
p

Euler characteristic of the manifold. This fact can be explained quite simply: two
vector fields ~ and 11 with isolated ~ingularities appear to be homotopic, and
throughout the homotopy process the vector field has isolated singularities. But to
prove this fact is not very easy. We shall prove this assertion only in the simplest
cases.

THEOREM 1. 1) Ifwe are given a two-dimensional disc D2 and ifon this disc D2 a
vector field ~ is defined which is not equal to zero on the boundary r and is such
that:.

a) either the field ~ or the boundary r ofthe disc D2 is evberywhere tangent to

the boundary (t is an integral trajectory),

b) or the field ~ on r is nowhere tangent to r (the boundary is a "cycle without
contad'), then thefollowing equality holds

1 = L indp ~
Pinside D2 2

and, in panicular, in the interior there exists at least one singularpoint.

2) If 52 is a two-dimensionl sphere and ~ is a vector field on it, then the
followingformula holds

2 = L indp~'
p

Proof. Item 1 was, in fact, proved in the preceding section. The point is that under
the conditions of the theorem, the field rotation along r is equal to 1. Let us prove

item 2 concerning the sphere S2. Suppose Q is a non-singular point and D6is a small

disc with a centre at this point Suppose Df is a complementary disc 52 =D~

U Df. In terms of local coordinates (YI' YV the vector field ~ in the interior of the

disc D5is approximately constant, and therefore in these coordinates (y) it is

homotopic to a constant one. Hence, on the contour r the field ~ is homotopic to
such a field which has constant components in terms of the coordinates (y) in the

interior of the disc D~ In coordinates (x) in the interior of the disc Dt the field ~
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does not have constant components: taking D5 as the iower hemisphere of the sphere

S2 and Dt as the upper one with standard coordinates, we see that the field 1; on the

contour r in the coordinates (x) of the disc Dt is homotopic (Figure 77) to an

absolutely standard half-field 11 (on 1) which has constant components under change

to the coordinates (y). What is the rotation of the field 11 along r in the coordinates

(x) of the disc Dt? This rotation is the sum of indices of all singular points of the

field 1;, which lie in the interior of the disc D'f; this sum does not depend on the field

1;. The vector field (the gradient of the height function), where the 'sum of
indices of the singular points is equal to 2 is directly specified (see Figure 77),

Ind PI' =Ind P2 =1, i.e. L Indp 1;. This implies the theorem.
p a

a

Figure 77. Pf

REMARK. The proof of the theorem works for spheres of all dimensions n but

L Indp 1; = 1 + ( - 1)11. (Prove it!)
P aa

How can we verify, in practice, for particular fields that along the boundary r
of the disc D 2 the vector field 1; is transverse to r? Suppose we are given a

(Lyapunov) function F(xl , x2), such that a) r is the level surface F(xl, x2) =c and

b) the function F is such thatV~ F < 0 for F= c (on the contourr). Then the field r
is transverse to the boundary r (verify it). If, in addition, in the interior of the disc

there exists exactly one singular point P of index 1 and if this point «repulses" the

integral trajectories of the field 1; (a repulsing focus or a knot), then somewhere there
exists a periodic trajectory (the Poincare~Bendixson theorem).

For example, such conditions are satisfied by a vector field given by the
equationsx = v, v=f(x, v), wherej(x, v) = - sin x + kv. Find the contour r and

the Lyapounov function F, where V~ F < 0 on r.
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How are two-dimensional, compact, connected, snooth manifolds without boundary
organized? It turns out that their description is quite simple. We shall describe two infinite series of
manifolds. The direct product of a segment by a circumference will be called a handle. A handle is
homeomorphic to a cylinder. The edge ofa handle consists of two non-intersecting circumferences.
Discard from a two-dimensional sphere two non-intersecting closed discs. Then glue a handle to the
boundary of the manifold obtained by identifying each of its boundary circumferences with one of the
circumferences, which are the edge of the sphere with two holes. We obtain a two-dimensional
manifold without boundary. We shall can this operation the glueing of a handle. It is clear that in
an analogous manner we can define glueing of several handles to a sphere.

The second series of manifolds is obtained as follows. Consider a M6bius strip '(band) and its
boundary circumference. Discard a disc from a sphere and glue the hole with a M6bius strip (i.e.
identify the boundary of the M6bius strip with the boundary of the hole in the sphere). We shall call
this operation the glueing of the M6bius strip. Naturally, we can define the glueing of several
M6bius strips in a similar way.

The classification theorem for 2-manifolds. Any smooth. compact, connected,
two-dimensional manifold without boundary is homeomorphic either to a sphere with a certain
number ofhandles or to a sphere to which several Mobius strips are glued.

The t",o series of manifolds described above may be regarded as smooth manifolds. Then we
appear to be in a position to substitute differomorphism for homeomorphism in the classification
theorem.

We shall not prove this thoerem here.
We shall emphasize an essential property of smooth two-dimensional manifolds. To begin

with we shall give an important definition. We say that a compact two-dimensional manifold
without boundary admits a fmite triangulation if on this manifold there exist a fmite number of
points (called vertices of triangulation) joined, in some order, by a finite number of smooth curve
segments on the surface. Given this, it is required that each curve segment should join two distinct
vertices of triangulation and that it should not pass through any other vertices. It is also required
that the set of all these curve segments partition the manifold into a finite number ofclosed triangles
with vertices from the set of vertices of lriangulation. The sides of the triangles are called the edges
of triangulation. Finally. it is required that any two triangles of our partition should either not
intersect. or intersect in one common vertex or intersect on a single common side, i.e. on a common
edge of triangulation.

It can be proved that an arbilrary two-dimensional smooth, compact, connected manifold
without boundary allows a finite aianguiation.

We fix such a triangulation (it is not uniquely defmed)" on a manifold M2• The number of
vertices of triangulation we denote by a()o the number of edges of triangulation by aI' and the

number of triangles in IrianguIation by a2' We obtain the following equality: X(M) =ao - al + a2'

THEOREM. The number X(M) does Mt depend on the choice of finite triangulation of the
manifold. This number coincides with tM Euler characteristic ofthe manifold.

Occasionally. the Euler characteristic is introduced, by definition, as the expression

ao - al + a2'
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We now proceed to an important concept of the fundamental group of a
manifold defmed via classes of homotopic closed paths with their tails (and tips) at a
fixed point P EM".

We shall now introduce simple concepts.
The path is a continuous (or even piecewise smooth) map of a segment I

(a ~ t ~ b) into a manifold To I ~ Mn (or -y(t) are points of the manifold M")
The cyclic path is a map of a circumference into a manifold To 51 ~ M" (the

initial and tenninal points coincide, but are not fixed). .
The closed path is a map of a segment 1: I ~ Mn

, where y(a) = y(b) =
P E M", a and b are the end-points of the segment (the initial and tenninal points are
fIxed and coincide).

NOTATION. o.PQ(M") is the totality of paths from a pointP to a point Q along the

manifold M"; o.pp = o.p (closed paths beginning at Pl.

DEANITION 1. a) Two paths 11 (t) and 12(t) of o.PQ are called homotopic if they

are homotopic as a map of a segment, such that in the homotopy process the
beginning and the end are stagnant (are homotopic in the interior of o.PQ)' This type

of homotopy will be denoted by 11 -12'

b) Homotopy of cyclic paths is an arbitrary continuous homotopy -y(t, 't),

where 11 =-y(t, 1) and 12 =-y(t, 2), 1 ~ 't ~ 2 (this is homotopy of two maps of a

circumference, where for any 't -y(t, 't): 51 ~ M").

Homotopy of cyclic paths will also be denoted by 11 .... 12.

LEMMA 1. If two paths 11 (t) and 12(t), where 0 ~ t ~ 1, 0 ~ 't ~ 1, are such that

12('t) and 11(t('t», then these paths are homotopic.

Proof. Let us consider a function r('t) and let us deform it to the function t E 't. Then

the lemma will be proved. Let us examine the graphs of the functions t('t) and t = 't.

Figure 78 makes obvious the deformation of the graph t('t) and t = 't illustrated by the
arrows. We can see that the end-points do not move, and the lemma follows.

For the proof of the lemma it is of no importance that dt/d't > 0, as is seen in
Figure 78. The change need not be necessarily one-to-one.

According to the lemma we shall not distinguish (up to homotopy) between
paths which differ only by the introduction of a parameter. Moreover, we shall
choose (or change) the parameter or even the range of its variation as convenient,
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namely, make parallel transport and extend without distinguishing between
cooresponding paths. Obviously, with such operations we can always reduce the
range of parameter variation to a segment of 0 to 1.

t(r)

Figure 78. ­.
Algebraic operations on paths.

1. The product of paths. Given two paths),! E npQ and "f2 E nQR• their

"product" is defined to be

where we fIrst go along the path 11 (t ranges from 0 to 1) and then along the path

12 (t ranges from 1 to 2). A simple lemma holds.

LEMMA 2. Given three paths 11 E npQ , 12 E nQR and 13 E nRS' the product is

associative (up to homotopy)

Proof. We shall choose, making use of Lemma 1, the parameter between 0 and 1
(for 11), between 1 and 2 (for 12) and between 2 and 3 (for "(3)' Then Lemma 2 is

obvious.

2. The inverse way. For the path "((t) E npQ, 0 S; t S; I, the inverse path

"'("1 E nap is defined; this is exactly the same path but in the opposite direction.

"'("l(t) = "((2 - t), where 1 S; t S; 2. Then we have a simple lemma
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LEMMA 3. Both the products"'(1 0"( E Qpp and "( 0 "'(1 E~ are homotopic to the

constant paths '(1 0"( ... 1, "( 0"'(1 ... 1, where 1 is a path j such that j(t) = P or

j(t) = Q.

The proof is almost obvious (see Figure 79).

fir)

1

lill>----<..---~-
Figure 79. '2 T

It is carried out, in fact, along the path "( itself. Since '(1(t) =)'(2 - t), we have

for the path '1 0 '(1 =X

{

)'(t),
"( 0 '(1 =.r, x('t) =

)'(2 - t),

OS t S 1,

OS t ~ 1,

t ='t,

2 -t = 't.

We shall consider the graph for the parameter t('t) (Figure 79).

The deformation of this graph to t = 0 is indicated by arrows in Figure 79.
Since t= 0, Lemma 3 is, in effect, similar to Lemma 1, but here t(0) =0 and t(2) = 0,
Le. the whole graph is deformed to t;;;; 0, which implies the lemma.

Let us now consider the closed paths Q p = Qpp with their starting and tenninal

points at the point P. From Lemmas 2 and 3 there follows

THEOREM. 2. The classes ofhomotopic closed paths on an arbitrary manifold with
the starting and tenninal points lying at a point P fonn a group (possibly,
non·commutanve). We shall always denote this group by Xl (M", P). This group is

called thefundamental group.

EXAMPLES.

1. For the Euclidean space [A", the disc D", the group Xl is trivial (identit)').

The proof is obvious since the whole space IR", D" (and, therefore, any closed path
in this space) can be deformed to a single point.
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2. For the sphere sn for n > 1 the group Xl is the identity group.

Proof. An arbitrary path y. I ~ Sn is homotopic to a smooth path1: I~ Sn,

which is close to it. For all t the functions 1(t) and 'Y(t) are close to one another
(continuous functions are approximated by smooth ones). By Sard's lemma, a
smooth path leaves at least one point Q E sn free. The image of the path lies,

therefore, in (All = s~. In a Euclidean space, any closed path is homotopic to a
constant (see item 1). Hence, Xl (sn, P) = 1.

3. For a circumference, Xl(Sl, P) is a cyclic (infinite group). Prove it

3a. Ifwe discard a point or a disc from a plane, then the remaining region U
has an infinite cyclic fundamental group, as a circumference. The proof consists of
shrinking this region U = 1R2\Q along itself to the circumference Sl c U (a detour
around Q).

4. If from the plane IW we discard a finite number of points Un = IR\(QI U ..

. . u Qn)' we shall obtain a region Un' What is the group xl(Un, P)? Let n =2 and

let two points Ql and Q2 be discarded from 1R 2 (Figure 80). Verify directly

(by drawing) that the path aba-1 b-1 = 'Y is not homotopic to 1 (to a constant path)

although the integrals of the analytic function ~.ttz) dz iii 0 are always zero (if

singular points for f(z) are only Ql and Q~ and also that the rotation of any vector

field 1; with singularities at points Ql and Q2 only along the path 'Yis zero as well. It

turns out that the fundamental group Xl(U2, P) is a free group with two generatrices

a and b. All the elements of the indicated form are distinct:

Cit. lL Cit. Cit.
alb 1. ••• a 1: b 1:+1

for any k and any integer 0.1' .•• ,0.1:+1 (perhaps .0. 1 =0 or 0.1:+1 =0, but the

remaining aj ~ 0).

Similarly, Xl (Un' P) is a free group with n generatrices. Generally, the

fundamental group of any region on a plane always appears to be a free group with a
certain (possibly infinite) number of generatrices.

We shall pay attention to an interesting circumstance: for a region

U 2 =1R2\(Q1 U Q~ the paths aba- 1 ='Yl and b ='Y2 are different elements of the

group Xl(U2, P) (Figure 81).
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Figure 80. Figure 81.

However, these paths are homotopic. How can we account for this fact? The
point is that under deformation of the path aba-l to the path b the starting point is not
motionless, it moves along the path a detouring the point QI. Such a deformation is

not allowed by the definition of the group Xl. Let the path aba- l be homotopic to the

path b only as a cyclic path (its starting and terminal points are not marked). We have

THEOREM 3. The classes ofhomotopic cyclic pcuhs on a connected manifold M"
(where any two points can be joined by a path) are in one-to-one correspondence

with conjugation classes in the group XI(M", P).

Proof. Two elements a and b from the group Xl (M", P) are called, as usual,

conjugate if there exists an element x E XI(M", P), such that b =xax-l
• Let us prove

this theorem. By virtue of connectedness of the manifild, any cyclic path 1 can be
deformed to a path through the po~tP (Figure 82). Now the point P will be thought

of as the starting and terminal point of the path 1.

Figure 82.

Our task is the following: there exist two paths with the starting and terminal

points at the point P, or two elements a, b E Xl (M". p). These paths are homotopic



336 PART ill

as cyclic paths (i.e. in the defonnation process 0 ~ 't ~ 1 the starting and tenninal

points traverse the path X('t), where X(O) = P and X(l) = P). How are the elements

a and b related in the group Xl(M". P)? The path X('t) is the motion of the starting

point P under defonnation of cyclic paths. But the path X(t) is closed and

determines the element x E Xl(M". P) since X(O) = X(l) = P. Let us verify the

equality b ..... xax-l in the group Xl (M". P) or a ..... xbx-l • The transition from a to

xax-1 is equivalent to the defonnation of the starting point P of the path a along the
path X-I (Figure 83). This implies the theorem.

The following. almost obvious. theorem will be useful.

THEOREM 4. For any pair ofpoints P, Q on a connected manifold Mn the set of
classes ofhomotopic paths with the beginning at the point Q and the end at the point

P is in one-to-one correspondence with the elements of the group Xl (Mn
• p) (or

xl(Mn
• Q».

Proof. Let us choose a path 10(t) leading from the point P to the point Q. Let 'Yl (t) be

any other path from P to Q. Then 'Yo 0 «PII determines the closed path )'(t) from P to

P. i.e. the element of the group xl(Mn• P). If the path 'Yo is fixed. then there is a

correspondence (detennined by the path 'Yo) 'Y H 'Yo Yil• 'Yl (from P to Q). 'Y (from P
to P). Going over to homotopy classes, we arrive at the statement of the theorem in a
trivial way.
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3.7 The Fundamental Group and Coverings.
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Our aim in this section is to learn to calculate the fundamental group of some simple
manifolds and to give examples of its application. To begin with we shall give an
important definiti<?n of "covering": suppose we are given a smooth map of two
manifolds of the same dimension

such that at all points P E Mi the rank of the Jacobian matrix is equal to n.

Moreover, suppose for any point Q from M2 the complete pre-imagerl (Q) = PI U .

. . U PN U ... consists of the same number of points continuously dependent on the

point Q if it moves along the m~ifold M2- We shall require, in fact, that any point Q
E Mi should have a neighbourhood U, where Q E U, such that the pre-imagerl (U)

=U1 U ... U UN U ... of this neighbourhood consists of a union of pairv.ise

non-intersecting regions Ur1. in Ml and on each region Ur1. the mapf: Ur1. 4 U is a

smooth, with non-zero Jacobian, one-to-one map Ur1.= U. In this case the mapfis

called covering. For coverings above a connected manifold M2 it is obvious that the

number of pre-images of distinct points is equal (draw a path from a point Ql to

another point Q along the manifold Mi; each of the pre-images of the point Q will
continuously move along this point. foIl wowing it and imitating its motion).
Coverings, in which the number of pre-images of a point is equal to k are called
k-sheeted.

EXAMP.LES.

1. The trivial k-sheeted covering. Here M1= Mi U ... U M 2(k-sheeted),

and the projectionf: M'i 4 Mi is one-to-one on each piece M2 c Mi. To eliminate

trivial coverings, we shall further on require that the manifold Mi be connected (i.e.

any two points can be joined by a continuous path).

2 f · !R 1 5 1 h f() 2nLx S' 2nin 1 h .., (x) 4 u). were x = e . mce e =, were n is an

integer, we can readily see that this is a non-trivial infmite-sheeted covering.
3. f: 51 451, f Z 4 fI; the covering here is n-sheeted.

Izl:::l l;d:::l

4. f sm 4 [RP"1; if n is a unit vector in [R"'1+1, then the pair (n. - n) defines

one point from [RP"1. This covering is 2-sheeted.
5. f: !R 2 4 T2, where the points of the torus T2 are represented by

equivalence classes of the points {(x, y)} of the Euclidean plane, and (x + n. y + m)
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define one and the same point of the torus provided that m and n are integers. The
map F: lR2~ r2 is obvious since to the point (x y) there corresponds its equivalence
class.

6. f. 1R2~ K2, where K2 is a Klein bottle. The points K2 are equivalence

classes of the points of the plane lW. Namely: let us take two transformations T I

and T2 of the plane

TI(x,y) = (x+ l,y), T2(x,y) = (l-x,y + 1).

The equivalence class of a point consists of all points which can be obtained
from the given point through transformations TI , T2, Til, Til and their repeated

super~positions.

7. Let a Riemannian surface M2 in a two-dimensional complex space
q:2(zl, ?), where zl = z, ? = w, be given by the equation

P(z, w) = fl + PI(W) zn-l + ... + Pn(W) = 0,

PI' ... ,Pn being polynomials.

The manifold Mi is a region U on the w~plane, where the equation does not

have roots that are multiples of z. The region U is 1R2 with branching points

QI' ... ,Qn punctured out: U =1R2\(QI U ... u QN)' The branching points

are obtained form the solution of the two equations (so that the roots of the first
equation be multiples of z):

(Jp
P(z, w) = 0, a; (z, w) = O.

The manifold M2 (the Riemannian surface) is projected onto the w-plane 1R2:

F: M2 ~ 1R2•

The manifold M1 is M'\/f\QI) U ... U r1(QN»' which means that the pre-images

of all the branching points are removed.
The map

F: M) ~ M~

is an n-sheeted covering, i.e. for any non-singular we M2= 1R'\(Q1 U ... U QN)

the equation tJ + PI(w) r l + ... + PMw) =0 has n roots which are multiples of z.

How many branching points are there? H the polynomials Pj(w) have the degree i in
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the variable w (the total degree of P~w) ~i is equal to n), then the number of

branching points in general position is equal to n(n - 1)/2, and above each of these
branching points there merges, roughly speaking, one pair of n roots (altogether
n(n - 1)/2 pairs).

8. Let Mj and Mi be connected, closed manifolds and let f Mi ~Mi be a
map such that the rank of the Jacobian matrix be always non-zero. Then this is a
fmite-sheeted covering map (prove it).

9. Let r be a discrete group of transfonnations of the manifold Mj. This

means that to each element g E r there corresponds a non-trivial transformation

g: Mj ~Mi with the property ("discreteness") that for any point P E Mj and for

any transformation g ~ 1 the distance between the points P and g(P) is not less than a
cenain number E(P). In other words, there exists a neighbourhood of the point P,
such that the points g(P) all lie outside this neighbourhood (for all g ~ 1).

The covering map/: Mj ~Mi is defined as follows. Points of the manifold

Mi are, by definition, the equivalence classes of points from Mr or, equivalently,

orbits of the group r. In addition to the point P, the equivalence class involves all

points of the fonn g(P) for all g E r, where r is a discrete transformation group.
The map/assigns to a point its equivalence class. The number of covering sheets is
equal here to the number of elements of the group r.

Examples 2, 3, 4, 5, 6 are all of this type; in these examples Mi = IR I, 51, sn,
1R2

, 1R2• The group r in example 2 is infinitely cyclic, in example 3 it is cyclic of
order n, in example 4 - cyclic of order 2, in example 5 - the direct sum of two
infinitely cyclic groups (a lattice on a plane), and in example 6 the group is
non-commutative; it is generated by transfonnations Tl and T2 related as Tl 0 T2 0 Tl- ,

=T2• In example 7, for Riemannian surfaces of the form? + Pn(w) =0 (the roots

of the polynomial Pn(w) are aliquant) the group r is cyclic of order n. For the other

Riemannian surfaces the covering maps from example 7 do no, generally, refer to
this class. To make the cause of this clear, we should define the so-called
"monoclromy group" of the covering.

We shall now define the monoclromy group of the covering

Let Q be a point in M2and let y(t) be an arbitrary closed path beginning and ending at

the point Q. Let yCt) defme the element "(E 1tl(Mi, Q) and let PI P2' P3, ••• be all

points from the pre-image r l (Q) in the manifold Mi. Hthe point Q moves along the

path yCt), 0 :s; t :s; 1, then by the defmition of covering each point moves "above it".
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Namely, suppose that Q, =)'(t) and suppose that P~(t) is a point in Mt such that

P~(O) =P~ andf(P~(t» =Q(t) for alIOS t ~ 1. The point P~(t) is uniquely defmed

by the initial point P~ and by the path )'(t) (see the definition of covering). But when

in the manifold Mi the path )'(t) has become closed at t = 1 and the point Q has

returned to the initial position, the covering point P~(t) at t = 1 may fail to coincide

with the initial point P~ (0) =P~ (Figure 84).

Figure 84.

What does the position of the point P~(1) depend on? Obviously it depends on

the initial point P~(O) and on the homotopy class of the path )'(t), Le. on the element

"(E 1[1(Mi, Q). A monodromy transfonnation arises: My. P~(O) ~Pot.(l) (along

the path )'(t». Obviously, Mvis a permutation of points from the complete pre-image

r1(Q) =PI U P2 U .••. The properties are obvious (here 1, "{, "{I' "(2 E 1tl(Ml\ Q),

M1 is a unit permutation):

There arises homomorphism of the fundamental group into a group of permutations
(Umonodromy"). We have already dealt with monodromy transformations for the

simplest Riemannian surfaces z = (Pn)l/2 (w).

EXERCISE. For more complicated Riemannian surfaces

in the "typical case" (when there exists n(n - 1) distinct branching points and the

degree of the polynomial P;(w) tt-2 is equal to n for all i) the monodromy group of
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the covering above the plane without branching points is the total pennutation group
of all n pre-images of the point

We now proceed to a calculation of the fundamental group of simplest
manifolds. We know already that the Euclidean space (All for all n ~ 1 and the sphere

S2 for n ~ 2 are simply-connected (i.e. XI«(AII) =1 and XI (son) = l(n > 1».

A manifold is called simply-connected if XI(~, Q) =1 for any point Q.

THEOREM 1. Ifon a simply-connected manifold Mi. there acts a discrete group of

transformations r and ifa manifold M2 is defined as the totai/ity of the equivalence

classes ofthe points of the initial manifold Mi. with respect to the group r, then the

equality xI(Mi, Q) = r holds at an)' ['flint Q E \1.:
1 (the map f'Mj ~Mi is rhe

coveringfrom example 9).

Proof. Let us take any point P on the manifold Mi. Its equivalence class {g(P)} for

all g E r defines a point Q of the manifold Mi. How shall we descibe the closed

paths on M2? It is convenient to represent them as paths beginning at the point P and

terminating at any point g(P) of the same equivalence class for g E r.
Because of the simple-connectedness of the manifold Mi, the homotopy

classes of such paths on Mi with fixed end-points are completely defined by the

initial and terminal points. Therefore, there exist precisly the same number of
homotopy classes of closed paths from XI(M2, Q) as there are elements of the group

r. Obviously, the multiplication law in the group r and in xI(Mi, Q) coincides as

well. This completes the proof of the theorem.

We can thus calculate the fundamental group in all the examples of manifolds
which we may produce in the form of a torus, a Klein bottle, a projective plane, a
circumference (see the examples of coverings). All surfaces and regions on the plane
can be represented in the same manner, but this is somewhat more complicated.

Suppose there exists a closed differential fonn of rank 1 on a manifold~

0> = 'Lf (x) dx
a

a a

(in terms of local coordinates Xl, •.• ,~; 0 s: a s: n), do> = O.
How shall we calculate the integral J00, where "y is a closed path? Let"Y determine

t
the element of the group XI (M', Q). We shall denote by HI(Mn

) the factor group

XI (Mn, Q) with respect to the commutation relation ab = ba ("a commutated group").
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A simple claim holds

PARTm

CLAIM 1. If the element 'Y has a finite order in the factor group HI (Mn), then the

integral ofany c/osdfonn along the path "( vanishes.

Proof. If ro is a closed form and if a, b are closed paths beginning at the point Q,
then we have

f ro = f roo
a··b boa

Since the form ro is closed (dm = 0), the integral remains unaltered under·
homotopy (by the Stokes formula). The integral is therefore well defined on the
factor group of the group Xl with respect to the commutation relation. If, for the path

'Y, the path 'Yo ••. 0'Y becomes 1 in the group Xl or in the factor groupHI(Mn
),

thenf ~ = nfm = O. Therefore, Jro = 0, and the claim follows.
l' y y

This implies that in the calculation of the integrals of closed forms, of
importance is only the factor group HI (AI') with respect to all finite-order elements.

Non-commutativity of the group Xl does not playa role here.

EXAMPLES.

1. For a region on a plane Um =1R~1 U ••• U Q,.) the group Xl (Um, P) is

free and the group HI (Um> is the direct sum of m infmite cyclic groups.

2. For a projective space lRP" the group XI(lRpn
• Q) is of second order.

Consequently, the factor group H I (lRpn)/(the finite-order elements) is trivial

(identity) and the integral J ro vanishes provided that dm is equal to zero and the path
y

is closed.
3. For a Klein bottle the group xI(K2•P) is generated by two elements TI and

T2 linked by the relation TI 0 T2 0 TI = T2. Therefore, with additive notation of the

group operation, in the group H I (K
2) we obtain 2[Ttl + [Til = [Til or 2[TI ] = O.

The factor group H I(K
2)/(the finite-order elements) have a single generatrix [T2].

Hence the integral Jro of the form ro (where dro =0) along any closed path is an
y

integer multiple off roo
TI
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APPEt\TDIX I

THE SIMPLEST GROUPS OF TRANSFORMATIONS OF
EUCLIDEAN AND NON-EUCLIDEAN SPACES

We shall consider two-dimensional Riemannian manifolds. The conformal class of
metrics gij = gBij in the two-dimensional case is invariant under confomal (complex

analytic) changes of coordinates. On any complex surface such a metric can be
defined.

Ifa surface is given in a space (zl, 1') of two complex variables by a complex
analytic (e.g. a polynomial) equation

and if the space (zl, 1') is endowed with a Euclidean metric

4
dl

2
= I dz

l
1
2 + I dil

2
= L (dx°l,

<1=1

where

then on the surface there arises a conformal metric in natural conformal coordinates.
Namely, suppose l' =j{zl) is a local solution of the equation if (zl) is an analytic
function,

2
dz = 0
dz1 - ,

where the metric on the surface has the fonn

d 2 2
dz 1tii 1

+dz 2di 2 = Idz 112 + l_z_1 Idz 112 =
dz

1

( 1di 12) 1_1= 1+- dz dz .
dz

1

Similarly, if a parametric surface is given in the form zl = zl(o», l' =1'(00),

where zl(oo), 1'(00) are complex analytic functions, then the metric on the surface is
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1 2 2 2 ( 1dz
1

12 1di 12) -Idz I + Idz I = - + - drodro
dro dro

APPENDICES

(the reader should verify it!).
We shall now make an essential assertion which we fonnulate as a theorem.

THEOREM 1. 1) Ifwe are given a conformal metric g dz dz, then the expression

1 rl 1 rl rl
K =----_ (Ing) =--(-+-)lng

2g az az 2g ai ety2

remains unchanged under conformal coordinate changes z =z(ro): ifg(z) dz dz- =
g(ro) dro dOl, then

1 rl 1 rl -
- 2g az ai (In g) '= -- 2g aro dOl (In g).

2) If a surface is defined in a three-dimensional real Euclidean space
J!4 =XX'(y1, i), a. =1, 2, 3, and coordinates y1 =u, i =v are conformal (i.e.
gij = g(y1, y2) Bij), then the expression

1 a2

----log
2g az ai

coincides with the Gaussian curvature K ofthe surface,

Verify this assertion by direct calculation!

Thus, for conformal metrics the Gaussian curvature is a rather simple function
of the metric on the swface itself.

We shall analyze several examples.
1. The Lobachevskian plane. In a z-plane we are given a region y > 0,

z = :c + iy;
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d1 2 = _1 (di+dl) =
2

Y

It can be checked that

-1 dzd- _ dzdz
Z - ----

l(z_1)12 Iz_zl2
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1 cP-- ---=- (In g) = - 1.
2g dZ dZ

In a unit circle Izi < 1 the metric has the fonn

d1 2 = dzdz

(1 -lzll
2

2. The sphere. Conformal coordinates on the sphere are introduced
proceeding from the fact that the sphere is precisely the same manifold as ([pI. A
finite region is served by a coordinate z, and at infinity there exists a coordinate 00,

where ro + 1/z in the region Z + 0, 00 + O. The point 00 =0 is Z =co (infinity). In a
fmite z-region, the metric is

d1 2 = dzdz----, K = +1.
(l + Izll

2

The total group of linear fractional complex (projective) transfonnations of the
manifold ([pI has the form

az+b
Z---+-,

cz+d

where~nmmces(: :) = A andlA = (~
and the same transfonnation; if

Ab J
)

for A.;t 0 define one
A.d

az + b h· h th th fi .. ..then z ---+ -,W IC means at e trans ormanon IS proJecnve.
cz+d
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Since A and 'A.A yield one and th e same transfonnation, it follows that an

appropriate choice of 'A. may lead to det A = 1. From this we can see that the linear

fractional group is isomorphic to the factor group SL(2, cr:)I ± I since 'A. = ± I yield

one and the same linear fractional transformation. The group SL(2, cr:) consists of
two sub-groups

I) SL(2, [R) c SL(2, cr:)

(the motions of the upper Lobachevskian half-plane y > 0),

2) the sub-group SU2 c SL(2, cr:), where

(: : J= C~ ~ J. lal
2
+lbf = I.

This is the' group of motions of the metric of the Sphere

SU2/± Ie SL(2, cr:)/± 1,

and the group SU2/ ± I coincides with S03.

The most symmetric two-dimensional metrics are the Euclidean metric, the
metric of the sphere and the metric of the Lobachevskian plane. We have already
pointed out the parallelism in the study of the geometry of the sphere and the
geometry of the Lobachevskian plane. Now we shall investigate this parallelism in
more detail

Consider a sphere S2 c [R3 of radius R with centre at the origin. Let (r, 9, $)

be spherical coordinates in IFf; then, as is known, the Euclidean metric cJr + tty2 +
dz2 takes, in tenns of these coordinates, the following fonn: d? = d?- + ?- d92+
?- sin2 9 d$ (verify it!). From this we obtain d?(S2) =R2(d92+ sin29 d$2). Here

o~ $ ~ 21t; 0 ~ 9 ~ 1t (Figure 85).
The distance between two points A and B measured along a circumference of

radius 1t is equal to zero, i.e. the whole boundary of the circle is glued together into
one point, which yields a two-dimensional sphere.

In a small neighbourhood of the point 0 we have sin 9 ..... e, Le. ds2 (S)2

becomes the Euclidean metric: d92 + 92 d$2.
Consider a stereographic projection of a sphere onto a plane (Figure 86)

(depicted in this figure is a plane cross-section of the sphere).
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Figure 85.

-I!

Figure 86.
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Here (9, $) are coordinates on the sphere and (r, $) are polar coordinates on the

plane. From Figure 86 it folIows that $ =$; r =R ctg (9/2). Using these formulae

for transition, we can rewrite the metricds2( 52) in terms of the coordinates (r, $):

di(n = 4K. (dl + r d$'1

. (R2+l'l
(verify it!). Clearly,

2
di(n = 4R • ds2([R\

(R
2

+ r12

Now we shaH proceed to Lobachevsky geometry. Consider a pseudo­
Euclidean space !Ai and a pseudo-sphere of imaginary radius iR. Then the

stereographic projection of a hyperboloid of two sheets onto a (Y, z)-plane is given
by the formulae (see Part I):

x = -R . (u, it) + K ; y = - 2R
2
u

1

(-u, -u) _ R2 (- -) ..2'u, u -1<
z = -~i

- - 2 '(u, u)-R

h (- -) (1)2 (2)2 1 2 be' rdi . . f di Rwere u, u = u + u ,u, u 109 coo nates 10 a nng 0 ra us on

the (Y, z)-plane.
Consider the restriction of an indefinite metric ds2(1R1 = - tJ.X2 + tty2 + dil to a

pseudo-sphere of radius iR; direct calculationtions show that this induced metric
ds2(~) has, in terms of the coordinates (u1, ~), the form

2 1 2 2-2
ds2(L

2
) = 4R «du) + (du) )

«u1
)2 + (u'12 -R'12

(verify it!).
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Introducing in a ring or radius R polar coordinates p, $ (i.e. p2 =(u1)2 + (u2)2;

tan $ =u2/u1), we obtain cJil(~ =4R2(dp2+ p2 d$2)/(~_ p2)2.

We have earlier dealt with the affine definition of Lobachevsky geometry, and
now we have obtained its metric defmition: the Lobachebvskian metric is a metric
induced from a hyperboloid (i.e. from a pseudo-sphere of purely imaginary radius) in
a pseudo-Euclidean space 1Rj. Clearly, this metric can be given by

Comparing this notation with the corresponding notation of the metric of a
sphere we can see that the only difference between them is the sign before p2 and ,2.'

In what follows we shall assume, for simplicity, that R =1. Next, by analogy
with the sphere S2, we shall examine the following transition fonnulae: $ = $;
p =cth (xJ2). Representing the metric cJil(~ in tenns of coordinates (X, $), we

come to (verify it!) ds2(~ = dr.? + sinh2 X d$2.

The distinction of this metric from that of the sphere is that the function sin is
replaced by the function sh. We shall tabulate all these forms of the metrics of the
sphere and Lobachevskian metrics as shown in Figure 87.

Figure 87.

tz

We shall note an interesting fact: although the metric cJil(lR1) =- tJXl + dy2 +
dz2 is indefinite, its restriction to a pseudo-sphere of radius iR is a positive defmit~

metric. The geometric interpretation of this fact is presented in Figure 88.
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Indeed, it suffices to verify that the scalar square of an vector e tangent to a
hyperboloid is positive. For such vectors e, vectors e1 parallel to them face a
"positive" region of 1Rj, which completes the proof.

On a hyperboloid we can also introduce some other coordinates, for example,
(Y, z), i.e. we can project a pseudo-sphere onto a (Y, z)-plane parallel to the x-axis
(precisely such coordinates are often considered in the special theory of relativity in
the space ~). Direct calculation yields

(l + z1 dl- 2yz dy dz + (l +Y1 di
2 2

1 +y +z

(verify it!).
The positive defmiteness of this form is already not so obvious as in the case of

the metric in the Poincare model, but it can be readily established through calculation
of the determinant of this forin (verify it!).

Now we shall examine the Poincare model and employ it for writing the
Lobachevskian metric in the complex form. Suppose dp2 + p2 d<l = dz di. = d.:x?- +
dy2; p =Iz12, i.e. we are led to

While a p.air of points is tending to the boundary of a circle, the distance
between these points tends to infinity; the boundary of the circle is sometimes called
an absolute; recall that the points of this circumference do not belong to the set of
points of the Lobachevsky geometry.

Let us consider another form of notation of the Lobachevskian metric. It is a
well~known fact from the theory of functions of one complex variable that there
exists a linear fractional transformation of a complex plane into itself, which maps the
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upper half-plane into a unit ring. (The linear fractional transformation is a map of the
a+b .

form w =f(z) = d . In the case ad - be =0, the transfonnanonfmaps the whole
cr+

plane into one point To eliminate this trivial case, we customarily assume that

O On
. 1 +iw .

ad - bc:#). e of such transformations IS z = 1 . ; z = g(w), depIcted
-IW

in Figure 89.

z=gCW)

Figure 89.

(I-f
/-()
/ ...... /

Thus, we have introduced new coordinates w on the ring. If we write the
metric tJil(LiJ in terms of the coordinates w, we see that the direct calculation yields

2 (£!xl) + (d/)2 I . I
tis (L2) = , where w = x + ly •

(y1)2

Now we shall proceed to the groups ofmotions of the metrics of the sphere
and those of the Lobachevskian plane. Recall that the group is a set of elements G on
which two operations are defined: (x, y) ~ x • y, x ~ X-I (where xy e G) with the
properties

1) (xy)z = x(yz);

2) there exists an e E G such that ex = xe = ~

3) .:a-I = X-IX = e.

A very essential role in geometry is played by the so-called topological groups
(and a more special class of them - the Lie groups). A group G is called a
topological group if the set G on which the group operation is defined is a topological
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space and both operations - multiplication and taking the inverse element - are
continuous on this space (continuity is understood here as that of the mapping), So,
for example, the totality ofall transformations preserving some Riemannian mettic is
a topological group.

As has already been proved, the set of all possible motions of a sphere S2
coincides with the set of all orthogonal (3 x 3) matrices A-I =AT. This group is
denoted by 0(3) and is called the complete onhogonal group. Being a topological
space, this group consists of two connected components (two pieces): one
component consists of those mattices A for which det A = + I, the other consists of
those mattices for which det A =- 1. Tose matrices for which det A =+ 1, form a
sub-group which is denoted by SO(3). The second connected component is not a
group (since (- 1) • ( - 1) = 1). The elements of the sub-group SO(3) are
occasionally called proper rotations, while the elements of the other component are
called improper rotations.

REMARK. We have seen that all posssible transformations of the sphere defined by
onhogonal matrices are motions, and therefore the group 0(3) is contained in the
group of all motions of the sphere S2. But we cannot, as yet, prove that the group
0(3) does actually coincide with the group of all motions. This coincidence takes
place, and any mettic-preserving transformation on S2 is a linear and orthogonal
transformation in Iff; a rigorous proof of this fact requires, however, an application
of the concept of a geodesic line.

To make the notation shorter, we shall introduce the following: we shall
denote by G(~) the group of motions of the pseudo-Euclidean space IR~ under

which the point 0 (the origin) remains motionless. It is clear that this group
coincides ~xact1y with the group of all motions of the pseudo-sphere S;-I c IR~ (with

the centre at 0). In particular, for s = 0 we have

G(~ = G(Iff) = 0(3), G(~) = 0(2).

Before proceeding to the group of motions of the metric tJs2(LiJ, we shall go

back and examine the group of motions of the Euclidean plane 1R2 and that of the
pseudo-Euclidean plane IRr, which keep the point 0 motionless, i.e.

the groups G(1R6) and G(IRI). We have calculated both of these groups before. SO,

G(lW) = G(~ and consists of two connected components. The group of hyperbolic

rotations G(IRf) consists of four connected components. Figure 90 illustrates four

transformations: gI, g2' g3, g4 which preserve the pseudo-sphere sl (of dimension

one) and belong to four distinct connected components of the group G(IR[).
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,j
gl identity

tI'ans-fonnation

Figure 90.

!I.

g2 reflection

in the ~-axis

'I~
J1~

g3 reflection

at the point 0
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Now we shall consider the Lobachevskian plane L,.. We shall calculate the

group of motions of L,.. Examine the upper half-plane and~(~= (tJXl + dy2)ll;

az+b
y > O. Let w = f{z) = - be an arbitrary linear fractional transfonnation of thea+a . ,
upper half plane into itself. Then it can readily be shown (verify it!) that the map f
preserves the condition y> 0 if and only if a, b, C, d are real numbers and
ad - be> O.

We claim that any such transfonnation f is a motion of the Lobachevskian
metric.

Indeed,

2 2
tis = dx +dy =

2
Y

whence

-4dzdz

- 2 '(z -z)

ad-be
dw = ·dz·

2 '
(cz +d)

2 - 2

dz = (cz + d) dw. dz = (ez + d) dw.
ad-be' ad-ba'

(a, b, c, d are real!). Substituting these formulae into cJil = - 4
dz_d

2
Z and carrying

(z - z)

-4dwdw
out all the calculations, we shall come to cJil = _ 2 (verify it!), that is, the

(w-w)

transfonnation[preserves the metric cJil(Li). Thus, the group of motions cJil(~ of

az+b
course contains the sub-group of transformations w =f(z) = ,where a, b, e,

cz+a
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d are real and ad - be > O. We denote the set of all such tt'ansfonnations by D 1•

Note that all these transformations are conformal (angle-preserving)
transformations. The transformations D1, however, do not at all exhaust the set of

motions of the Lobachevskian metric. Indeed, let us consider the transformation go:

z~ - zwhich is obviously a self-image of the upper half plane (reflection from the
y-axis) and which, furthennore, preserves the Lobachevskian metric:

ds2 = _ 4dzdz == -~dzdz .
- 2 • 2

(z - z) (z - z)

At the same time it is obvious that the tansfonnation go: z ~-i cannot be
represented in the fonn go(z) = (az + b)!(ez + d) (this transformation changes

orientation of the angles).
All this means that we must examine all possible transfonnations g(z) of the

fonn w =g(z) =- (di + ~)!(yi + 0), where a, ~, y, 0 are real and 0.0 - ~y ~ O.
Clearly we can write w = (ai+ ~)!(yi + 0), where a, ~, y, 0 are real and

0.0 - ~y < O.
We shall denote the set of all such transformations by D2' Note that the sets of

transfonnations D1 and D2 are homeomorphic as topological spaces. Since any

transfonnaion g e D2 has the fonn of the composition g =grf, wherefe D1, and

since go andfare motions, it follows that g is also a motion.

Two sets of transformations D1and D2 have an empty intersection as long as

az +b =fi a~ + J3. Their union D = D1 U D2 = (f) u{g), obviously, forms a
cz+d 'YZ+ 0
group in winch D1 is a sub-group and D2 is not a sub-group. The group D is already

the complete group of motions of the Lobachevskian plane. In the same way as the
group of motions of the two-dimensional sphere 0(3), the group D consists of two
connected components.

Letjtz) =az + b)!(ez + d) be an arbitrary transfonnation from D1• Since

az + b Am + 'Ab
;;-+;j =A.cZ + 'Ad' we may assume that ad - be =1. Using similar ~guments,

we may assume that if g(z) =(aZ + J3)!(yZ + 0) is an arbitrary transfonnation from

D2, then as-- J3y + - 1.

Let us consider the set of all real matrices of order 2 with determinant ± 1; these
matrices, obviously, fonn a group which we denote by L(2):
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L(2): L(2) - {(: :): ad-be =± I} ,

The group L(2) is disconnected: it consists of two components: L(2) = L1(2) u

~(2), w~ere

L,(2) = {(: :):ad-be=+l}:

~(2) = {(: :): aa-~=-l},

The sub-group L1(2) is customarily denoted by SL(2, IR). Let us construct a

map $: L(2) ~ D by the following rule: if

A = (: :) E L,(2),

then $(A) =f,f e D1 andJ(z) = (az + b)1 (cz + d); ad - be = + 1. If

B = (: :) E L,.(2), then <l>(B) =g, g ED.,

The map $ is an epimorphism (i.e. the image of $ covers the whole group D),

but not one-ta-one. Clearly, $(A) = $(-A) and $(B) = $( - B). However, if in the
group L(2) we identify matrices of the form C and - C, Le. consider the factor group

L(2)/( ±E), where E = (~ :). then the map $': L(2)/( ± E) -> D will already be

one-ta-one. Furthennore, the map $' establishes the algebraic isomorphism of these

groups. For this it suffices to verify that the identity $'(q • C'z) = $'(C'l) • $'(C'2) is

satisfied. This can be established through a direct calculation (verify it!). Thus, we
have proved that the group of all motions of the Lobachevskian plane is isomorphic
to the group L(2)/(±E). In particular, the group D 1 is isomorphic to the group

SL(2, IR)/( ±E).

Now let us tum to the group G(IR~) (fa: the definition of this group, see

above). This group, of course, contains the group D as a sub-group which,
however, does not exhaust it.
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The inclusion: D c G(lRb follows from the fact that the Lobachevskian metric

is an induced metric on a hyperboloid in IRi (pseudo-sphere of imaginary radius), and

therefore any of its motions is the element of the group G(IRb. The group G(IR1) (the

same as the group G(lRf» consists of four connected components (Figure 91).

Figure 91.

c:l? c:JY
'---- ---v---- --'"

lJ -U}j/t.~

Figure 92 presents four transformations: gl' g2' g3' g4 which preserve the

pseudo-sphere S~ (=> LiJ and belong to distinct connected components of the group

G([R~).

0>0~ ~ [p~~ {P~@
t,W<o l2 J""". d4
identity reflection in reflection at reflection in

transformation the (yz)-:plane the point 0 the x-axis

Figure 92.

The Lobachevsky geometry is realized separately on each of the sheets of the
hyperboloid; we can say that a pseudo-sphere of imaginary radius is a union of two
copies of the Lobachevskian plane.

In the space [111 of the special theory of relativity, a a pseudo-sphere of

imaginary radius is also a three-dimensional hyperboloid of two sheets. The
Riemannian metric induced on the laner by the envelope indefinite. metric
ds2 ([111) = - c'l dt- + tJ.x!1. +u.r + d? is positive definite (verify it!) and is called the

metric of the three-dimensional Lobachevskian space.
We recommend the reader to study, repeating the arguments analogous to those

used above, the geometry and the metric arising on a pseudo-sphere of real radius,
which is (in the Euclidean model) a hyperboloid of one sheet.
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APPENDIX 2

SOME ELEMENTS OF MODERN CONCEPTS OF THE
GEOMETRY OF THE REAL WORLD

A.I Introduction. Basic concepts

The principal types of physical forces determining the geometry of the surrounding
macroscopic phenomena are gravitational and electro-magnetic forces. At the present
time we know about the existence of four types of fundamental interactions, namely,
nuclear ("strong"), electro-magnetic, "weak" and gravitational. Strong as they are,
nuclear forces are rather short range, with the characteristic effective range of about
10-13 cm, called also the nuclear size. It is only electro-magnetic forces that
eventually create (however, not without the aid of quantum theory) the surrounding
matter, i.e. fasten together particles so that they form solids, liquids and gases,
determine Mendeleyev's law etc. We shall not dwell on weak interactions - they are
(for the present!) less noticeable. Gravitational forces keep us on the swface of the
Earth, fonn the solar system, fasten galaxies together (- 1<Y° cm) and are, possibly,
responsible for the whole evolutionary process in the Universe ( - 1028 cm). It is
relevant to note here that nuclear and weak interactions can be treated solely in the
framework of quantum theory and have no classical equivalent So, the basic types
of fundamental forces which come under consideration without involving quantum
theory and proceeding exclusively from the ideology of geometry and classical
mechanics, are electro-magnetic and gravitational forces.

From the contemporary viewpoint, which basically took shape during the fIrst
two decades of the 20th 'century, space, time and gravity (together) form the
space-time manifold Ar. The decisive role in the development of this theory was
played by the papers by Einstein. An important contribution was also due to Lorentz,
Poincare, Minkowski and Hilbert Points of the manifold Ar are "events" which
occurred in a certain place in space at a certain instant of time. It would, of course,
be more precise to say that the assignment to each event of a point in a cenain
four-dimensional space-time manifold M4 is a very convenient tool for the
systematization of a large number of events.

Recall that a manifold~ is defined by an "atlas"~ = U X consisting of
q q

"charts" Xq with local coordinates.t:" a =0, I, 2, 3. Each chart Xq is a region in a

space Jtt with coordinates ~q)' In the common region of action of two coordinate
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systems. i.e. in the region Xq n XS ' all the expressions of coordinates in tenns of

one another

are smooth functions for all pairs (q. s). where the intersections are non-empty and
have a non-zero Jacobian

axa

II....!L II ~ o.
a b

Xs

We shall use the tenn "Cartesian space" for the case where Jtr is described by
one chart X with coordinates (,tl) running through all the real values.

According to modem concepts dating back to the famous paper by Einstein and
Grossman (1913). the gravitational field is an indefinite metric on a space~. which
has at each point the signature (+ - - -). This means that in each chart Xq with

coordinates ~) there are given tensor fields g~) = g~) (a. b = O. 1. 2. 3) such that in

the region Xq n Xs they are mapped to each other

ax; (q) ax: (s)
-,gab (xq (x» -b' = ga'b' (x).axa ax

s s

Xq= xq(xs) in the region Xqn Xs •

It is assumed that at each point xq of the region Xq the quadratic form

gab (xq) !;a !;b is brought through a linear change to a diagonal form of the type

11~ - f. 11~ (i.e. has the signature (+ -- -). Given this. det gab ~ O. As a rule
a=1

we shall. in fact. work only in one coordinate system and shall not write the index q.
A Minkowski space (or a pseudo-Euclidean space)~ =/W.l can by definition

be given in the form of one Canesian space lR4 with the so-called Euclidean
coordinates (:/1. xl• .-r?~) and endowed with the metric
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(1)

In the case of Minkowski space we say that the gravitational field is trivial or
zero. The group of motions of the Minkowski space is called the Poincare group.

The electro-magnetic field is detennined by the covector field

("vector-potential") Aa (or by the I-fonn A =Aadxfl) on the space of events Aa(x)

which in the local system of coordinates Xl is given by the components Aix): under

the coordinate change x(y) the components are transformed by the formula

By definition, this covector field (or the differentiall-fonn) is given with an accuracy
to a gauge (gradient) transfonnation:

Aadxfl = A = A + dep = A'a dxfl.

()ep I

Aa = Aa + - = Aa•
'ilxa

where $(x) is an arbitrary scalar function.
The electro-magnetic field tensor is the expression (the skew-symmetric tensor

Fab or the differential 2-fonn)

()A
a

()A
b

Fab=----=-Fba •
()l 'ilxa

Fab dxfl 1\ d1' = F = dA, (2)

independent of the choice of the field Aa up to the gauge transfonnation (1).

In the Minkowski space~ =R3•1 with psuedo-Euclidean coordinates (rx).
where the metric has the fonn

3
gab dxfl dJ' = (dx~2 - L (dxa)2.

a=1

the tensor Fab is thought of as having the electric part ErJ. =F(h and the magnetic part

HrJ.p =FrJ.p, <X" (i = 1. 2. 3; the three-dimensional skew-symmetric tensor HrJ.p is

formally associated with the so-called axial vector of the magnetic field
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In the three-dimensional fonnalism and notation we construct the l-fonn of the

electric field Er1.~ and the 2-form of the magnetic field H =Hr1.p~A dxP. In the

Minkowski space the quantity x°/c is called the "world time", where c is the speed of
light in a vacuum (c =3.1010 cm/s).

In any manifold~ with an indefinite metric gab(x) of signature (+ - - - ) and

at any non-singular point x, where det gab:;t 0, there exist three types of vectors:

a) time-like vectors,
b) space-like vectors,
c) isotropic (light-like) vectors.

We shall further denote ~a Tlb gab by (~, Tl), which is the scalar product of

vectors ~ and Tl, at a point x, generated by the metric gab(x). The quantity Tla Tlb gab

will often be denoted by 111'1112. So, we have three types of vectors:

Correspondingly, the line.tJ(t) in~ is called:

a) time-like in the case IIdxldt 112 > 0 (everywhere);

b) space-like in the case IIcttldtll2 < 0 (everywhere), and

c) isotropic (light-like) in the case IIcttldtll2 = 0 (everywhere).
The evolution of any point particle during its lifetime is represented by a line in

the space of all events~ (the "world line" of a particle). The following fundamental
idea is hypothesized:

a) the world line of a particle of any mass m > 0 (a massive particle) is always
time-like;

b) the world line of a massless particle (m =0) is isotropic.
By vinue of this hypothesis, for massive particles the "length" of any curve

~('t) is positive definite

f tb: f f dx
a d' 1/2o < I = II-II dt = dl = (g b(X) - -) dt.

dt a dt dt
(3)

The following hypothesis (postulate) is assumed: the lifetime of a massive object
along the world line ~(t) is proportional to the length of this line (this lifetime is
referred to as "proper time''):

Tprop = l/c Jdl = l/c. (4)
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EXAMPLE. Let

3
gab tJ.tl~ = (dx(}'P - L (dxal.

(1:;1

APPENDIX 2

Consider two curves ( a motionless point at zero and the motion along the world
line 2) depicted in Figure 93.

Figure 93.

We can show that the following always holds

(verify this!). Thus. the lifetime of a moving object is less than that of a motionless
one (with the same beginning and end).

It should be noted that for any world line (which does not concinde with 1) the
proper time is always less than the difference of the time coordinate at the initial or
fmal moments: et final - et initial> eTproper Any ~orld line of a massive particle

(i.e. a time-like line) can be parametrized by the element of length (i.e. by the proper
time). by the natural parameter. as is usually said in geometry:

t = lIe. dt = dl/e. (5)

The 4-dimensional velocity vector of a particle is always referred (by definition)
precisely to the nanrral parametrization

a
U =-.

dt

2 2
(u, u) = II u II = e • (6)
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In the Minkowski space with standard pseudo-Euclidean coordinates XJ,
d P= (dx°)2 - L (~l there exists another natural parametrization of world lines,

a

the one using the world time - the coordinates filc =t:

xa. = ~(t). xO = ct.

A 3-dimensional velocity vector arises V'" =tJX41 dt which is related to the 4-ve1ocity
vector by the fonnula

The element of length takes the fonn

dl ( i 1/2 2 3 2
- = 1- -) dt, v = L (va) .
C c2 a=l

Since (u~2 - L<ua.)2 =c2, for the 4-ve1ocity vector, we obtain the fonnu1ae

o C a va
U = -----, u = -----

2 2 1/2 2 2 1/2 •
(1 - v Ic ) (1 - v Ic )

(7)

(8)

(9)

The laws of relativistic dynamics, i.e. of the motion of a massive particle in external
electro-magnetic and gravitational fields, are defined proceeding from the extreme
action principle.

%1

S("{) =J (a.dl+~Aadxa)
%0

along the world time-like line.
Given this,
a =- me, where m is the particle mass,

~ =e/e, where e is the particle charge. In accordance with the general rules of
variational calculus for an action of the fonn

S("{) = JL(x., w) dt,
y

where Mf = dxfJldt is the formal velocity, the 4-momentum is defined to be
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(10)

Now. ifAa =O. then choosing dt =dllc we obtain

where Jfl are the components of the 4-velocity vector with respect to the natural
parameter t = llc. In the Minkowski space 1W,1 we obtain

me mva

- Po = 2 1/2' Pa = 2 1/2 •

(1 -~) (1 -2:...)
2 2c c

Note that in the three-dimensional fonnalism. which is convenient for comparison
with non-relativistic mechanics. we must choose the quantity c=:r.°lc as the parameter
along the world line. We obtain the Lagrangian and the action of three-dimensional
curves:

.:. A va + eAo) de.
c a

(11)

Suppose thatA~ =O. We have the standard concepts of energy and 3-momentum for

(II ):

This defmition agrees with the preceding one. where

E = -cPo'

(12)

(13)

(14)
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The energy is. therefore. proportional to the component Po- We wish to emphasize an
essential consequence: in the absence ofelectro-magnetic field. Aa = O. the following
equality holds

(p ) _ ab _ 2-2 _ 2{ )
.p - g PaPb - m r - m u. u • (15)

where gab gbc =B~.

The surface (15) is called the "mass shell". Thus. the 4-momemum of free
particles lies on the mass shell. The geometry of the mass shell. generated by the
restriction to the mass shell of the Minkowski metric. is Lobachevsky geometry (see
Section 1.4). Thus. Lobachevsky geometry is the geometry on the set of states of a
free particle in the momentum space. In this context Lobachevsky geometry is a
fundamental part of modern concepts of the real world.

A.2 Conservation laws. The Lorentz group

In the framework ° of variational calculus (or analytic mechanics) the laws of
conservation are naturally associated with invariance of a system under simplest
space-time transformation groups: time invariance and invariance under space
translations and rotations. Mathematically. this can be explained as follows. Let

there be given an arbitrary "Lagrangian" of the form L~. x·) independent of the

"time" t and an "action" functional S on curves x'l(t)

x = xi•...• xn. 0v'l = dxildt. (1)

The conservation laws have the form:

1) the quantity E =v'l (oL{iWl) -L (the "formal energy") is conserved along

the trajectory. i.e. by vinue of the Euler-Lagrange equation

dE til aL aL
- = o. - = -. P =-
dt dt al q CJvq

called the "fonnal momentum";
2) if the Lagrangian L does not depend on one of the coordinates ilLlox!' = O.

then dl/dt = O.
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More generally, if the Lagrangian L does not change along the vector field
l"1(x)

aL at . aL
}"1(x) -+---:-v'~ = 0,

axq ai av'

then (by virtue of the Euler-Lagrange equations) the consc.:don l:~,:,v holds

dpy ~,J1
- = 0, Py = r-(x)Pq•
dt

(2)

Here py is the component of the momentum along the field Y. This fonn of the

momemtum conservation law is equivalent to the previous one inasmuch as in a
neighbourhood of any non-singular point Xo of the vector field Y{xo) ;!°there exists

a coordinate system zl, ... ,~ i~ which the field Y has the form Y = (1, 0,0, '" ,
.. , 0).. Therefore, equation (2) reduces to the fonn aLtaz1 = 0.

In classical mechanics we consider a system of n particles in a
three-dimensional space (i.e. m =3n). We have the total Lagrangian and the action

L = L(xl' _.' ,x:, vi, _._, v:), a = 1,2,3.

The energy conservation law reduces to conservation of the quantity

n 3 aL
E IOta} = L L v ~ - - L .

q=1 (1;:1 dv a
q

The law of conservation of momentum and angular momentum arises from the
requirement that the Lagrangian L be invariant under all general translations and
rotations in iff, where the mutual position of particles-remains unaltered:

Here A is any motion of the entire space IW, A. is an induced transfonnation of

variables Vi.

EXAMPLE 1. A is a translation along some axis in IW (for example, xl). For L we
have
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L dL = 0 ~ y'la dL = 0, a~ = 0,
q (kl axa ax'

q q p

yqa. = (1,0,0, I, 0, 0, ... , 1,0,0).

365

Condition (3) gives rise to the law of conservation of total momentum

n dL
P LP,P=-.

total. a q=l q.a q,a dv a
q

Here three-dimensional vectors Pq = (pqa.l are called, by defmition, momenta of each

particle. If

then the condition of translation invariance of the Lagrangian L has the form

(4)

Naturally we have V =1:V(x -x). The total momentum is given by
p<il p q'

In an electro-magnetic field (or in a co-moving coordinate system) the Lagrangians
take the fOnD

L = L 2
1 m v

2
_ L V(x -x )+e L (A valc+Ao(x )).

q q q p<il p q q a q q

The energy and the total momenta are expressed as

1 2
E = L 2 m v +V + e L Ao(x ),

q q q q q'

(5)

P= LP = Lm v + !A(x ).
qq qqqc q'

In the presence of an external field Aa the system (3) loses its translation invariance,

and the total momentum is not conserved.
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EXAMPLE 2. Let A be the matrix detennining rotation (e.g. in a plane (xl •.?) =
(x. y». In this case. the vector field Y corresponding to the one-parameter group of

rotations around the axis z =x3. has the fonn

y = (-xf. xL 0. -x1. x!. 0..... -~. x~. 0).

We shall introduce in IW a cylindrical system of coordinates (z. p. cp) = (y1. 1. I)

x = xl = P cos cp.

Y = .? = P sin CPt z = y}.

The vector field Y in coordinates (yf. yf. yj• .... y~. y;. 1n) becomes

Y = (0. O. 1..... O. 0. 1).

(6)

The corresponding law of conservation of the component of momentum will be given
by

n aL aL
Py = L P = L - = L--;-.

q=l q.~ q d)t~ q acpq

Because of (6), an elementary calculation gives

L(y. y) = LC?:. i) =

= L(P1 cos CPt PI sin cp. zl ...·; PI cos CP1 -

(7)

aL aL2 aLl- = - x + -x = xl Py - Y1 P" .a.i.1 ail 1 a;2 1 I 1
'I' 1 1

The quantity

aL
-.- = XqPy -YqP" = P~acpq q q q

is called the z-component of the angular momentum M: of a q-th panicle. The total

vector of the angular momentum Mq of the q-th particle results from the change of z
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byx or y. From formula (7) we obtain the law of conservation of the total angular
momentum of a system of particles

n

M = L M = L [x xp 1,
q=l q q q if

where xq and pq are respectively the radius-vector and momentum of the q-th particle.

It would be more correct (and this also refers to the case of the magnetic field)
to assume the angular momentum to be the skew-symmetric tensor of rank two

(8)

As is well known, in mechanics there exists a requirement of system invariance under
Galilean transformations (the Lagrangian L of a system may change by a full
derivative; given this, the "action" S remains unaffected to within boundary terms):

x = x' + wt, w = const, t' = t

and for a system of n particles in 1R3 we shall have

L'(x',i',t) = L'(x'+wt,x·'+w) + df(x) = L(x,i),
dt

h df df·j j( ) . . f .
w ere dt = fix; x, X IS a certaln uncnon.

For the total momentum this implies

P .' = aL' =~ _ a.f(x) • p' = p-Vf
I • • • • • , •

ax" ax' ax'

(9)

(10)

Thus, momentum may change only by' a total gradient (note that in classical
mechanics. Lagrangian is generally defined with an accuracy to a full derivative.
momentum is thus defined within the gradient).
For the energy we obtain

, ,aL' L' ( ) aL L
E = II all' - = II - w dv - = E - pw.

For the important case

(11)
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L = 1: 1 m v2
- V(x)2 q q

under Galilean transfonnation we shall obtain by virtue of (11)

p' -p -Mw, M = L mq (P = P inial)

2
, Mw

E = E-pW+­2 '
2

I Mw
E = E +pw--r'

APPENDIX 2

(12)

Now turning to relativistic mechanics, we should consider the whole system in
a four-dimensional space (xQ

), a = 0, 1, 2, 3. We shall deal with the laws of

conservation only in a Minkowski space endowed by the metric (dl)2 =(dx~2 -

L (dxa )2. The Lagrangi~ L(xtf, ..• ,x:, xf, ... ,i~) will be referred to a certain
a

parameteri = dXq /dt.

In this case we should require invariance of the system under the general
motion A of the Minkowski space /W.l. The group of all motions (generated by
linear transformations around the origin 0 and translations) is called the Poincare
group. The sub-group of linear transformations is denoted by 0(3, 1) and is referred
to as the Lorentz group (the group of pseudo-onhogonal transformations). Th~

connected component of unity in the Lorentz group is denoted by 50(3, 1). As
distinct fom ordinary groups O(n), Le. from the onhogonal transfonnations of
Euclidean space IRn, the Lorentz group O(n, 1) consists of four connected
components.

THEOREM. There exists a continuous homomorphism cit ofthe group O(n, 1) into

the group tl2 xtl2 (involving four elements) defined as

4l(A) = (sgn det A, sgn (eo, AeO».

In particular, ifclt(A) = (1, 1), then we have A E 50(1, 1), i.e. A looks like

_ (Ch'll Sh'll)A- .
sh'll ch'll
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This is a connected group. The connectedness of the group SO(n, 1) for n > 1 is
proved in a somewhat more complicated way (we leave it as an exercise to prove it
for n = 2,3).

Transformations belonging to the group SO(1, 1) are called "elementary
Lorentz transformations". The whole group O(n, 1) has the form

O(n, 1) = SO(n, 1) P! TI,

where s =0, 1, q =0, 1.

{ ~'P(~ =
-XJ,

a = 0,

a = 1,2, ... , n

("spatial reflection"),

{
-~

T(~) = XJ,'
a = 0,

a = 1,2, ... , n

("time reflection'').

The transformations A E SO(1, 1) are written in the fonn

1 vic I
( 2 2)112 2 2 112
I-v Ie (I-v Ie )

A =

JvIc 1

( 2 2 112 2 2 112
I-vic) (I-vic)

where v is the three-dimensional velocity and c is the speed of light in a vacuum. For
vlc« 1, we obtain the Galilean transformations

vic ~ 0, ;/J = ct, x'o = ct',

x' vt' }x = + ... x = x' + vt',
( 2 2 112 2 2 112
I-vic) (I-v Ie)

A (13)
x'vlc ct' }..ct =

( 2 2 112
+

2 2 112 t = t'.
1 - v Ie ) (I-v Ie )
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We now proceed to the laws of transfonnation of a system of n pantic1es in a space
1W.1, invariant under all the motions

1. IfA are translations, we are led as before to the law of conservation of the
4-momentum of the system

PlDr.al = LPq ,
q

where E =- cpo.
2. IfA are rotations in a three-dimensional space, then we obtain, as before,

the law of conservation of the total three-dimensional angular momentum

M = L [xqxPq], ArP = X:-p:-xg~.
q

3. IfA are the various elementary Lorentz transformations in planes (0, a),

where a = 1,2,3, then we arrive at

(14)

wherep~ = gab Pab' For each particle we have4= ct, P~ = - Eqlc, x: are coordinates

in IW.
Thus we are led to

:.. MJ« = L (tpa - 2... E xa ) = const.
c q q c2 q q

Applying to the other laws ofconservation:

L E = E = const., L P: = const.,
£ q q

we finally have

LE x
a

tpa + const = q q
total 2

C

This is a uniform motion of the ''relativistic centre of mass":
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"? = (L E x«) /L £ , iCt = const.
q q q q q

371

(I)

A. 3 Free particles. Mass shell. Velocity addition. The simplest
scattering processes

The energy and momentum of free massive particles in Minkowski space /W.l, as
mentioned in A.I, are of the fonn

-11lC mvCt

Po = ( 2 2)lfl ' Pct = ( 2 2)lfl '
I-vic I-vic

where - E = cpo, Pr4 = dL/i)vr4, and vr4 are components of the three-dimensional

velocity of the particle. The action is given by (in three-dimensional formalism)

s = JL(v) dt = -meJdl,

(2)

The quantities (Po. p~ together fonn the 4-covector. The corresponding

4-vector has the form

on the "mass shell"

(p0)2 _ L (pCt)2 = m2e2

ct

or

(3)

(4)

° ( 2 2 2)lfl- P = ~ = m e + L (pct) (let E > 0).
e ct

The restriction of the Minkowski metric gab to the mass shell (4) is a fixed-sign

metric with coordinates pr4 or vr4 related by formula (I).
The metric has the form
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(5)

where (po, pI, p2, p3) is defined by fonnula (4); a simple computation (independent
of the dimension of the space) shows that the metric (5) has the volume element

( det ga.p)1/2 dpl " ... "dpn = ': dpl" ... " dpn.
p

(6)

EXERCISE 1. Prove fonnula (6). 2. Find the coordinates where we obtain the
so-called Poincare model of Lobachevsky geometry in a unit ball (see Section 1.4),
for the metric on the mass shell.

The group of motions of Lobachevskain space coincides with the group
0+(3, 1) which is the orthochronic sub-group of the Lorentz group 0(3, I), where
the upper portion of the light cone is sent to itself. Indeed, any motion from the
group 0+(3,1) preserves the Minkowski metric, the mass shell (4) and the condition
E > O. It can be shown that Lobachevskian space has no other motions.

Let us consider the so-called "velocity addition law". The accurate statement of
the problem is this: let a particle move at a velocity v =(vI, ~, v3) relative to a
pseudO-Euclidean coordinate system K = (x, y, Z, t) in a space endowed with a
metric

}J = ct, xl = x, x?- = y, x3 = Z.

Here v2 ~c2.
Now examine the elementary Lorentz transformation, say, in an (x, t)-plane

(detennined by the velocity v, where v2 < c2) to a new coordinate system (tl, xl).

What will the velocity V of the panicle be in the new coordinate system? By

definition, V is the "sum" of the velocities v and v. Obviously, v and vare

non-symmetric here. Calculate the quantity V(v, v). By definition
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dx = I (dx
l + Vdt\

(
-2 2)1/2

I-v /e

dt = I (V dxl +d/),

(
-2 2)112 e2

I-v /e

373

(7)

Given this, dx/dt =vI, dy/dt =~, dz/dl =V. In view of the fact that v=i = dxi/dt l ,

we can readily derive the formulae of velocity addition

~ =v(v, v).

For parallel velocities (i.e. ~ =V=0) the result is

-- v+v
v II V, v = -~~

I
vv

+­
2e

(8)

Formula (8) implies that if the particle velocity Ivl =e, then in the new coordinate
system the velocity Ivl is also equal to e in the absolute value.

This conclusion remains valid for non-parallel velocities inasmuch as Lorentz
transfonnations preserve the light cone.

Thus, the results of the special-theory of relativity are consistent with the
well-known Michelson-Morley experiment on the invariance of the speed of light in a
vacuum under the change to a unifonnly moving coordinate system created by
material bodies (i.e. moving with a velocity v< e).

We have already said that as vIe~ 0, the Lorentz transformation (7) becomes a
Galilean transfmmation

and the velocity addition law becomes the ordinary sum of vectors. It should be
emphasized that the velocity addition law in the theory of relativity is
non-commutative and even non-associative for non-parallel velocities.

Now let us see what effect the Lorentz transformation has upon the energy
momentum 4-vector.
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(mc mva 1
I ( 2 2 Itl ' 2 2 Itl)'
\ I - v Ie ) (I - v Ic )

1 I 12.1 v' 0)
P = ( ....2 2)1/2 \P + C P ,

I-v Ic

For low velocities we have

2o E mv ~
-P = - = mc+-+O(1Ie),

c 1c

(9)

2
-P

mvO" - -1 1 '2.3=----, V =(v ,0,0), v = (V, V"'", V-).

(
....2 2)1 /2

I-v Ie

(9')

From formulae (9) and (9') we obtain

P =p' + mv + O(IIe),

_2
- mv

E :: E' + p'V + 2 + O(1Ie). (10)

Thus, from the Lorentz transformations for 4-momentum we have derived the law of
energy-momentum transfonnation under Galilean transformations.

Now we shall view the simplest processes of relativistic particle scattering. It
is assumed that before the beginning of the process (t~ - 00) we had a set M of free

particles Xl' ... , xM with masses mI' .•• , mM, 4-momenta PI' ... , PM and angular

momenta M I , ••• , MM relative to the origin. After the scattering process (t~ + 00)

b . N fr . l'th I , ., dwe 0 taID ee partIC es WI • masses mI, .•. , m N, momenta PI' .•• , P Nan

angular 4-momenta MI , ... , M N' Whatever the process we must have the law of
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conseIVation of total 4-momentum and angular 4-momentum ("general geometric
conservation laws"):

M N

I,M. = LM~,
j=1 J ~1

M N
LP.= LP~.
j=1 J 1;:1

(11)

All the assumptions on the character of the process must be invariant under the
Lorentz (and Poincare) group.

EXAMPLE 1. Spontaneous decay of one in-flight particle, of mass M, into two
particles of masses ml, m2' Let the velocity of the primary particle be (v, 0, 0) and

let the 4-momentum of this particle have the fonn

o Mc 1
-p = , -p

(
2 2)1(2I-v Ie

To consider the decay process, it is convenient to employ the following step-by-step
procedure.

Step 1. We change to a moving coordinate system (C-system), in which the
fIrst particle is at rest, its 4-momentum being - p' = (Mc, 0,0, 0).

Step 2. Consider the process in the C-system. For 4-momenta we have the
relation

p' = p'i +p'i = (Mc, 0, 0, 0),

where pi' are momenta of the decaying particles, in the form

(

m2c m va )" 2 2 "0 ..Oa
-P2 = 22 1(2 , 22 1/2. = (-P2,-P2 ).

(I-vic) (I-vic)



376 APPENDIX 2

Obviously, Mc = mic f(1-vf/c2)l/2 + m2c f(l-vl/c2)I/2. Therefore,

mi +~ < M provided vI ~ 0 or V2 ~ O. Next, we obtain

p;<Clt.) + P'2Clt. = 0 (see Figure 94).

~p,"=

~
Figure 94. ~Pz

Thus, the whole process is characterized by the angle ep (which is the slope angle of

the momenta pt of decaying particles to the x-axis in the C-system) and by the

absolute value of the vectors

Step 3. We return to the original coordinate system and assume that, for
example, the distribution of decaying particles does not depend on the angle ep (for the
calculations we refer the reader to the book [29]).

EXAMPLE 2. Elastic scatterings of a pair of particles with masses mi and m2 (Le.

the particles themselves are assumed to remain unaffected). It is, in fact, assumed
that one particle of mass mi = M is at rest (VI = 0) while the other is incident on it
with the velocity v2 =(V2, 0, 0) and mass m2 =m•.

Step 1. We go over to the C-system, where the resultant 3-momentum is
equal to zero:

-(Pi +p:z) = (E'/C, 0,0,0).

Before our transition to the C-system we had
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-P1 = ( ~C ,)112 '
I-ViC

-P2 = (Mc,O,O,O).

Step 2. Consider the process in the C-system. We have

p'i + p'r = 0, a. = 1, 2, 3,

By virtue of the law ofconservation of 3-momentum, after the process we obtain the
new 4-momenta p'i, P'2 and the equality

P't+P'2~ = 0.

Applying now to the law of conservation of energy, we obtain

.f oJ'f)2 ="i (p,,~)2,
0.=1 (1=1

Thus, the elastic process in the C-system is characterized only by the angle ep - the

rotation of a pair of 3-vectors (Pi~) ~ (P'i~), p 2~ = - p 'i~.

Step 3. As before, we return to the original ("laboratory") system in which all
physical conclusions are drawn (see ref. [29]).

An elastic process in the C-system is considered exactly in the same manner as
in classical mechanics. The fmal difference is only due to the distinction between the
Lorentz and the Galllean transfonnations in the change to the C-system.
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A. 4 An electro-magnetic field

APPENDIX 2

As mentioned above (see A.I), an electro-magnetic field (in a vacuum) is defined by
the so-called vector-potential Aa(x), more precisely, by the class of equivalent

vector-potentials

where V is an arbitrary single-valued smooth function.
Directly observable are the strengths, i.e. a skew-symmetric tensor of the form

In pseudo-Euclidean coordinates (tI) in a space !R3.1 we introduce the electric
(E) and magnetic (H) field strengths:

Er:J. = FOa., H~p = Fr:J.p, a, lJ = 1,2, 3,

To each particle, there corresponds, beside mass, an electric charge e (either positive
or negative) with the result that particles in the field are affected by the force, both in
classical and relativistic mechanics (v is a three-dimensional velocity, the notation is
three-dimensional): .

• V] ev P
Pr:J. = eEr:J. +e [-xH = eE + -H ,

c a a C ap

where p is 3-momentum of particle before the field is on:

_ r:J.
pr:J. - mv

mva
p =-----

a ( 2 2)1(1.
I-v Ie

For the Lagrangian we have

in classical mechanics

in relativistic mechanics.

S(y) =J(L fr +!A xa +! AoxO
) dt,

ee c a C.,
Ao = $, jJ = ct.
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For time-independent fields
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A "gauge" is a choice of one or another representative in a class of equivalent
vector-potentials:

The most popular gauges are the following:
a) Lorentz (relativistically invariant) gauge

b) Coulomb gauge

c) Hamiltonian gauge

o
Ao = 0, Erx. = A w H = rot A .

Now we shall give particularly simple exercises from particle mechanics in the
fields E and H.

EXERCISE 1. The motion of a relativistic particle in a constant (independent of x, y,
z, t) electric field E ='(E, 0, 0). Here H = O. '

For the classical case this is the motion in a constant field with constant
acceleration. Find the relativistic analogue of this motion - the "particle
acceleration" by an electric field up to relativistic velocities.

EXERCISE 2. ~e motion of a classical (and a relativistic) panicle in a constant
magnetic field H = (0, 0, H); express the (Larmor) radius of the orbit (in an
(x, y)-plane) in terms of the energy and the magnetic field.

We leave the consideration of this to the reader (see ref. [29]).

The following elementary statements hold.
1. On switching on a magnetic field, the energy-momentum vector of a particle

is shifted by the vector-potential (see A.I):
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2. In particular, in the absence of an electric field the energy remains
unchanged provided that the magnetic field is constant in time: here we should take

o
Ao=$ =0, A ct. =0, a = 1, 2, 3.

An electric and a magnetic field together form a skew-symmetric tensor Fab~)
which, as pointed out above, is dependent on a point in space. It is natural to ask the
following questions which require geometric solution:

a) What functions of the tensor Fab at a given point Xu are invariant under

Lorentz transformations?
b) To what simplest form can the tensor be brought by a Lorentz trans­

formation?
The general algebraic rules tell us that to seek the invariants of the bilinear fonn

Fab in a space endowed with a metric gab' we should construct the equation

The coefficients of the polynomial PCA.) are just these unknown invariants

(symmetric functions of 1.. 1,1..2,1..3,1..4 if det gab =± 1). In view of the skew

symmetry of the matrix Fab' the POlynOlIljal P(A.) acquires the form

where

a = const • (E2 - H2), b = const • (Ell)2

(verify this!) and gab is the Minkowski metric. The invariance of the quantities

E2 - H 2 and (EH)2 is beyond doubt also for the reason that
. .

Fab Fed E
abcd = (Ell) (const).

The absence of invariants other than eigenvalues A; - or the coefficients of the

characteristic polynomial- is fully analogous to the corresponding theorem in an
ordinary Euclidean space~ for the group 0(4).
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However, for the Lorentz group, due to the indefiniteness of the metric gab'

the reduction of the matrix Fab to the classical block-diagonal form consisting of

2 x 2 matrices appears to be generally impossible; the amount of possible cases and
types of eigenvalues is mauch larger. Depending on invariants, we single out the
following cases.

1. E2 - H2 is arbitrary, EH'it O. A Lorentz transfonnation may result (at a
given point xo) in EIIH.

2. EH = 0, E2 - H2 'it 0: a) E2 > H2, b) E2 < H2• Here we can always
come to the form H =0 in case a) and to the fonn E =0 in case b).

These cases are therefore referred to as "purely electric" or "purely magnetic".
3. E2 = H2, EH = O. Here all the eigenvalues 1..i are equal to zero: 1..j =0,

PCA) = 1..4•

Lorentz transfonnations do not change the propeny that lEI = IHI and E 1. H.
This case corresponds to electro-magnetic waves propogating in one direction (say,
along x), i.e. to vector-potentials of the form Ao = 0, ACl,. (x - cr), but we shall not

discuss Maxwell's equations here (see ref. [29]). The only thing wonh noticing is
the dimension of the fle~ds. and charges which is detennined from the following
requirements: .

1) eE has the dimension of force,
2) the dimensions of E and H coincide,
3) the quantity (E2 + H2)/8rr. has the dimension of energy density.

The total energy of the field itself (in the absence ofcharges) is given by the fonnula

whence

Here [ ] implies the dimension of the quantity in brackets - the product of the scales
of mass m, length L and time T raised to corresponding powers. We see that the
dimensions of the fields appear to be fractional.

The simplest fields are:
1) E =const, H =const, which are constant fields; here E and H are any

three-dimensional vectors;
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2) Ao =e/lxl, 1tI = L (X'-)2, A~=0, a =1,2,3 (the Coulomb potential of a
a

point charge);

3) A = Re (A(O) exp (±-i (rot - koc.~»), ro =elkl, A(O) =const., Ao(0) = 0,

L A~(0) koc. =0, i.e. the 3-vectors (ka) and (A~(O~ are orthogonal. These are
a

running waves with "polarization" A(0).

A. 5 The simplest information on gravitational fields.

Recall that by the definition given in A.l, the relativistic gravitational field is simply
an indefmite metric gab in the space of events, or equivalently, in a four-dimensional

manifold M4
• The first question that naturally arises with such a definition of a

gravitational field is the question of consistency with the classical Newton theory of
gravitation. In a non-relativistic theory, gravitation is determined by a scalar field
(potential) tP(x, y, z, t). The potential itself satisfies the (poisson) equation

3 ;i
~tP = 41tp, ~ = L , i = X,

a=1 (dXJ/
2 3

X = y, x = z,

where p is mass density. The motion of a massive particle in a field is specified by
the (Newton) equation

•.~ - a '"x - - ~'f' (1)

It is noteworthy that the mass m drops out of these equations, and it is only important
that m:# O. This property unites the gravitational forces with the so-called "geometric
forces" which are due to a lame choice of the coordinate system. For example, let a
particle move freely (without forces); let us change to a coordinate system moving
with acceleration aCt). Then the equation of motion in a moving coordinate system
assumes the form

Ox = - aCt),

where the particle mass does not enter. Due to this, the relation between gravitation
and geometry was hypothesized long ago, but this idea assumed its ultimate shape
only in the course of the creation of the general theory of relativity, i.e. after the
appearance of the special theory of relativity where the concept of a "four­
dimensional indefinite metric" had appeared for the first time.
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Zero-mass particles in non-relativistic theory did not interact with gravitational
fields.

In the general theory of relativity, the motion of a test particle which has no
retroaction upon the gravitational field gab(x), is assumed to proceed along time-like

geodesic lines of the metric gab' The motion of light particles (photons) proceeds

along light-like, or isotropic, geodesics. The particle is assumed to be unaffected by
any force other than gravitational. To what procedure can we apply to compare the
Newton equation (1) with the equation of time-like geodesic in a cenain metric?

We shall introduce the class of ''weak'' gravitational fields gab in the form

(2)

where fonnally lie -+ 0 (e is the speed of light in a vacuum, regarded here as a fonnal

large parameter). The metric g<J) coincides with the Minkowski metric, the quantities

'Ilab(x) and any of their derivatives with respect to X'-, t should be finite. the remainder

O(l/c3) should be of the order of 1/e3 together with the derivatives with respect to the

coordinates xr:J., t. The equation of geodesics is determined by the so-called
"Christoffel symbols" Iij :

where

o'k+ N oj oj - 0X jjX x - (3)

CLAIM:. For the weak gravitational field (2) equation (3) of "slow" time-like
geodesics has the form ofNewton's equations mod O(l!e):

°xr:J. = - dr:J.ep +OO!c),

where
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Proof Christoffel's formula expresses the symbols rabe in terms of fIrst derivatives

of the metric gab =gW + lit? T)ab + O(I/c3), where g<J are constants and all the

derivatives dT)aJd~, dT)a~t have zero order in lie. The parameter of running

through a geodesic is natural: equation (3) just involves a natural parameter

d:fl dx
b

1/2 °
e d't = (gabdt 7t) dt, t = x Ie.

From this and equation (2) we have

So, instead of the parameter 't we can use the absolute time t = x°le. Next, we have

•• cc. T""'O". -o-b
X = J abx X •

Taking into account the formula for Christoffel symbols, we obtain the only term
which has zero order with respect to lie:

00
I an ( ag ) 3 I a4- 3

~ = -g --- +o(lie ) = -- -+O(lIe)
2 arx 2e2 arx

(there is no sum over al). This, obviously, implies the assertion.
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Our prime concern in this appendix is the role of tensors in solid state theory; in
particular, we shall acquaint ourselves with the physical tensors of crystals and with
crystallographic groups.

We shall consider an ideal crystal, i.e. a crystalline structure which occupies an
entire three-dimensional Euclidean space or a Euclidian plane. A real crystal, of
course, has boundaries, but by way of introduction of periodicity conditions on the
boundary we shall bring our investigation to an analysis of uinfmite" crystals. The
crystal is regarded as consisting of a few types of atoms fixed rigidly in space (or in
the plane) and disnibuted throughout space (or the plane) in a regular way. We shall
suppose, as is convenient in such cases, that a crystal contains a sub-set of atoms

defined by the following vectors: a=n1eX1 + n2eX2 + n3cX3, where n1' n2' n3 are

arbitrary integers and 0.1, eX2' eX3 are linearly independent.
Because of the imponant role played by planar symmetry in nature, we shall

also dwell on planar crystalline structures. For a deeper insight into planar
symmetry and its manifestations in organic and inorganic nature, we refer the reader
to the remarkable lecture by Herman Weyl published in the book Symmetry
(Princeton, 1953).

DEFINITION 1. The lattice R of a crystal is the set of all atoms of the crystal. In
other words, we may primarily assume the lattice to be an arbitray set of points either
in IW or in lW.

In so far as the excessive generality of this definition of latttices does not allow
us to make any concrete statement concerning them, we shall appreciably narrow
down the class of lattices to be analyzed here and resnict our consideration in the
sequel to the so-called translation-invariant lattices which we are going to define a
little later. Precisely this type of lattice corresponds to real physical crystals.

A crystal lattice always contains, as a sub-set, the set of all points (atoms) with
position vectors of the form 0.= n1 0.1 + n2a2 + n3a3 (or in the planar case,

0.= n1a1 + n2~' Here n1' n2' n3 are arbitrary integers. (Figure 95).

DEFINITION 2. The vectors 0.1, ~, 0.3 are called the vectors ofbasic translations.

The vectors 0.1, ~, <I) are occasionally called the primitive vectors ofthe lattice, and

they are always assumed to be linearly independent
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Figure 95.
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Translation along the vector a is parallel transpon in the direction of the vector

a over a distance equal to the length of this given vector lal.

REQUIREMENT. The lattice R of a crystal is customarily assumed to be sent to
itselfunder basic translations along al'~' a3 and their integer linear combinations;
i.e. we require that the crystalline structure remain invariant under all translations
generated by the vectors al' a2. a3' This is one of the basic propenies of real
("infinite") crystals.

We shall denote translations along al. ~. a3 respectively by tl' t2. t3' Then
any translation can be written in the form

DEFINITION 3. The lattice R is called cranslation-invariant if it is sent to itself under

an arbitrary translation of the form T =nl tl + n2 t2 + n3 t3'

Translation-invariant planar lattices are defined analogously...
So. we restrict ourselves to considering only translation-invariant lattices (on

the plane or in space). Of course. the boundaries of a real crystal will be shifted. but
we shall be concerned only with the interior of the crystal (this is just the reason why
we have introduced an ideal infinite crystal into our consideration).

An important REMARK. Suppose that we are given a certain lattice R. We
shall always assume the vectors all ~. CX) (or a l •~ in the planar case) to be the

smallest vectors. translations along which preserve the crystal (Le. the crystal slides
along itself).

DEFINITION 4. A parallelepiped with vectors all a2' «3 as sides is called a

primitive (unit) cell of the crystal lattice.
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Figure 96 illustrates the simplest two-dimensional lattice.

• • • • • u

• • • •=EJ.. '::. • • •:z,

Figure 96. • • • • • •
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Clearly, by virtue of translation invariance, the whole crystal consists of a
union of primitive cells which underwent translation.

The simplest lattice depicted in Figure 96 is characterized by the property
that each atom (Le. each point of the lattice) is obtained by applying translation

T =n1 't1 + n2 't2 + n3 't3 to anyone of them. This fact can be fonnulated as follows:

the set ofall translations is transitive on the lattice. This is, however, far from being
valid for all lattices. In particular, this may not be the case for the follOWing reason:
a crystal lattice is in general composed of several types of atoms, and so it is natural
to require that under translations atoms of one type be again sent to atoms of the same
type, and not to those points which are already occupied by atoms of a differen type.
To put it differently, the set of translations may well be not transitive on the lattice.
Such a lattice is shown in Figure 97. Here atoms of type A cannot be translated to
atoms of type B.

@ @ 0 0 0

@ ®~
® ®

0 0.......... ; ..
a.: ....•....

@ ::::::@):: ® @
@ A··..;··· ··A @ 0(1"

0
® ® ® ®

Figure 97. 0 (1) 0 0

Therefore, in order to specify a crystal lattice completely, it is not enough to
give the set of translations. On the other hand it is clear that since the whole lattice is
a union of primitive cells, it follows that to describe the lattice completely, we should
determine, in addition to the set of translations, the position of atoms in one particular
primitive cell.
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DEFINITION S. A lattice R (in two or three dimensions) whose atoms all are
positioned at points of the form nl al + n2~ + n3 a3 (or nlal + n2a2 in the planar

case), where nl' n2' n3 are arbitrary integers, is called a Bravais lattice.

We say that the set of all translations is transitive on the Bravais lattice.
Different Bravais lattices will differ only in the shapes of their primitive cells. Any
two Bravais lattices can be transformed into one another by means of a suitable affme
transformation.

DEFINITION 6. Let Xl' X2, •• ,XN be all atoms positioned inside a primitive cell.

Then the vectors Xl' X2, ••• XN (all going from the origin of coordinates of the

vertex of the primitive cell to the points XI' X2, .. , XN ) together form a basis of the
lattice, as shown in Figure 98.

CLAIM 1. A lattice is completely detennined by the set of vectors of the basic
translations together with the basisfar the lattice.

The proof of the claim is obvious from our defintions of basis, of translations
and from the propeny of translation invariance of the lattice.

We shall establish the agreement between the properties of an ideal infinite
crystal and a real crystal with boundary, as say the real perfect three-dimensional
crystal depicted in Figure 99.

Figure 98.

A1--';""-:"

Figure 99.

Here N I , N2 and N3 count the numbers of primitive cells stacked along the

corresponding edges of our parallelepiped (crystal), i.e.
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We shall apply translations along vectors multiple of aj. The whole procedure

will look like this: we translate the crystal along aI' slice off the layer protruding

beyond the right boundary of the crystal and glue it to the left boundary which now
has moved into the parallelepiped along the vector al. The use of such a formal

model appears to be justified: most of the physical results remain unchanged under
this procedure. Clearly, this point of view is exactly equivalent to the consideration
of an infmite ideal crystal, (a one-dimensional crystal is merely a linear chain of
atoms in which the distance between neighbouring atoms is equal to one apd the same
number). The introduction of these conditions of periodicity on the boundaries of a
crystal can be made illustrative, i.e. they can be explained geometrically. Since the
boundary of a crystal consists of two atoms numbered 1 and N, any translation of the
crystal becomes a rotation of the circle. We could, of course, believe that a
three-dimensional crystal is also glued to become a three-dimensional ring in a
four-dimensional space, but this idea does not seem natural.

With each cell there is associated, in a natural way, the concept of a symmetric
cell (not to be confused with a primitive cell!). A symmetric cell has an atom as its
centre.

DEFINITION 7. In a lattice R with the atom fixed, the symmetric cell is the set of
points of space (or the plane in the planar case) situated closer to the fixed atom than
to any other atom of the lacttice. The symmetric cell is sometimes also called the
Wigner-Seitz cell.

Figure 100 illustrates a hexagonal two-dimensional lattice on which a primitive
cell and a symmetric cell are indicated.

primitive
(unit) cell

symmetric
cell

Figure 100.
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The boundaries of a (two-dimensional) symmetric cell are perpendicular
bisectors of the edges of the lattice, joining the fixed atom to all its nearest
neighbours.

We now turn to transformations preserving a lattice (i.e. mapping a lattice onto
itself). Consider the group of motions of a space (or a plane), i.e. the set of all linear
transformations preserving the quadratic form ds2 = (tJxl)2 + (tJx2)2 + (dx3)2

(correspondingly, d? = (tJxl)2 + (~)2). We shall denote this group by G3 (by G2
in the planar case). Any element g of the group G3 (or of Gi) can generally be

expressed in exactly one way, as a composition of two transformations, of which one
is a parallel transport T and the other is a rotation a (proper or improper, i.e. with_

determinant -t 1 or -1), that is, g = To..

The set of parallel transports {T} forms a sub-group T 3 (T2) in G 3
(respectively, Gi) which is a nonnal divisor in G3 (or in Gi).

From among all transformations of the group G3 (Gi) we shall single out those

mapping a certain fixed lattice R into itself.

DEFINITION 8. The set of transformations (motions) of the group G3 (or Gi)
realizing a self-map of a lattice R are called the space-group of this lattice, which we
shall denote by G3(R) (or respectively G2(R».

It is clear that the set G3(R) (or G2(R» is the group in the usual algebraic

sense.
We shall formulate all our further defmitions only for the three-dimensional

case, since for the planar case the corresponding properties hold similarly.
The group G3(R) contains a sub-group T3(R) which is the group of parallel

transports (translations).

DEFINITION 9. The translation group of a crystal (i.e. of a lattice R) is the
sub-group T3(R) of the group G3(R), consisting of all possible translations T (recall

that any translation of our lattice R has the form T =nltl + n2~ + n3t3' where tj

(l S; i ~ 3) are primitive translations generated by the basis vectors 0.1' ~, 0.3). ~

Alllatrices R under investigation are translation-invariant.
It can easily be shown that the sub-group T3(R) is normal in the group G3(R)

(this fact will, however, be of no use in the sequel). Indeed, we shall show that if
g E G3(R) and t E T3(R), then gtg-l E T3(R) for any g and t. In other words, we

have to make sure that the transfonnation gtg- l is again a translation. However, this

property of the transformation gtg-l is obvious.



CRYSTALLOGRAPIDC GRO'G1'S 391

We shall assume from now on that a cenain point in space, say, the "origin of
coordinates" is fixed; for example, this may be the vertex of a primitive cell from
which the vectors of primitive translations emanate. All possible rotations of a lattice
(with detenninant ± 1) will be considered relative to this point O. Clearly, as the
point 0 we can take any arbitrary point in space. In particular, we assume all
rotations to preserve the point O.

It is well known that any transformation g E G 3 admits a unique

representatiuon in the fonn g = To. (see above), where T is parallel transport and a is

rotation with det (a) = ± 1. Since G3(R) c G3, it follows that any element

g E G3(R) admits a representation of the form g = To. (note that generally speaking

, To. ~ aT). We should also emphasize an important fact: the transformations T and

a need not necessarily belong to the group G3(R); in particular, T may not be

included as an element of the translation group of a crystal. (Figure 101).

group of
rotations

Figure 101.

group of
translations

Figure 101 shows the group of all rotations in IW (i.e. the group of orthogonal
matrices 0(3)) in the form of two pieces, which agrees with the fact that the group
0(3) (the group of all three-dimensional orthogonal matrices) consists of two
connected components (as a topological space), namely, one (the sub-group SO(3))

composed of matrices a with determinant + 1 and the other composed of matrices a
with detenninant - 1. The group of all parallel transports in !R3 is connected (it is
described by three parameters). At the same time, the group G3(R) is discrete, i.e.

when we consider it as a topological space we see that it consists of a set of isolated
points, each point being a transformation of the lattice R. To put it differently,
discreteness of a group means that in the group there exists no transformations
arbitrarily close to the identity transformation of this group (except, of course, the
identity transformation itself).
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Thus, any element g E G3(R) has the fonn g =Ta.. (The ,transformations T

and a are reconstructed uniquely from the transfonnation g, le. from the equality

g =To. =T'a' it is immediate that T =T ', a =a'. Indeed, if Ta. =T'a', then

(T'r l = 0.'0.-1, where (T')-IT is a translation and 0.'0.-1 is a rotation. A rotation

may appear to be a translation only in the case when it is identical, which implies
T = T and a = a'.) The group G3 does not, however, fall into the direct product of

its sub-groups: 0(3) and T3 since, generally speaking, To. ¢ aT.

DEFINITION 10. The set of all transfonnations a E 0(3) such that for a certain T

(parallel transport) the transfonnation g =To. belongs to the group G3(R) is called the

point group ofa crystal.

In other words, a belongs to the point group of a crystal if and only if there
exists a parallel transport T (not necessarily belonging to T3(R)) with the property

that the composition To. is the element of the space group of the crystal. We shall
denote the point group by S3(R). This group is often referred to as the symmetry

group ofa crystal (ofa lattice) and its elements as symmetry operations. Recall that
the point 0 - the centre of rotations - need not necessarily be a point of a given
lattice R. However, we have not yet proved that the set S3(R) forms a group.

CLAIM 2. The set ~(R) is a group in the usual algebraic sense.

Proof. Let ai' 0.2 E S3(R). It should be proved that as =0.1 ·0.2 also belongs

to S3(R). By the definition of S3(R), there exist TI and T2 such that Tlal E G3(R)

and T2a2 E G3(R); since G3(R) is a group, it follows that the transfonnation

(Tlal)(T2Cl:2) E GI(R). Suppose that the translations TI , T2 are determined by

vectors XI' x2 and the rotations 0.1,0.2 are detennined by matrices AI' A 2,

respectively. Then if r is the radious-vector in a space R3, the following equality

holds (Tlal)r = Air + XI; (T2aVr = A2r + x2 (rotation first and then parallel

transport). From this we have (Tlal)(T2a~r=AIA2r + (AIX2 +xl)' Thus, the

rotation 0.3 = 0.10.2 detennined by the matrix A IA2 enters in the transfonnation

g =T3a3 E G3(R), where the translation T3 is given by the vector x3 =AIX2 +XI'

which implies that alCl:2 E S3(R).

Next, let a E S3(R). We should prove that a-I E S3(R), where 0.-1 stands,

as usual, for the inverse transfonnation. Since a E S3(R), there exists a T such that

g =To. E G3(R), i.e. g(r) =(Ta)(r) =Ar + x. From this we come to the conclusion
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that since G3(R) is a group. it follows that g-J E G3(R). i.e. (g-I)(r) = (Tarl(r)

=A-Ir_A-I(x) =Br +Y. where B =A-I;y =-A-I(x). Finally we are led to a-I E

S3(R).

The associativeness of multiplication in S3(R) and the existence of a unit

element can be verified directly. and our assertion follows.
We now give an example of a planar (two-dimensional) crystal lattice R for

which there exists an element g E G3(R) whose expression as a composition of the

fonn g =Ta has the property that T ~ ~(R) and a ~ G3(R). The lattice is depicted

in Figure 102.

······ -L II • • • • •
(12

• • • • • • • •
• • • • • • • • • • • •

rtf

• • • • • • •_a
.-.-.-.-.-.-.-.-.-.-.-.-.-.-~

• • • • • • • •
Figure 102. • • • • • • • • - • • • • • •

The reflection a E 0(2) in the straight line I, obviously. does not preserve the lattice
R. Next. the parallel transport along the vector a (note that the translation T generated
by the vector a is not a primitive translation of the lattice) does not preserve the lattice
R either. that is. neither of the transfonnations a and T belongs to the group G2(R),

• • • • • h' ..

but the transfonnation g = Ta, obviously, maps the lattice R into itself. This

operation (transfonnation) g = Ta is called the glide-reflection symmetry, and the
lallice R possesses the glide-reflection symmetry. It should be emphasized once
again that the elements (transfonnations) of the point group of a crystal (of a lattice)
do not, generally. map the crystal (the lattice) to itself. This group is of great
importance in the theory of crystalline structure. and it is not for nothing that it is
alternatively referred to as the symmetry group of a lallice since along with the
"genuine" symmetries of the lattice it includes also those transformations which send
the lattice into itselfonly after a translation is applied. Clearly, the lattice depicted in
Figure 102 generates a three-dimensional lattice possessing glide-reflection
symmetry. There exist crystals which possess. in addition to this type of symmetry,
also screw, (or axial screw) symmetry. This symmetry is a composition of rotation
a E O(s) and translation T of the lattice R along the axis of this rotation. We
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recommend to the reader that he construct an example of a three-dimensional lattice
possessing an axial screw symmetry.

Another group of transformations of a lattice R is sometimes considered.

DEFINlTION 11. The stationary group H3(R) ofa lattice is the sub-group G3(R)

consisting of all lattice-preserving transformations which leave the origin 0
motionless. (Recall that the point 0 is fixed.)

It is clear that H3(R) = G3(R) r. 0(3) since any transfonnation of a lattice

which leaves the point 0 at its original place is an orthogonal transformation, i.e. a
rotation around the point O. whose detenninant may be either + I or - 1. Note that
the group H 3(R) is not, generally speaking, a factor group of the group G3(R) with

respect to the sub-group T3(R): H3(R)/T3(R). See, for instance, Figure 103.

Figure 103.

REMARK. The group H3(R) does not generally coincide with the symmetry group

(point group) S3(R).

CLAIM 3. The groups H3(R), S3(R) and G3(R) regarded as sub-groups in the

group G3 are linked 1Jy thefollowing relation

Proof. We shall fIrst prove that H3(R) c: S3(R) r. G3(R). Let a. E H3(R). Then a.

is, in particular, a rotation (and belongs to G3(R», and therefore we may put g = To.,

where T = E is an identical transfonnation (translation along a zero vector), i.e.
g = a = Ea; whence by defInition of S3(R) we have a. E S3(R).
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Inversely, we shall prove that H3(R):::> S3(R) n G3(R). Suppose a E S3(R)

and a E G 3(R). This means that a preserves the lattice R and, besides, is a

rotation, i.e. a E 0(3) n G3(R) and leaves the point 0 motionless, that is,

a E H3(R). The fact that a enters a cenain decomposition g =Ta is inessential

for us now, which completes the proof.

If a lattice R is Bravais, then the groups S3(R) and H3(R) coincide. This

statement follows from the definition of a Bravais lattice.
Figure 103 illustrates all the subgroups which we have introduced into our

consideration and their interaction with one another.
The stationary group H3(R) may be said to consist of "genuine" symmetries of

the lattice, and the group S3(R) of glide symmetries.

It is not every sub-group in the onhogonal group 0(3) that can be the point
group (i.e. the symmetry group) of the lattice. Translation invariance of the lattice
imposes very rigid limitations on the groups S3(R), G3(R) and H 3(R). We shall

denote by H3(R)o the sub-group in H3(R), consisting of proper rotations only, i.e.

H 3(R)o =SO(3) n G3(R); each rotation of H3(R)ohas detenninant + 1 and does not

move the point O. As the point 0 we take an arbitrary atom of the lattice.

THEOREM. 1. Let R be a translation-invariant lattice and let H3(R) be the stational)'
group of the lattice. Then the group H3(R)o consists of a finite number of

transformations each ofwhich is a rotation ofthe point 0 through an angle $ multiple
either of7t/3 or 7t/2.

Proof. Suppose a E H3(R)o is a proper rotation. Then, as is welllcnown from

algebra, the rotation a is a rotation through a certain angle $ around a certain
motionless axis 1passing through the motionless point O.

Suppose n is a plane onhogonal to 1, through the point O. Each lattice R
contains a sub-lattice R I consisting of points determined by vectors a =

n2al +n2~ + n3C1) (see the definition of a lattice). We shall project all (atoms)

lattices R I parallel to the straight line 1onto the plane n and consider all those

projections of the points which are the nearest to the point O. We fix one of such
points Al (we find a few such points) as shown in Figure 104.

Since the lattice RI is symmetric about the point 0 (this is a consequence of

translation invariance; the whole lattice R may appear not to be symmetric about the
point 0), it follows that along with each point BI E RI, the point B'I opposite to it
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also belongs to RI' Under the rotation around I through the angle (j) the point B I will

be sent to a point of the lattice R I (since the lattice R I is preserved by the

transformation a). i.e. the projection OAI will be sent to the projection OA2 with the

angle (j) between them. Since the vecto~ OB I and OB2 belong to the lanice. their

difference - the vector B IB2 - also belongs to the lattice RI (we mean the vector

parallel to the vector BIB2 and starting from the point 0). From this it foHows that

the length of the vector A IA2 is not less than the length of the vector

OAI (IOAII = IOA2 1) since the points Al and A2 are separated from the point 0 by

the smallest possible distance.

Figure 104.

So. in the triangle OA IA2 the sideAIA2is not smaller than IOAII = IOA2 1.

that is. the angle (j) is not smaller than x/3. Applying the transfonnation a
successively. we obtain in the plane II a rectilinear polygon with vertices AI' A2• A3•

.•. •Am (where Am+1 = AI)' and since (j) ~ x!3. we have 1 S m S 6. However. by

virtue of the symmetry of the lanice RI• the polygon AI' ...• Am is also symmetric

about the point O. This means that m can assume only values 2. 4. 6. Hence (j) may

be equal to lat. 1at/2. k:rr./3. which implies the theorem.

We now tum to a planar lattice R and the group H2(R)o- The theorem proved

above allows us to describe completely the set of groups H2(R)o for arbitrary planar

lattices R; in other words we shall now give the list of five groups G I• G2• G3• G4•

G6 such that any group H2(R)o coincides with one of these five groups.

THEOREM 2. (Oassification theorem in two dimensions.) Let en (where n = I, 2,

3. 4. 6) denote a group ofn elements of thefonn

......."
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(where 0 ~ k S; n -1), i.e. the group Cn consists ofrotations through an angle 27tk
n

about the point O. Thenfor any planar lattice Rn its group H2(R) coincides with one
of these groups Cn (n = 1,2,3,4,6).

The result is immediate from the theorem proved above.

Thus, planar lattices R may possess symmetry only under five groups H2(R)o.

(It should be noted that the group C 1 consists only of a single identity

transfonnation.) The corresponding classification in the three-dimensional case gives
the list of 32 possible symmetry groups. This classification is too sophisticated to be
presented in this book.

We shall now again return to tensors. We shall consider, for example, such a
macroscopic property of crystals as electrical conductivity which describes the
relationship between the electric field vector and the current density vector j. This

relationship is specified by the relationjk =at EoP wherej =Un}' E ={Es }' and {o-'k}
is the electrical conductivity tensor of the medium. In the case where the medium is
isotropic, o-'k = cr8sk> where cr is a scalar, Le. in this simplest case the electrical

conductivity is given by a scalar cr. In the general case {o-'k} is a tensor. We shall

consider the electrical conductivity tensor of a crystal described by the cubic lattice in
!W, Le. a cubic crystal (Figure 105).

Figure 105.
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Suppose we are dealing with an ideal crystal whose lattice R fills the entire
space. Oearly, the group S3(R) of symmetries of this crystal contains, in particular
the following three transformations:

( 0 1OJa l = -100.
o 0 1 ' (

0 0 l'
a 2 = 0 1 0 I·

-1 0 0)' (
1 0 0'

a 3 = 0 0 1 1
o -1 0)'

i.e. (tl is a rotation through rc/2 about the z~axis, ~ a rotation through rr/2 about the

y~axis and a3 a rotation through rr/2 about the x~axis. Since the lattice R goes into

itself. it follows that theses three symmetry operations preserve the tnesor (all. We

shall write this. We shall denote by A the matrix (a'k}' Then A} = cr.j A ail = A

for any i, 1 SiS 3. Calculating the matrix A I, we obtain

From this it follows that crl =~. Next, calculations of the matrices A~ and Ai yield

crl =~ = oj.
The group S3(R) contains three more transformations:

(
-1 0 OJ

~= 0-10;
1 0 0 1 (

1 0 OJ
~ = 0-10;

2 0 0-1
o OJ10,
o -1

i.e. ~1 is a rotation through rc about the z-axis, ~2 a rotation through rc about the

x-axis and l3J a rotation through rc about the y-axis. The lattice goes again into itself,- -which yields the relations A j = ~jA ~il, 1 S i ~ 3; calculating the matrix A 1 we

obtain
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..... .....
whence al =ai =a1 =~ =O. Calculations of the matrices A 2 and A 3 similarly

give us~ =0 for i~ j, i.e. we are finally led to

o
1
o

that is,

~ = aOk I

where a is a scalar. We have thus proved the imponant statement that the electrical
conductivity of a cubic crystal is isotropic, i.e independent of direction, as is the
electrical conductivity ofany isotropic medium. This result is not physically obvious
since it would be naturnl to expect that the conductivity of a cubic crystal in directions
parallel to the edges differs from that in the diagonal direction. We have thus
demonstrated the important (although rather elementary) application of the symmetry
group S3(R) by lowering drastically the number of independent components of the

tensor {oi}.

We shall now proceed to three-dimensional lanices. The problem of
classification and complete description of all types of the groups H 3(R) and G3(R) is

much more complex than in the planar case treated above. We shall therefore not
carry out this classification in full detail but shall restrict our consideration to
answering a simpler question: What is the structure of finite groups of proper
rotations in the three-dimensional case? Since the stationary group for an arbitrary
translation-invariant three-dimensional lattice is discrete' (and, therefore, finite), it
follows that by compiling a complete list of all fmite sub-groups of the group SO(3),
we shall thus estimate "from above" the list of groups H 3(R)o and S3(R)o for three­

dirnensionallanices.
We shall begin by presenting a list of finite groups of rotations of a

three-dimensional space. To this end we first consider some straight line I through
the point 0 and assume II to be a plane orthogonal to the straigth line I and also

passing through the origin O. We consider in the plane n the action of the group Cn

(the cyclic sub-group of rotations in the plane II about the pOint 0 through the angle

2x/n). Clearly, this group becomes the rotation group of the entire three-dimensional
space about the axis I. We denote this group' also by en' Here n= 1,2,3, ... , the

group C1 consisting of the single identity transformation. In addition to the group

Cn' there is another group Dn, acting on the plane. The reflection of the plane II
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relative to a certain straight line q. lying in the plane II. in a three-dimensional space

can be realized using rotation about this straight line q through an angle 1t. Thus.
these improper rotations of the plane can be complemented to become proper
rotations of a three-dimensional space. We shall denote this newly appearing group
by D ~. The group D ~ will consist of the following transfonnations: all the

transfonnations from the subgroup Cn and besides. the rotations by the angle 1t of the

whole three-dimensional space about n axes lying in the plane II and making group

angles equal to ;1t =*" with one another. It should be emphasized that the

D i . as well as the group C 2. consists only of two elements: of identity_

transformation and half turn about the only straight line in the plane II. and therefore
these two groups are isomorphic. Therefore. if we wish to make the list of different
(non-isomorphic) groups, we should eliminate the group Di. We thus arrive at the

following list: en' n = 1.2.3•...• ; D'n. n = 2. 3. 4•....

Along with these two infini~e series of 4iscre~e groups. in a three-dimensional
space there also exist a few more exotic transfonnation goups. Indeed. we shall
consider five regular polyhedra in a three-dimensional space. namely. cube.
octahedron. icosahedron. tetrahedron and dodecahedron. With each of these we can
associate a finite group of proper rotations sending a particular polyhed..-on on to
itself. In doing so. we obtain five more finite groups. some of which however
coincide. Only three of them are actually distinct, namely the groups of tetrahedron.
cube and dodecahedron. We shall consider this point in more detail. We shall
inscribe a sphere into a cube so that the sphere be tangent to the cube faces. and into
this sphere describe an octahedron whose vertices are tangent to the sphere at those
points where the sphere is tangent to the cube. It is clear that any rotation sendi!'!~

the cube into itself will also leave invariant the octahedron. and conversely. for which
reason the symmetries of the cube and octahedron coincide. In exactly the same way
we establish the coincidence of the symmetry ~oups (i.e. proper rotation) of
dodecahedron and icosahedron. We shall denote by T. W. P the groups of
proper rotations respectively of the tetrahedron, cube (and octahedron).
dodecahedron (and icosahedron). We leave it to the reader to verify that the orders of
these three groups are. respectively. 12. 24. 60. If we consider the complete groups
of polyhedron rotations (i.e. those including also improper rotations). then the...............
obtalned groups T. W. P will naturally have orders 24. 48. 120. It turns out that the
rotation groups presented above fully exhaust the list of proper dlscrete groups of
rotations of three-dimensional space.
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THEOREM 3. The exhaustive list of finite groups of proper rotations in
rhree-dimensional space has the form Cn (n =1,2, 3, ... ), D~(n =2, 3, 4, ... ).
Here Cn is the group (cyclic) consisting ofrepeated applications ofrotation about

some axis I through an angle a. equal to 2xln, where n is an integer; D~ is the group

ofthe same rotations, together with the reflections relalive to n axes lying in the plane
perpendicular to I and making an angle 012 with one another, T, W, P are the
rransformation groups preserving respectively the regular tetrahedron, cube (or
octahedron) and dodecahedron (or icosahedron).
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APPENDIX 4

HOMOLOGY GROUPS AND METHODS OF THEIR
CALCULATION

One of the most important geometric invariants of a manifold is the homology
groups which we shall define below. We have already defined the one-dimensional
homology group H1(Mj as the factor group of the fundamental group over the first
commutant.

Several ways to define the homology groups exist. _
To begin with, consider closed differential forms of degree k on the manifold

M" (i.e. locally we have

'·1 ika,· ,. dx A ... A dx, doo = 0).
1 -. k

A closed differential form is called exact (or cohomologic to zero) if 00 = doo', where
00' is the fonn of degree k- 1.

DEFINITION 1. The cohomology group Hk (M"; [R) is the quotient group of all
closed forms of degree k with respect to the sub-group of exact fonns, or
alternatively the group of equivalence classes of closed fonns up to exact fonns
(001 .... 002 if 001 - ~ = doo').

The simplest fact concerning calculation of the cohomology groups is the
following statement

CLAIM 1. For any manifoldM' the group fIJ(M"; lR) is a linear space ofdimension
q equal to the number ofconnectedpieces (components) ofthe manifold.

Proof. The form of degree 0 is a scalar functionJ{x) on the manifold. If this fonn is
closed, then df(x) =O. This means that the function./tx) is locally constant, i.e.
constant on each connected piece of the manifold. Closed forms of degree 0 are
merely sets of q constants, where q is the number of pieces. The statement follows
since there are no exact forms here.

If there exists a smooth map of manifolds,f. M1~M2, then there is defmed

the (well-known to us) map of the forms 00'" !*(doo), such that d(/*oo) =!*(doo).
Therefore the map of homology groups is defined to be
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since the equivalence classes go into one another (under the map f*, closed forms
remain closed and exact fonns remain exact).

The following theorem holds:

THEOREM 1. Given two smooth homotopic maps

the mapsh andh of the cohomology group coincide:

Proof. Suppose we are given a smooth homotopy F: MIx I ~ M2, where I is a

segment, 1 S; t ~ 2, and F(x, 1) =A(x), F(x, 2) =h(x). Any form n of degree k on

M1 x I is given by

where 001 is the fonn of degree k containing no dt among differentials, and 002 is

the fonn of degree k - 1 containing no dt among differentials (local coordinates in
MIx I are always chosen to be (Xl, ••. , x", t), where (Xl, ••. ,x") are local

coordinates on M1
). Let 00 be a~y fonn of degree k on the manifold M2' Then

*F (00) =n =001 + IDz 1\ dt, where locally we have

_ ~ i1 ik-l
002 - ~ a,' ,. dx 1\ ... 1\ dx ,

. . 1 '" k-l
'l<"'<'k-l

i1 ikbJ• J" dx 1\ ... l\dx.1 .,. k

We shall define the fonn D n of degree k -1 by the following fonnula (locally):

2 ."

<J ) 'I 'k-l
D n =. L . ail _. ik (X, t) dt dx 1\ ... 1\ dx

'l<"'<'k-l 1
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Obviously, Dro is the form of degree k -Ion the manifold M1 x I. An imponant

lemma follows:

LEMIVlA. 1. The fomuda

d(D(F*(ro))) ±D(d(F*(OO») = h.(ro) -.h(ro)

is valid, or if 0 =/*(ro), where 00 is the form on M2 and F1t=2 =12, F1t=1 =f1' then

theformu/a dD(O) ± D(dO) = Olr=2 - Olr=l is valid.

Proof. Let us calculate d(D(O» for any form 0 on M1 x I, where 0 = 001 +~ 1\ dt.

By the definition of d we locally have

DdO = D(dOO1) +D(d~ 1\ dt) =

= D( L L
i1<···<j1; q

From this we can readily see

dDO + ( - 1)1+1 DdO =

= ± L ( ) i 1 it• < <' bJ• J' (x, 2) + bJ• J' (x, 1) dX 1\ •.. 1\ dx .
J1 "'"Jn 1"'1; 1"'1;
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Since locally

we are led to

dDo. + ( - 1)J:+I Ddo. = 0.11=2 - 0.11=1'

405

which implies the first statement of our lemma. If now 0. =f* (00), then

0.11=1
0

=i*ro(OO) where F(x, to) = /'0: MI~ M 2· In particular for to = 1,2 the

result follows, which completes proofof the lemma.

Continuation of Proof of Theorem 1. Suppose we are given a closed fonn 00 on M2

(i.e. dro = 0). Then the fonn

dch(oo) -if (00» = d(D(F*(00» ±Dd(F* (00».

* * *",,* *However, dE (00) =F (doo) =O. Therefore, we have h (00) - J 1(00) =dDF (00),

Le. the difference of the fonns is exact (or, the forms are homotopic). This just
means, by definition, that the homomorphisms

coincide on equivalence (cohomology) classes. This concludes the proof of the
theorem.

DEFINITION 2. Manifolds MI, M2 are called homotopically equivalent if there exist

(smooth) maps f: M1 ~ M2' g: M2~ M I' such that both the superpositions

fog: M2~ M2 and g of: MI ~ MI are homotopic to the identity maps

For example:
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1. Euclidean spaces IJi'I ( or discs Dn = t (XJi s; If'}) are homotopically
0.=1

equivalent to a point The proof consists in the fact that (Rn (or Dn) are defonned
along themselves to a point The precise meaning of this is that the identity map
1: IJi'I~ [Rn, where x .... x, is homotopic to a constant IJi'I~ Q, where Q is a point.
This fact is obvious.

2. A space without a pOint IJi'I \Q (or a ring between spheres of radii rl and r'})

contracts to a sphere Sn-l, and therefore IJi'I\Q is homotopically equivalent to the
sphere Sn-l. For n =2 the region [R2\Q is homotopically equivalent to a circle.
Note that (R2\ (Ql u Qv contracts along itself to a figure-of-eight (Figure 106.) The

figure-of-eight is not a manifold, but for it we can define the cohomology groups ­
they are the same, by definition, as those for the region [R2\Q1 U Q2) by virtue of

Theorem 1.

e/<D
Figure 106. Figure 107.

Generally it is possible to define these groups for all bodies K for which there
exists a manifold M' => K contracting to this particular body by assuming Theorem 1
(and Corollary 1 below) as the basic property ofcohomologies:

For example, for a region on a plane Un = [R2\(QI U ••• U Qn) as a body K we

may take a bouquet of circles, as shown in Figure 107.

t..COROLLARY 1. Homotopically equivalent manifolds M1 .- M2 have identical
g

(co)homology groups.
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Proof. Consider the mapsj: HIc(M2) -+ HIc(M1) and g*: HIc(M1) -+ HIc(M2).

Since the maps fog and g 0 f are homotopic to the identity maps. the

homomorphisms ifog)* = g* oj and (gof)* = j og* are exactly identity

homomorphisms of the cohomology groups. according to Theorem 1:

1 = g* oj: H"(M~ -+ HIc(M'}).

This. obviously. implies that the homomorphismsj and g* themselves are mutually

inverse isomorphisms. i.e.j = (g *)-1. and the result follows.

Exactly the same son of argument proves that thefundamental groups Xl of
homotopically equivalent manifolds coincide.

COROLLARY 2. The cohomology groups ofa Euclidean space (RII or ofa disc D"
are the same as those ofapoint, i.e. H"(lR") is a trivial group/or k > O. Jfl(IR") =!A
(a one-dimensional linear space).

This fact is occasionally referred to as the "Poincare lemma": locally, in a
region around any point on a manifold MJ. any closedform dO) =0 is exact 0) =dm'.
Indeed. if we choose a disc D n in local coordinates with centre at point Q.

n

{L (xIX. - x~i ~ E}. we can apply to the disc Corollary 2 of Theorem 1
0.=1

which tells us that H"(J)~ =O. k > O.
For k = 1 the Poincare lemma is familiar to the reader from the course in

p
analysis since for I-forms 0) = fIe U we have 0) = dE. where F(P) =J ax!' on the

Q

path from a point Q to a point P in the disc Dn•

COROLLARY 3. The cohomology groups of a Euclidean plane without a point
lR2\Q (or ofa ring) are the same as those ofa circle Sl and are given lJy

H"(Sl) = H"(rW\Q) = o. k> 1.

H1(Sl) = H1(rW\Q) = !A. k = 1.

Jfl(Sl) = Jfl(rW\Q) = !A. k = O.
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To prove Corollary 3, we shall calculate the groups HJ:.(Sl). Obviously, they

are trivial (we say equal to zero) if k > 1. Next, JIl(Sl) = IR since the circle is

connected (see Claim 1). To calculate the group H1(Sl), we introduce a coordinate

$, where $ and eJI +21tn represent one point for integer n. The fonn of degree 1 is

specified by the equality a($) d$ =(I), where a($) is a periodic function a($ + 21t) =
a($). We always have d(l) = 0 since the dimension of the circle is equal to 1. When

is the fonn a($) d$ exact?

This means that a($) d$ =dE, where F($) is a periodic function. Obviously,

F($) = J: a('I') do/ +const Hence, the function F($) is periodic if and only if the

condition jZft a('I') dlv = 0 orJ 0) =0 is satisfied.Jo Sl

Thus, the fonn of degree 1,0) = a($) d$, on a circle is exact if an only if there

holds the condition J (I) =O. This implies that the two fonns (1)1 =a($) d$
sl

and (1)2 = b(ep) d$ define one and the same cohomology class if and only if

J (1)1 =J ~. Therefore, we obtain H1(Sl; IR) =IR, which completes the proof of
Sl Sl

Corollary 3.

COROLLARY 4. The cohomology group Hn(kF, IR) of an oriented closed (say,

connected) Riemannian manifold kF is nontrivial.

Proof. Consider a volume element 0, where (locally) we have 0 =Igll/2 dx1 /\ ••.

... /\ dx". If the set of regions of local coordinates is chosen in accordance with

orientation (i.e. all the transformation Jacobians are positive), then 0 is the

differential fonn of degree n and we have J 0 > 0 (this is the volume of the
Mn .

manifold kF). Obviously, dO =0 since the degree of the fonn 0 is n. If we had

o =dO), then by the Stokes fonnula we would obtain J 0) =J 0 =J dO) =0
aMI MI J.fI

(since kF is closed and has no boundary). This is a contradiction which implies our
corollary.

REMARK. If a closed manifold kF is non~orientable (e.g. ~), then the group

Hn(~, IR) is trivial, but we shall not prove it here. In particular the volume element

dcr = Igll 12 {/Ix does not behave as a differential fonn under transformations with

negative Jacobian.
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We shall clarify the geometrical meaning of homology groups. If Mn is an
arbitrary manifold and 00 is a closed fonn ofdegree k, then its "integrals over cycles"

are defined The exact meaning of our statement is this. Suppose Mi is a closed
orientable k-dimensional manifold. By the "cycle" in the manifold Mn we understand
a smooth map

DEFINTI10N 3. The period of the form 00 with respect to the cycle (Mi
,/) is the

integral f,;.1*(00).

Suppose now that N t+1 is an arbitrary oriented manifold with boundary
r =Mi. The boundary is a closed oriented manifold (consisting, perhaps, of several

pieces). By the "film" we shall understand the map F: Nk+1 ~!Ir which coincides

withfonMIc•

We shall make a simple assertion.

THEOREM 2. a) For any cycle (Mi ,/) the period of any exactfonn 00 = doo' is
equal to zero.
b) If the cycle (M Ic

,/) is the boundary of the film (Ni+1,p), where Mic is the
boundary of~+1 and FIMIc =f, then the period of any closedfonn with respect to

such a cycle (Mi ,/) is equal to zero.

Proof 'a)" If Co =dol', then by the Stokes fonnula we have

f Icf(CJ» = f Icf(doo') = f i dif*oo') = f Icf(oo') = 0
M M M ~

since the manifold Mi has no boundary.
b) If M t is the boundary of N t+1 (with allowance made for orientation) and if
FIMk =f, then by the Stokes fonnula

and the theorem follows.
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We shall now make a statement: if the periods ofa closedfonn with respect to
all cycles are equal to zero, then thefonn is exact.

From this fact we can draw several conclusions. We shall give simple
examples.

1. If M n = sn(a sphere), then HI:(sn) = 0 for k ~ 0, n.

Proof. If k > n, then the statement is obvious immediately from the definition. If
o< k < n and (MI:, f) is an arbitrary cycle, then by Sard's lemma, the image off{M~

does not cover at least one point Q E sn. Therefore, the cycle (MI:,/) lies, in fact, in

IJi'I = sn\Q. We know already (the Poincare lemma or Corollary 2) that in IJi'I any
fonn is exact. Accordingly, all the periods are zero when 0 < k < n. Consequently,
Hk(Sj =0 when 0 < k < n.

2. If Mn = [Rn\(Ql u ... u Ql), then there exists /-independent cycles of

dimension n - 1 (these are spheres surrounding the points Ql' ... , Qd. From Sard's
lemma we can readily deduce here that all the periods of the forms of degree
0< k < n - 1 are equal to zero by analogy with item 1. Therefore, we have

HI:(lRn\(Ql u ... u Qd) = 0,0 < k < n - I, and-~ext Hn-l(IJi'I\(Ql u ... u Qd) =

= 1R1- 1 (prove this).
3. Suppose M3 is a region in [R3 from which we discarded a set of points

Ql' '" , Ql and pairwise non-intersecting circles r1, ••• , rr
Here we can see cycles of dimension 1 and 2:
a) one-dimensional cycles AI' .., , As linked with circles r 1, ••• , r s (Figure

108);

Figure 108.
Q-- Af~:S
~ J;

Ii 1;

b) two-dimensional cycles, Le. spheres Sr, .., ,S7 embracing points Ql' ... ,

Ql and tori Tj, ... , T; embracing circles r 1 '" , r s (Figure 108). The answer is

clear:

H1(M3) = [RS (s independent periods)

H2(M3) = [Rl+s (I + S independent periods).
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The answer does not depend on the mutual positions of circles r 1••••• r s (this is

already not obvious). These facts are not, however, very easily provable. It is
immediately seen that H1(M3

) =[AP, where p > sand H2(M3
) =JR'1, where q ~ I + s

(prove this).

REMARK. As distinct from homology groups. the fundamental group
depends strongly (due to its non-commutativity) on the position of the discarded
circles r 1, ••• ,rr For example. let M~ = lFf\r1 (Figure 109) and letM~ = lFf\r2

(Figure 110). Then it turns out that 1t1(M~.P) is an infmite cyclic group with

generatrix a (see Figure 109). Prove it. Next 1t1(M~. P) has three generatrices a, b

and c (see Figure 110) and is given by some relations. Calculate these relations.

6JpQ/-
Figure 109. Figure 110.

We shall now present another approach to the definition and investigation of
homology groups (simplicial and cell homologies) which allows their simple
calculation. It will noi however be very easy to establish relationship between this
and the preceding approaches ( this comes within the scope of the difficult de Rahm
theorem which we omit here).

What is a simplex? A zero-dimensional simplex is a point 0.0. A

one-dimensional simplex is a segment [00. 0.1]. whose boundary is a union of two

zero-dimensional simplexes: a simplex [0.1] with the plus sign and a simplex [00]

with the minus sign. A two-dimensional simplex is a triangle. [ao 0.1 au (Figure

Ill). A three-dimensional simplex is a tetrahedron. [00 0.1 ~ 0.3] (Figure Ill).

By induction, if an n-dimensional simplex [ao0.1 •.. a,J is defined and lies in an

n-dimensional space IR'\ then to construct an (n + 1)-dimensional simplex, we should
take an (n + l)-th venex outside this hyper-plane u:r c u:r+1 and consider the set of

all points lying on the segments which join this new vertex 0.11+1 with points of the
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simplex [0.00.1 ..• a,J. The body obtained will just be an (n + I)-dimensional

simplex.

Figure 111.

:ti2

C:." ~f Llli1
~"" .: .... :

.'.':. :'", .
: .::•.:.' t;;r;

t:
o

. . .. '.. :II

..
-f

The faces of the n-dimensional simplex lao 0.1 •.• a,J are spanned by the

vertices [0.00.1 •.• an_d ' [0.00. 1 •.• a n_2 anl, ... , [0.0 .;. a n- s ... anl, ... ,
[ai' ... ,a,J. Thus, the i-th face is obtained by means of the removal of the i-th

vertex from the set [0.0 •.• a,J and is opposite to this vertex: the i-th face r j =
[0.00.1 .., aj ... a,J (the i-th vertex is removed). We shall ascribe to the i-th face r j
the sign (-l{ The oriented boundary of the simplex lao ... a,J has the form

n

d[ao ... aJ = to (-Ii [0.0 ••. aj ... an]

We can write the faces of smaller dimensions formally from ~e simplex lao ... a,J

by removing a certain number of any vertices.
For simplex boundaries we have

i;)[ao] = 0,

d[ao 0.1] = [0.1] - [a.o],

d[ao 0.1 a.2l = [0.1 ail - [ ao a.2l + [ao all·

Compare these formulae with the figure. Indeed, the faces enter with regular signs
(we understand here the linear combination formally - in a linear spac~ where the

simplexes [aj ... aj ] themselves are basis elements). A simple but importanto II

lemma holds.
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LEMMA 2. For an n~dimensional simplex thefonnula aa[ao ... aJ = 0 is valid.
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The reader may verify the lemma by a direct calculation. For example, for
n =2, we have

The situation is similar for all n. The lemma is quite natural since the boundary
of something has itself no boundary. A simplicial polyhedron (complex) is, by
definition, a set of simplexes of arbitrary dimension, with the following properties:

1) all the faces, of all dimensions, of this polyhedron together with any
simplex belong to this set;

2) two simplexes may intersect (have common points) only along a whole face
of a cenain dimension and only along a single face (or one of them is a face of the
other).

We shall number in an arbitrary manner all the vertices of a simplicial
polyhedron ( a simplicial complex): ao, aI' ... ,aN' Then the simplexes are some

sub-sets of vertices within a given numeration of the form [aj aj ... aj ].o 1 r

Now suppose that G is any commutative group, where the group law is written
as summation (+).

The cha.ins of dimension k in a simplicial complex are fonnal linear

combinations of the form Ck = L g i. C1j, where C1j are different k-dimensional

simplexes written in a given numeration of vertices of the complex, gj are arbitrary
elements of the group G.

The chain boundary is a chain ofdimension k - 1:

dCk = L g. (dC1.).
. I I
I

The formula ddCk = 0 is obvious (by the lemma).

Cycles are such chains c~· that aCk = O. Cycles form a group.

Cycles homologic to zero (limit cycles) are such sycles Ck that Ck =dCk+1•

DEFINmON 4. The homology group Hk(M, G), where M is a simplicial complex,

is a quotient group of all cycles of dimension k with respect to the cycles homologic
to zero (two cycles are equivalent if and only ifq - C'i = dCk+1)'
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Of interest are the cases G =[R (real numbers), G = ([ (complex numbers,
G =7l.. (integers), G = 7l..2 (residues modulo 2) and generally G =7l..m (residues

modulo m, especially when m is a simple number and 7l..m is a field).

The conjugate objects are defined to be: the cochain Ck is a linear function on
chains which associates k-dimensional simplexes with the elements of the group G:

Ck
( (Jj) is the element of the group G;

where a and b are integers.
The coboundary OCk of any cochain CC is given by the formula

where OJ is any 'simplex of dimension k + 1.

The cocycle 5CC = O.
The cocycle equivalent (cohomologic) to zero Ck =~1.
The cohomology group Hk(M; G) is a group of cocycles to an accuracy of

"'k - k "'k = k ~1
cocycles equivalent to zero: C =C if C - C =5t.: .

If any manifold Mn is divided into simplexes and is transformed into a
simplicial complex (polyhedron), then for this manifold we can define and calculate
the homology and cohomology groups.

The differentiable simplex ofdimension k is a smooth embedding (of maximal

rank) of a simplex into a manifold Mn (the map should be smooth up to the boundary
of the simplex; it is preferable that the map be defined on a somewhat wider region in
[Rk).

We shall assume a manifold to be triangulated if it is divided into a simplicial
complex by means of differentiable simplexes. In this case we can define the
homology and cohomology groups of the manifold Mn as those of a simplicial
complex.

We have the following (not simple) facts:
a) the homology and cohomology groups do not depend on triangulation of the

manifold ("surface'') and are homotopically invariant;
b) for G = IR the cohomology groups coincide with those introduced via

differential forms.
For a finite simplicial complex (not necessarily a manifold) the Euler

characteristic introduced by Poincare is as follows:
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if 1j is the number of simplexes of dimension i in a complex, then the Euler

characteristic ofthe complex M is given by

X(M) = It (- 1); 1
j

•

I~

We have the following simple theorem:

THEOREM 3. Ifb j (the Betti numbers) are dimensions of the homology groups

Hj(M; IR), then thefollowing equality holds

Proof. A group of chains of dimension i is a linear space of dimension 1j; we shall

denote by Zj the group of cycles of dimension i and by Bj the sub-group of cycles

homologic to zero. Obviously, we have

dim Bj = 1i+1 - dlm Zj+1'

bj = dim If(M; IR) = dim Zj - dim Bj =

whence

bo- b1 + bz -: b3 + ... = 'Yo:- 11 + 1z - 13 •••

and the theorem follows.

REMARK. The characteristic I(M) has already appeared above as the sum of
singularities of a vector field (or of a smooth function). This is the same quantity.

A version of the simplicial definition of homology groups are continuous (or
singular) homology groups.

Let :H: be any topological space (e.g. the manifold and space of all continuous
(smooth, piecewise smooth) maps of one manifold into another).

A singular simplex of dimension k is a pair (cr,f), where f. cr ~ :H: is a

continuous (smooth, piecewise smooth) map of a usual simplex [00 ... ail into the

space :te.
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A singular chain ofdimension k is a formal linear combination Ck =L g.(CIj,/,.),j I I

where gj are, as before, elements of the group G and (CIj,fJ are singular simplexes

of dimension k.
The boundary ofa singular simplex is a formal expression (chain)

aCk = ~ gj O<CI,f;)
I

where

a(CI,f) = L (-l)q ~, fl ).
q rq

Here r q = [ao ... aq •• , ail is the side of the simplex, flr is the same map f but
q

restricted to the side (this is the side of a singular simplex which itself is a singular
simplex).

The singular cycle is a chain C/c> such that ack = O.

The singular boundary is a chain C/c> such that Ck = ack+l'
Singular homologies are groups HiM; G) which consist, as before, of cycles

to an accuracy of boundaries.
It turns out that for manifolds (and for all simplicial complexes) singular

homology groups HiM; G) coincide with those which we introduced earlier (the

continual character of this defmition is in a sense illusive since the number of
homology classes is the same as we had earlier).

This defmition is convenient, for example, in the proof of invariance of
homology groups under homotopic equivalence and in the operations with functional
spaces.

But as far as direct calculations are concerned, all the preceding definitions are
inconvenient. We shall give another definition of homology groups (in terms of
cells).

Let Mn be a manifold (or a more general simplicial complex).
A cell ofdimension k is a continuous map of a discf. Dk ~M', such that it is

a smooth regular (of rank k) embedding into the manifold of the interior of the disc
Dk and is continuous up to the boundary.

The cell complex: A manifold will be called a cell complex if it is divided into a
k.

finite number of cells (generally, of different dimensions) /;: D I ~ Mn with the

following properties:
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a) each point of the manifold M" is an interior point of one (and only one) cell
of a cenain dimension;

b) for any cell f. Dl ~M" the image of the boundaryf1si-1:51::-1 ~ lJ"l gets

into the union of cells of dimensions smaller than k.
The union of all cells of dimensions smaller than k we shall call the cell

frame of dimension k- 1 and denote by ~1 eM". We have J<!1 eK1 e K2 e ...

... e Kn =Mn•

Ifwe take J(!l and contract all~1 to a single point (Le. simply assume it to be
a single point), then we obtain a bouquet ofspheres of dImension q:

where l(q) is the number of cells of dimension q and sq~ denotes the sphere 5~

obtained for a q-dimensional cell by contracting its boundary to a point
The cell chain is a formal linear combination which, as before, is given by

~k = L q. cr~, where cl are cells of dimension k. '
i I I I

What is the boundary of a cell rfl (or of a chain)? By the defmition of cell

f: Dq~~, its boundaryf. S'l-1 ~M" gets, in fact, into a (q - I)-dimensional cell
frame l('rl:

Contracting the frame Kq-2 to a point, we obtain the map

S'l-1 ~ vO-l/vO-2 = ,-r q-l U U ,-rq-l
J\.' J\.' VI • • • v, (q-l)'

where each cell cr3.-1 has become a sphere 53,-1, and all the j(iI-l/~2 is a bouquet

of spheres (Figure 112) since the whole frame ~2 is assumed to be one point 9.

'I-f'

B(~)
Figure 112.

c-1
c:i
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Let us defme the quantity Aa. for a pair of cells cfl and er::1: Aa. is the degree of the

map f on the sphere srI onto the summand er,},-1 of this bouquet er:.-1 U ...

U q-l - uo-l/Kq-2. . at (q-l) - l\.' •

The boundary ofthe cell cfl is defined to be

aerq = L A erq-l
a aa'

where Aa. is the degree of the map of the boundary Sl-1 of the cell cfl onto the sphere

5:.-1 obtained from the cell er3:1 by contracting the frame J(l-2 (and, for example, all

the other cells ~-1 for J3 '# a.) to a single point.

Sometimes Aa. may be expressed as

A - [r:fI. ""q-l]
Cil. - • VCil.

and is called the incidence coefficient ofthe cell er3,.-1 in the boundary of the cell r:fI.
Now, already for the boundary of any chain we have

aCk = L q. A .erq-l ,
. I (I,J a
I,a

We now introduce the definition of cycles: ack=o, boundaries: Ck=aCk+1

and homology groups Hk(M"; G) referred to as cell groups. These homology

groups also coincide with those defined earlier.

Examples of cell complexes.

1. The sphere 5". For this sphere, the most economic cell division is as foBaws:
there exists one cell e! of dimension 0, (the uvenex") and one cell cr" of dimension n,
where cr" =S" - ero. Here we have ae! =0, acr" =0 (this is an obvious fact for all
n> 1. Verify it for n =1.) .

From this we have

Ho(S"; G) = G,
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Ho(stJ; G) = 0, k'jl!: 0, n.
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For G = lR we obtain the same result as for differential forms.

If we have a bouquet q of spheres stJ+l joined at one point. then there exists

one venex rI and several cells O'~+l, where aO'r:+1= 0. The region obtained from

(R'I+2 contracts to such a bouquet by discarding a set of points. We shall denote this

bouquet by K;+l (Figure 113). We have

Ho(K;+l; G) = G,

H"+l(K;+l; G) = G + G + ... + G,

H,(K;+l; G) = 0, I'jl!: 0, n+ 1.

2. Cell division of the torus and of the Klein bottle. The case of the torus is
depicted in Figure 114.

Figure 113.

~'r~-roJL:J4
C:JJ • 1 CoCz.

Figure 114.

Here we have the following cells: rI, ai, O'J, 0'2,

aero = a 0'1 = a O'~ = a cr2 = 0;

forG = Z
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Figure 115 shows the Klein bottle K2• The cells are: ~,crl, crJ, cr2,

APPENDIX 4

acfJ = a crt = acrJ = 0, aa'- = 2crL

Ho(K
2

, Z) = :l, H2(K2, Z) = 0,

H 1(K
2

, Z) =:l + :l2'

3. The projective plane lRP2 (Figure 116). The cells are: ef, cr1, a'-, acfJ = 0,

acr1= 0, aa'- = 2cr1; for G = :l

G
~O e:;'

~r Z• 15

a.1I

Figure 115. Figure 116.

4. The orientable surface. We restrict our consideration to the case of a
cracknel (g = 2). Take an octagon (Figure 117). The cells here are cro, crL crJ, cr~,

cr1, a'-. All the boundaries are equal to zero. For G =:l

(the latter equality is indicative of swface orientability).

Figure 117.
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5. The projective space IRP". The cells are crO, crI , cr, ... ,cra,

adJ = 0, dcrI = 0, acr = 2crI , aa3 = 0,

aa4 = 2a3, ... , ac?k+ I = 0, ac?k+2 = 2c?k+1

(construct the cell division). For G =71..

_ _{O if n is even (> 0),
H3 -71.. 2,·.. ,Hn -

71.. if n is odd.
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6. The comp/exprojective space rJ:P'I. The cells are cro, cr'-, ... , ern, all the

boundaries are zero. (Construct the cell division.) For G = 71..

Ho = H2 = '" = H'}.n = 71.., the rest Hj = O.

For cell complexes with one vertex it is convenient to calculate the fundamental
group xl (a manifold can always be divided into a cell complex with one vertex).

Namely, all the cells cr~ are closed paths qa. since the vertex is single. The set of

paths qa. yields the set of generatrices of the fundamental group Xl'

The relation for the generatrices qa. is obtained from the two-dimensional cells:

the boundary of each two-dimensional cell is a path homotopic to zero, and this is
just the' complete set of relations.

EXAMPLES.
1. 1RP2: the cell crl is a generatrix a and the boundary of the cell cr, that is,

a2 = 1.
2. The torus: the cells crl, cr~ are generatrices a, b and the cell cr yields the

relation aba-Ib-l =1 (or ab =bal.
3. The Klein bottle: the cells crt, cr~ are generatrices a, b ; the cell cr gives the

relation 0000-1 = 1 (or aba = b).
4. The craclcnel: the cells crt, cr~, cr~, cr~ are generatrices a, b, c, d; the cell cr

gives the relation aba-Ib-l cdc-l a l =1; we see that this group is noncommutative.

5. The figure-of-eight here we have no two-dimensional cells; the group Xl is

therefore free (has no relations).
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APPENDIX 5

THE THEORY OF GEODESICS, SECOND VARIATION
AND VARIATIONAL CALCULUS

We have introduced the Euler-Lagrange equations whose validity is the necessary
condition for the functional

IQ •
5("/) = L(z, z) dt, 'Y = z(t)

p

to have, along a cenain curve 'Y, the minimum among all the curves beginning at a
point P and terminating at a point Q.

These equations were of the form

~ (dL. ) = dL.. i = I, ..; , n;
Ul a; I az'

and for any vector field 11i(t) defined at points of the curve "(. t = t(t) the following
identity held

b

[ d ] [ d f i i.i • i ]-5('Y+ Ell) =0 = - L(z + Ell, z + £1l ) dt =0'
dE £= dE a E-

where a ~ t ~ b and 11 i(a) = 11 i(b) = 0 (respectively at points P = y(a) and Q = y(b».
Furthennore, we derived the equality

b b

(.!!...f L(z + Ell, Z + ern dt >. =f (-dd (~.) + aL. ) 11
i
dt

dE a E=O a t az' az'
for all 11(t), where 11(a) = 11(b). How shall we find the condition under which the

curve {zi =i(t)} actually gives the minimum if it satisfies the Euler-Lagrange
equation?

As is known, for the functions of many variables f{x1, .•. ,x") the necessary
condition of (local) minimum is afrailp = 0, t = I, ... ,N, and the sufficient

condition is positiveness of the quadratic fron ~f . dx
i til at the same point P.

ax'a;
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Therefore, to find the conditions of minimum for S(y), in the case where y
satisfies the Euler-Lagrange equations, we should necessarily calculate the bilinear
fonn (!iecond variation), analogous to the second differential, namely

where Ti = Tl(t), il = ~ (t) m-e vector fields on the curve 1{t) and vanishing at the end­

points "((a) = P and y(b) = Q.

PROPOSITION J. lfy= (i(t») sQ1isjies the Euler-Lagrange equations, the

following formula "vOlds

2 b ..

[ as ,.. t=] J =:J:O=' - =--(Y+ i~t} (t) + ~11(t). ~ = (10;11 ) 11 dt = G (11,11),
dAd~ A=O a} .,

11=0
where

The proof is r;a.ried OCJt by di1:ect c:l1cularion proceeding from the formula

Now we shall turn to the case where the Euler-Lagrange equations coincide
with \he equation for geodesics. It is convenient here to choose the action



424

rather than the length

APPENDIX 5

The length 1and the action 5 have identical extremals (from the geometric point of
view), but the action 5 is more convenient for analysis.

In the two-dimensional case, in a special system of coordinates (x, y), x =zl,
Y =-l-, near the geodesic '}'(t), such that the line x =t, Y =0 is the geodesic 'Y(t) itself,

the bilinear form G (11, ~) is given by.,
r.; = fb(;- -i -1\ ::a

G \11,11) = - -11 +K(t) llJll.dt,
., a dt2 1

where K is the Gaussian curvature. Note that gi.J{t) = oij for z'l = y, i l =1, 12 = 0,

and therefore no =g..Tji =11 i
.

1 I}

The minimality condition for the geodesic 'Y(t) suggests that the quadratic form

G (ii, Ti) be positive for all the vector fields ii vanishing at the end-points (P and Q).,
of the geodesic.

This implies the corollary. On a sufficiently small interval, geodesics (among
all the smooth curves joining the same points) yield the minimum of the action
functional 5(y) and therefore also of the length functional.

In a region n of a space 1J1'I, or of a manifold M", we often have to consider an
extremum of the following form. .

Suppose we are given a class of smooth or piecewise smooth curves (e.g. the
class of curves joining two points P and Q) and a function L(x, ~), where x is a point

of a manifold and ~ is an arbitrary tangent vector at this point. The function L(x, ~)

will be called a "Lagrangian". We shall examine a path 'Y(t), where a ~ t ~ b, such

that 'Y(a) =P and 'Y(b) =Q, and the integral (the "action") 5(y) =lL(y(t), y(t)) dt.

The question is, on which curve y of the given class there exists the minimum

(the extremum) of the functional 5(y). For simplicity we assume that a

neighbourhood of the curve is coordinatized by local coordinates (xl, ... ,x") and, in
fact, the curve lies in a region of the space 1J1'I. Then the functional of the action 5(1)
has the form

b
5(1) = fa L (xl(t), .•• , x"(t), x·l(t), ••• , :i "(t» dt.
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EXAMPLES.
1. S(l) is the length of a curve 1 in the Riemannian metric on a manifold,

L( .) - ( .i.!oi) 1/2X, X - gij x J." •

Jb .•
2. S(l) = (gij:i 'xl) dt, L =(i,:i ).

a

3. A function (a "potential") U(x) is defined and L = (:i,:i ) + U(x).

4. A differential form Ace.~ is defIned and L = (x,:i ) +A~ ce.. Then the

form co =Ace.~ is called vector-potential.

If rx-(t) is a vector field, defined at points of a curve "«t), such that r(a) = r(b) =
0, then the following formula holds

In panicular, if1 is the extremum (or the minimum) for S(l), then dS(l + u) I = 0
dE E=O

for all of the fields ret) which are equal at the end-points. We arrive at the

Euler-Lagrange equations for extreme curves ~(t) =:?-(t) , a ~ t ~ b (the necessary
condition for the minimum):

According to the standard terminology

°a • /. dL p. () dL f· r. ° a dL L E .X 1S ve OClty, - = 15 momentwn covector, - = l5Jorce, X -- = 1Sax a a d~ a ax a

energy.

The sufficient condition for the extreme curve y(t) to yield the minimum of the

functional S(l) among all close to its curves of the same class (i.e. among all curves
joining the same points P and Q) is given by the second variation:

where
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the-secOnd vc¢ation G(r, r) being analogQ11S to the second differential tl"tofordinary
• ',. 1 , .. " •

functions. The sufficient condition for.the minimum follows the positiveness of the
second variation G(r, r) > 0 for any fields r (t) formed at the 0 at the ends. We shall

not go on investigating in detail the theory of the second variation, but examine more
thoroughly the structure of the original Euler-Lagrange'eqtlations. It is relevant here
to make the following remark. We can state various variational problems. We shall
present the simplest ones.

EXERCISE 1 (the end-points are fIxed). Find the extrema (the minima) of the

functio~ S(y) = JQ L dt among all the pie~wise smooth curves joining the points P
. p

and Q on a complete mamfold (e.g. on a closed on).

EXERCISE 2 (periodic). Find the extrema (the local minima) of the functional
S(y) =JL dt among all the cyclic paths y: Sl ~ Ar.

y

The simplest functional is, for instance, the length of a curve y. Let the

manifold Mn be closed.
In Exercise 1 we have: there is the same number o.f,homotopy classes of the

paths joining the points P and Q as there are elements of the group ][1(M"). In each

homotopy class of the paths there exists at least one (local) minimum of the length
functional on a complete (e.g. closed) Riemannian manifold. Besides minima, there
may be other extrema of the length functional: which are al~o geodesics from the
point P to the point Q. . _

In Exercise 2 we have: there are as many homotopy clsses of the cyclic paths
as there are classes of conjugate elements in the group Xl(~). In each homotopy

class there exists the minimum of length, i.e. a closed geodesic. Other extrema are
also possible, which are also closd geodesics.

It has been proved above, that the extremal of the length functional

L =(g ij x" iii ) lIZ coincides with that of the action functional L = gij x·iii if we

introduce the natural parameter on the curve. These extremals coincide }Vith the
geodesics ofa single symmetric connection compatible with the metric:
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ixa. T'"Q oj oj 0--+.l .. X X = .
dt2 IJ

Let us also pay attention to the functional from Example 4.

L = gij xiij + Aa.xa.' where Aa. tJ.xA is the differential form (the vector-potential».

The action functional of such a form describes the motion of particles (e.g. charged
particles) in the special (Minkowski girmetric) and general theories of relativity. In

this case. the momentum Pa. = gio.x"j and the Euler-Lagrange equation has the form

(verify it!)

o F 0 ~Pa. = a.~x ,

where

F = dAa. _ dAB

a.P dxP d~'

Fa.~ = -Fa.~'

Thus, the forcesf= dL/dx are expressed in terms of the 2-form dm = n = (Fa.~)

which is called the field tensor.

EXAMPLE 5. If the metric of a three-dimensional space is Euclidean, gjj = Oij and if

U(x1r, X') = c~:t, then we are dealing with the problem from mechanics on the

motion of a point in a field of forces with potential U~) = cllrl. ,2 = 1: (~)2. This

results from Kepler's problem on the planet motion in the gravitationalfield of the
Sun (where c is always positive) as well as from the charge motion by the Coulomb
law (where c may be either positive or negative). Let us pay attention to the

following fact: if L = alxo l2 + ~lIrl, then there exists the similarity (homothetic)
transformation

X ~ Ax, t ~ J.U.

Then L ~ A,-1 L if A,3 = ~2, where A, and ~ are constant numbers. However, the

transformation L ~ const. 0 L does not alter the Euler-Lagrange equations. From
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this, we can draw a conclusion that the homothetic transfonnations x ~ Ax,
t ~ ')...312t cany integral trajectories into trajectories. This is called the "Kepler law".
(The ratio of cubes of the linear sizes of planet orbits is equal to the ratio of squares
of the time sizes since the function x!/il remains unaltered under homothetic
transformations sending an orbit into an orbit.)

What transformations can be made on the Lagrangian without changing the
Euler-Lagrange equations? There are two types of such transformations:

a) L(;x,~) ~ const •L(x,~) = L'(x, ~),

b) L (x,~) ~ L(;x,~) + a~:) = L It (x, ~).

The Lagrangians L'(x, 1;) and L"(X, ~) are equivalent to the original one.
Suppose that the Lagrangian is invariant under some transformation group of

coordinates x (the vector ~ transforms as a tangent vector or a tensor of type (I, 0)). ­
The precise meaning of this assumption is that the transfonnations of drls group send
the Lagrangian L either exactly into itself or into an equivalent Lagrangian.

For example, suppose this group is one-parameter and preserves the
Lagrangian x(t) =S,(;x) or x'4(t) =S ,f)(,.(x1, ••• , x Pl

),

and

S-/(x) = S,-1 (x).

Consider a vector field

The total derivative of the Lagrangian L(x, ~) along the vector field A f)(,. has the
form

Obviously,
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tiL aL dxa aL d~a
-=--+--;
dt aX" dt a~a d

if we have a small transfonnation SAl' then

429

which implies the unknown fonnula for dLltd along the field AOl..

The condition dLldt =0 means that the Lagrangian is preserved under this
group of transfonnations

o

We now return to the Euler-Lagrange equation P =f . where
a a

aL aL J:a 0a
p=--.f=-.~=x.a at a a aX"

Obviously. we have

aL· 0 aL .
Since along the extremals we have (--) = p = f = -. It follows thatat a a a axa

(1)

if the vector field AOl. preserves the Lagrangian (i.e. aLtat is equal to zero along the

vector field A~.
We can finally fonnulate
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THEOREM 1. Ifa one-parameter cransformation group Sl(x) =x(t) preserves the

Lagrangian L(x, S), i.e. ~=0 and the vectorfield Aa(x) =[~(t)]t:Q detennines

this one-parameter group, then the u momenrum conservation law" holds

(P,A) * = (Pa.oA~* =0

by virtue of the Euler-Lagrange equations (i.e. the component ofmomentwn along
the field ADt. is conserved).

In principle, one vector field can always be (locally) regarded as a coordinate
on which (under the conditions of the theorem) the Lagrangian does not depend: if
x = Xl, .•• , ;x!i, S= S1, .•. , !;n, L = L(x2, ... , x", S1, ... , Sn), then we have

So long as the Lagrangian L(x,!;) does not depend explicitly on time, the energy
conservation law holds (verify itf):

dE d(oaaL ) do a- = - x --L = -(x p -L) = O.
dt dt at a dt a

What other conservation laws do we know? For example, for the Lagrangian

1/2 Li 12 + U(r) = L(x, i) in a Euclidean space (say, in a three-dimensional one),
3

where ,2 = L (xa )2, the transfonnation under which the Lagrangian is preserved
0.::1

contains all rotations from S03 since U = U(r). For geodesics on the sphere il, the

group under which the Lagrangian L = ( i. ,i. ) is preserved also contains S03' for the

Lobachevskian plane the group of motions contains S02,l = SL(2, R)/± I, which is

known from the structure of the groups of motion.
Let, for example, the group be S03' Here we have three distinct one-parameter

groups:
1) rotations around the z-axis by an angle (PI- the group S~~),

2) rotation around the y-axis - the group S~),

3) rotation around the x-axis - the group S~).
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Correspondingly, we have three vector fields Xl =(Xr-) , X2 = (X~), X3 = (X3"').

We can always choose a coordinate system (for, example, cylindrical or spherical),
such that the angle of rotation around one axis (say, the z-axis) be the coordinate not
entering in the Lagrangian: dLfc)$l =O. Is it possible to choose two angles $1' $2

aL aL
as coordinates where - =- =O? From the theorem we know the laws of

d$l d$2
conservation

for all the three rotational groups (z-, X·, y-axes). It turns out, however, that due to
noncommutativity of the group S03 the angles $1 and $2 are incompatible in the
framework of one coordinate system. What is the reason for that?

For any field A, the "differentiation with respect to direction" is defined to be

where Sr is a one-parameter group generated by the vector field A. The differential

equationiot. = Aot.(x) describes the motion of the points XJ"(t). It is conveneint to trace
out the motion of the functions !,(x) =f{x(t)): for the functions /'(x) = f(x(t)) we
have the equation

tf Ci· a Vf£r = d~x. = H'

We shall denote the operator VA (which acts on the functions) by A. The equation
dfldt = A(j), where /'=0 = fo(x), is readily solvable:

f{x(t)) = /,(x) = t!Jifo(x)) ,

2 n
At ( A2 An)

e = 1+At + -2
'

t + ... + ,t + ...
. n.

This is the operator on functions, Le. the operator of translations along trajectories of
the vector fields Aot.. Indeed, we have

dfr~) d Ar Ar
{if = dt [e (fo(x))) = A [e (fo(x))} = A(f,(x)).
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This is not surprising since for the simplest coordinate vector field el = A (say, on a

straight line with coordinates x =xl) the operator

d
A =-

dx

and

A' ( A
2

2 )e if) = 1+ At + 2f t +... f(x) =

if l if r ttf
=f+t-+-- + ... + -- + ...

dx 2 di n!.dx"

This, obviously, the Taylor series for the quantity

f(x + t) = eA'(f{x» ,

at least for all analytic functions.
Thus, the one-parameter group S, on the functionsf(x) acts as eAt. Suppose

we are given two vector fields (A~ and (B~, and the oper~tors VA = A and VB = B.

We have two one-parameter groups eAt and tI' ("translations"). In what case can the

fields (A~, (Bet.) be simultaneously included in the coordinate system where el = (A)

and e2 = (B)'1 Obviously, the translation along the axes Xl and x2 must commute:

t!" tI' = tI' eA'. This is, obviously, not the case for rotations around z- and y- axes.
It is necessary that the operations VA and VB commute, Le. that the theorem on

mixed derivatives crf = if for any functionf(x) holds.
axl ai aiaxl

Let us consider the commutator [VA' VB]' We have (calculate it)

c = L (A aB
a

B1 aA
a

).
a 1 1 ax1 ax1

The vector field C is called the commutator (the Poisson bracket) of the fields A and
B. The following properties are obvious.
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The set of all vector fields is said to fonn a Lie algebra with respect to the operation
[.... ... ].

EXAMPLE. Rotation around the z-axis: the field Xl = (XlI' Xt. x{); xl ~ y.
2 3 t'7 a a

Xl =X. Xl =0 or V
Xl

=X a; - y at' Similarly. making a pennutation we obtain

the fields X2 (rotation around the y-axis) and X3 (rotation around the x-axis). Verify

the fonnulae:

We can see that there arises here a three-dimensional sub-algebra of the Lie algebra of
all vector fields (the same as the vector product), In this Lie algebra. for the group
S03 we cannot choose a pair of commuting fields,

The situation is similar with the group S02,l (for example. in the Lagrangian

for geodesics of a Lobachevskian plane). The reader can calculate the Lie algebra of
this group himself.

c
This situation is more interesting for L = Ii 12 + Irl in a three-dimensional

space. Here in fact for all energy levels E < 0 the L-preserving group appears to be
larger - not S03. but S04' But it is not so easy to find this group, and it does not

act in the space Xl'~' x3'

For the variational problem with a Lagrangian L(x,~) we have introduced the

energy E = ~a dL _ L and the momentum P = dL , Now we shall give some
a~a a ~~a

definitions.
1. A variational problem (a Lagrangian) is called positive definite if the

quadratic fonn "ilL ~a ~~ is positive for all (X, ~).
a~a~~

2. A Lagrangian is called non.degenerate if the equation p = aL (x,~) has for
a~

any x a unique solution with respect to ~: ~~ =~~(p, x),

3. The energy E =~a aL - L of a non--degenerate Lagrangian L(x, ~) is called
a~a

a Hamiltonian, H(p, x), if it is expressed in terms of the variables (p, x).
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Obviously,wehave L=pa aH -H, and the action for the curvex(t),p(t) is
apa

(1)

given by

fb aH
S(y) = vP- -H) dt.

a apa

It can be verified through a direct calculation that the Euler-Lagrange equations
acquire in tenns of the new variables the fonn

• a aH
X =-,

apa

• a aH
p = - a~

These are called the Hamilton equations.
The functional acquires the fonn

It is readily seen that the Euler-Lagrange equations for this functional in the space
(x, p), where x is a point and p is the covector at this point, are of the fonn (1), PI;1.

and yf4 being thought of as independent coordinates.
Let us examine the differential fonn

n n
n = -'LtJrI" Adp := d( 'Lp tJrI").

0.=1 a OF1 a

This fonn determines a non-degenerate skew-symm~tric scalar product

01 0
-1 0

gij = -0 1

-1 0

o

in coordinates (x, p) which we shall denote by y1, ... ,;n, where y2i-1 =:t, yu =Pi.

The following lemma holds.
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LEMMA 1. The Hamilton equarions (1) have theform
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.j ili aIl
y =g ­

dyq

or, in other words, the vectorfield <Y j) has theform ofthe gradient (as the vector) of

thefunction H(y) in a skew-symmetric metric defined by thefonn n.

The proof consists in a direct comparison with fonnulae (l).
The conservation law is given by

if = aH yq = f!l aH all = (dH, dH).
dyq dI dyq

Since the scalar product is skew-s)'t11I1letric, it follows that (dH, dH} = O.
The derivative of any functionf(y) has the fonn

j =gq.!L all = (df, dH).
d/ dyq

n 2i 2i-1 •
LEMMA 2. The fonn n = Ldp /\ dx!'" = L dy /\ dy IS preserved by virtue

a ;=1
ofthe differential equations (1):

n = O.

Proof To calculate the derivative of the form along the vector field (1). we shall
make use of the following facts

Therefore, we obtain (L dprx./\ d.t'") =L [(dp,,)" /\ t:Jx:4 + dprx./\ (t:Jx:4).] =0 since

the outer product is skew-symmetric, as required.
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A space (x, p) with fonn 0 we shall call a simplectic space (it has a

skew-symmetric non-degenerate scalar product given by a fonn 0 such that dO =0).
For any two functionsJtx, p) and g~, p) their commutator is

[f, g] =(df, dg) = Iq L fg ,
aI "Uyq

o 1

where y2i-l =J, TJ =i, gpq = - 1 0

v, g] = - [g,j].

. Obviously, we have

We can easily verify that the Jacobi identity holds

[f, [g, h]] + [h, [f, g]] + [g, [h,j]] = O.

This means that the functions Jtx, p) fonn the Lie algebra with respect to the
commutation operation [']. On the functions, the Hamilton equations have the fonn
f= [H,Jl, where

• aJJ. aH. a aH
x = - [oX ,H] = -, p = [H, p ] =--

apa a axa

and H(x, p) is the Hamiltonian. The quantity Jtx, p) is therefore said to be the
integral ofmotion if it commutes with the energy H(x, p).

The following theorem holds

THEOREM 2. Given an arbitrary one-parameter group S,(y) oftransformations ofa

phase space y = ~,p) with the scalar product 0 L dPr1.A~. the condition of

preservation ofthe scalar product of this group, 0 =0, is equal to the condition that

(locally) the vectorfield

[
dSt(y)]q -- q

d t:::O A.q=

has the Hamiltonianform (1).

I, ... ,
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Proof The fact that equation (1) preseIVes the scalar product Q is proved in Lemma

2. We shall now prove the inverse statement Suppose we are given a vector field
Aq or an operator

.
Suppose also that the equality Q =0 (along the field A) or A(Q) =0 holds.

The vector field gives the equation

By definition we have

( ~-A) = dA2a.-1, (d ,. dA2a.£u prJ.J = ,

• n
o = Q = L [(dPaJ·" tItX' +dPa. ,,(tItX')"] =

a=1

n

= L [dA2ot." tItX' +dPa." dA2a.-1] =
a=1

dA"2ct-1 dA 2a-1

+ dp " dx"f + dpa" dp1)
a dX1 dp1

whence we obtain

dA2a dA 2a-1

d~ = d~ ;

dA2a-1

dP
1

dA 2a- 1

dX1

This is equivalent to the fact that the form

was closed: dw= O. We should find (locally) a function HC;t,p) such that
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OIl 2a 'dH
A2tx,-l = d; A =- -or w =dH. Obviously, from commutativity of the

rpa 'dXZ'
mixed derivatives it follows that the above conditions are at least the necessary ones.
Locally, they are also the sufficient ones: w = dH(x, p), and the result follows.

Let us consider the form L PCf.~=00 and the form eo=fCf. dJ!4 + gCf. dpCf. =L

(pCf. dxCf.r =~ 1PCf.~+PCf.(dJ!4)"]. Since d(ro =(door =n=O. it follows that ro is

a closed form. That the form is closed implies that locally cO = dF, where F is a
function. It can be easily verified that this function has the form

'dH
F(x,p) = H -Pa 'dp

a

(this is L expressed in terms of x and p). Upon a time shift by a small quantity At we

shall have S~,(oo) = co +!!J rot where cO = dL. From this it follows that

* J" I' ( 'dH) I'S,(oo)-oo = wdt = d 0 H-p cp dt = d o(PCf.dxCf.-Hdt).

Thus, Hamiltonian systems determine one-parameter groups S, in phase space

(x, p), which preserve the skew-symmetric "metric" n (and inversely) if the
Hamiltonian does not depend on time.

Canonical transformations

DEFINITION 1. A smooth transformation of a phase space, which preserves the
2-fonn n is called a canonical transformation.

By vinue of what has been said above, autonomous Hamiltonian systems
determine one-parameter groups of canonical transformations. Non-autonomous
Hamiltonian systems detennme one-parameter families of canonical transformations
which do not form a group.

We shall consider an arbitrary transformation F: (pj, ¢) --+ (p,i, q,i), where

pi = f,{p, q), i = g"j(P, q), i = 1, ... ,n. (2)

A function S(p', q) = S(P'l' ... , p~, ¢, ... , if) is said to be the gnenerating function

for the transformation F provided that the following equalities hold
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as ,j as
Pj =-.. q = - ~p' .

aq' U j

The following theorem holds
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(3)

THEOREM 3. If the system of equations (3) is non-degenerate and uniquely
(locally) soluble in a neighbourhood ofa certain point and if the transformation F
determined by this function possesses a generating function S. then this
transformation is (locally) canonical.

Proof. We have to prove the equality n' =dpi A dl =n =dpj A dt/ From (3) we

have

2

(the fIrst summand is zero since the summand a. S . dqj A dt/ depends on i andj
aq' ael

in a skew-symmetric way). and therefore

2 2

n' = dp: A dea
dS

,) = a~: ' dp~ A dpi + as. dp~ A di = n.
J p. p. p. J ~ I ~,.' J

J J' up. V(.{
J

This completes the proof of the theorem.

EXAMPLE. A class (although not a whole) of a linear canonical transformation is
determined by a generating function S(p'. q) of the form

S = a}pi qi + 1/2 (bY p'j pj + Cjj¢ qi).

In the case where det (a~) ~ O. formulae (3) defIne the transformation p'j(P. q).

q,i(p. q) well.
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REMARK. The generating function S can be taken in a more general fonn. For
example, let the set of indices 0, 2, ... , n) be divided into two non-intersecting
subsets M uN = (1, 2, ... , n), M tl N =0. Consider a function of the fonn

and a map p'Cp, q), q'(p, q):

, as i as as J as
Pi = ai' q = - api ' Pj = ael' q = dpj ,

where i E M,j EN.

EXERCISE. Prove that (5) determines a canonical transformation.

(5)

It should be noted that the. integrals. o( the Hamiltonian system

f(x, p) = [H,f] = 0 fonn the corresponding Lie algebra since we have. .
if, g] =if, g] + ff, gO] =0 provided that f =0 and i =O. Of interest in particular
cases are finite-dimensional Lie algebras with respect to integrals. For
example, suppose in a three-dimensional space

2
I~I a (2)112

L(x,~) = T + r' where L(x'l) .

This is a spherically symmetric case (here, obviously, we have the symmetry group
S03), and therefore there exist three ""angular momentum" integrals

M 1 = - ,2(9 sin tP + 4, sin 9 cos 9 cos tP),

M2 = ,2(9 cos tP - $sin 9 cos 9 sin tP),

It turns out that in this problem there exists another integral

Iax
W. = [p,M].+-

I I r
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which, together with M I , M2, M3 gives rise to a corresponding finite-dimensional

Lie algebra depending on the energy level E. What is this Lie algebra for the energy
levels E < 0, E = 0 and E > 07

We shall make another remark. The Lagrange submanifold Ar c (x,p) in the

phase space (x, p) is such that the form QIMn on tangent vectors to Ar is equal to

zero. We shall make the following statement (reader may verify it).
A. If such a manifold is projected regularly, without degeneracies onto the

. as(x) jQ
x-space along p, then It has the form of the graph Prl. =-, S(x) = Prl.li.?",

aX" Po

where Po is a fixed point on Mn , Q is any point on the manifold Mn with

the coordinate x, p(x), and the integration path lies also on the manifold Mn;

d(prl. d:xrl.) = O.

B. For any Hamiltonian system with Hamiltonian H(x, p) the property
Q(Ar(r)) =0 is preserved under the motion of the manifold ~(t). For the function
S(x, t) we obtain the Hamilton-Jacobi equation (prove it):

_as = Hex as)
d 'ax'

H = H(x, ~ ), where p = as (x).
UA. «l ax«

In concluding this appendix, we shall consider Fermat (or Maupertuis) type
principles. As far back as the xvn century Fermat hypothesized that the path taken
by a light ray between any two points is always the shortest, and the time needed for
that is correspondingly the least The speed of light in a medium depends generally
on the properties of the medium which change from point to point. Suppose, for
example, there is a boundary between two homogeneous media where the speed of
light is cl and c2' The Fermat principle implies (this may be verified) the law oflight

refraction on the boundary between these two media (on the interface). Suppose that
the medium is isotropic. Then the trajectories of light rays are given by a
Hamiltonian in a space (x, p) with a Hamiltonian of the form H =c(x) Ipl, where H
has the meaning of the light frequency, c is the velocity at a point x and p is the wave
vector:

• «l aH P
x = - = c(x).:...J!.,

ap«l Ipl
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Consider the expression S = JPrJ. dx!'" - H de; we know that the variation 0(S) is

equal to zero along extremals. We shall consider only those variations under which
a) the energy E =H does not change,
b) the time interval does not change,
c) the beginning and the end of the path do not change.
By virtue of the law of conselVation of energy, under such variations we have

Q b Q
oS = 0 [J PrJ.tb!'- - J E dr] = 0J PrJ. dS'".

PaP

Therefore, we can seek the trajectories (for the given energy H = E) from the

variational principle 050 = 0, where So = J: PrJ. tJrl. In doing so, we shall be able to

find only the trajectories 'Y of motion, but not the velocity, since this variational
principle does not depend on parametrization; to define this variational principle well,
i.e. to eliminate dt using the relation H = E, we spould expres~ the moments PrJ. in

tenns of xs- and tb!'-.

. dxa pa
EXAMPLE 1. H =c(x) Ipl =E (Fennat). Smce - = - c(x) and c(x) !pI =E,

ci Ipl
Idtl •

we have dt = - or Ix I = c(x) and
c

Whence

f
Q

dx fQ

So = E P c(x) = E pdt.

The minimum condition for So is equivalent, for a constant E, to the minimum

di . fi th . T f Idtl. Econ non or e tune = c(x) Since = conSl

EXAMPLE 2. L(x, i) =In. gij i j i j - U(x) or

H = In. g~i Pk + U(x) = E = const.
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Let us calculate the expression LP ~. Since p = g ~p
p a a ap 1M

dxidxk

H = In. gik + U(x) = E
dl

we have
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Therefore, we are finally led to the conclusion that in the field offorce with
potential U~) and a constant energy E, the trajectories ofmotion ofa point are
geodesics with respect to the new metric

since
QQ. . 112

5S0 = 5f p dxa = 5f (2(E- U)g .. dx' di) .
pap ~

This is the Maupertuis principle. Even if gij = BHij' the new metric is already not
Euclidean.
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APPENDIX 6

BASIC GEOMETRIC PROPERTIES OF THE
LOBACHEVSKIAN PLANE

It turns out that some essential properties of the Lobachevskian plane can be
illustratively modelled on the swface of a three-dimensional space, called the Beltrami
surface.

We shall consider on a plane (x, y) a smooth curve r characterized by the
propeny that the length of the tangent line segment between the point of tangency to a­
curve and the point at which this tangent line intersects the x-axis is constant and
equals a (Figure 118).

Figure 118.

We assume the curve to be positioned in the first quadrant of the plane. When the
point A slides along the curve 'Y, the point B slides along the x-axis, and the segment

AB has a constant length equal to a. The curve 'Ycan be obtained mechanically. To
this end we should tie together the points A and B by an inelastic thread of length a,
and on placing A and B in the initial positions Aoand Bo (Figure 118) begin moving

the point B along the x-axis. The point A will then draw a cenain curve tangent to the
y-axis at the point Ao and having the x-axis as the asymptote. We shall now find the

differential equations for the curve 'Y. From the triangle ABx (Figure 118) we have

tan $ =- y~ where y =y(x) is the graph of the curve 'Yand a sin $ =y. From this

we obtain

where x = x(Y) is the graph of 'Y. Therefore,
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a 2 ~In

f 1 2 2 In 2 ~ In a ( a + (a - y ) )
x(y) = - - (a - y) dy =- (a - y) + -In .

y 2 2 ~In
'Y a- (a -y )

Thus, we have derived the explicit expression for the curve x = x(y). We shall
consider the surface of revolution formed by rotation of the curve "( about the

horizontal x-axis. We obtain a surface V2 referred to as the Beltrami surface or
pseudo-sphere (Figure 119). Let us find the Gaussian curvature of the Beltrami
surface. To this end we have to calculate the surface of revolution.

-tt;=:=-------- ------
Figure 119. ~

In a three-dimensional space <X, y, z) we shall consider a surface of revolution
M2 fonned by rotation about the x-axis of a cenain smooth curve x = x(y) (which we
shall call generating) positioned in the (x, y)-plane. On the surface of revolution
there arises a natural coordinate net formed by parallels and meridians of the surface.
This net has the propeny that at each point of the surface the coordinate lines intersect
at a right angle (Figure 120). Prove the following

Figure 120.

LEMMA 1. At each point ofa surface ofrevolution the principal directions, i.e. the
directions corresponding to the principal curvatures Al and ~, can always be taken
as coincident with the directions ofthe meridian and the parallelpassing through this
point.

Using in the lemma the words "can always be assumed" we meant the
following. Recall that wnen the principal curvatures are distinct, the principal
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directions are uniquely defined.. In this case they coincide with the directions of the
parallel and meridian. If the principal curvatures coincide, then any direction tangent
to the surface is principal. In particular, the mutually onhogonal directions of the
meridian and parallel are also principal.

Proofof Lemma 1. Recall that principal directions are those and only those mutually
onhogonal unit vectors relative to which the matrices of the first and second quadratic
forms come as diagonal. The definition of the surface of revolution implies that the
first quadratic fonn is orthogonal in the coordinate system generated by meridians
and parallels (as coordinate lines). In the same coordinate system, the second fonn is
automatically diagonal. We shall consider cylindrical coordinates (R, cp, x) in a
space, where the generatrix of the surface of revolution is given by the equation
R = R(x). Therefore, the radius-vector of the surface of revolution is

r = r(x, cp) = (X, R(x) cos cp, R(x) sin cp)

(Figure 121). Differentiation yields rxt =(0, -R~ sin cp, R~ cos cp).

Figure 121.

The nonnal to the surface of revolution is given by

(0, - R~ sin cp, R~ cos cp)n=--------
(1 + (R~l)1/2

This implies that the normal n and the vector r.xt are orthogonal. This just means that

the second quadratic form is diagonal in the basis indicated above, which completes
the proof of the lemma.

LEMMA 2. The Gaussian curvature K of the surface of revolution formed by
rotation ofa curve R =R(x) about the x-axis has theform:
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\Rill
IKI = ----...

R (1 + (R')2)2
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The proof of the lemma is obtained by a direct calculation carned out on the
basis of Lemma 1.

CLAIM 1. The Beltrami surface is a manifold ofa constant negative curvature in a
three-dimensional space.

Proof. Since the Beltrami surface is a surface of revolution, we can use the formula
from Lemma 2 to calculate the Gaussian curvatures. Here the function y =R =R(x)
is the inverse of the function

2 2,.1/2
2 2 1/2 a ( a + (a - y ) )

x = x(y) =- (a - y) + - In .2 2 2,.1/2a-(a -y)

2
1 2 2,.1/2 a

As shown above, x '= - - (a - y) ,and therefore x" = ~----
'Y y R2(i _R2)112 •

Substituting this expression into the formula for the Gaussian curvature, we finally
come to

R" -x"x'-1
K =---- =----- = - = const.

R (1 + (R,)2)2 R (1 + (x,)2l i
The minus sign is a result of the fact that the curve R =R~) is convex down, and
therefore the principal curvatures "-1 and~ have opposite signs with respect to any

direction at the point Hence, K = - 1/a2, and the result follows.

Thus in a three-dimensional space there exist three remarkable surfaces of
constant curvature.

1. A manifold ofconstant zero Gaussian curvature is a Euclidean plane. More
generally, we may consider a cone formed by a family of straight lines coming from a
single fixed point (the point may be either in a finite part of the space or at infmity)
and sliding along an arbitrary smooth plane curve in space. If the cone vertex is at
infinity, the surface is a cylinder.

2. A manifold of constant positive curvature is a standard sphere. As
distinguished from surfaces of type (a), the sphere is a closed manifold.
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3. A manifold ofconstant negative curvature is a Beltrami swface. It has a
boundary - a circle with radius a and centre at the origin. It can be shown (but we
shall not do this here) that a Beltrami swface cannot be continued outside this circle
without violation of the condition that K = - lit? < o. A Beltrami swface is usually
completed. by adding a surface symmetric to the initial one relative to the (Y, z)-plane
(Figure 122). The swface obtained has a circle at the points of which the swface is
not a smooth submanifold in a three-dimensional space. It turns out that the Beltrarni
swface is closely connected with the Lobachevskian plane.

0:

=
Figure 122.

CLAIM 2. A Riemannian metric induced on a Beltrami surface by an envelope
Euclidean metric is a wbachevsldan metric.

Proof. We shall introduce in our sphere the cylindrical coordinates (X, R , $), where

x = x, y = R cos $, z = R sin C>, i.e. the x-axis is the axis of rotation. The metric
induced on the swface formed by rotation about the x-axis of the curve x = x(R) has,
obviously, the fonn

In our case we have x' =- lIR(a2 - R2)1/2 (see above).
2 2

Consequently, ds2 = a ~ + R2 d$2. We shall consider the following change
R

of variables: u =$/a, v =lIR. Then the metric transforms like this:

22 2 2 2 ~

ds2 = ~(dvl+!!...du2 = a (du +dv),
422v v v
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which implies our assertion since we have come to the standard notation of the
Lobachevskian metric in realization of the upper half-plane.

1'l1~s, the Beltrami surfac~)s locally isometric to the Loba_cheyskian plane.
This means that we have constructed an isometric embedding (i.e. a metric­
preserving embedding) of a certain region on a Lobachevskian plane into a
three-dimensional Euclidean space. Which particular part of the Lobachevskian plane
admits such an isometric embedding? We shall preliminarily notice that the whole of
the Beltrami swface (now we are concerned only with that part of it which is depicted
in Figure 119) is not isometric to any piece of the Lobachevskian plane. Indeed, the
Beltrami swface is homeomorphic to a disc with a punctured point (i.e. to a ring). H
this ring were homeomorphic (with preservation of the metric) to a certain region on a
Lobachevskian plane, then an infinitely remote point of a Beltrami funnel should be
mapped into a certain finite point of a Lobachevskian plane (Figure 123).

Figure 123.

---

But this would contradict the fact that an infinitely remote part of a Beltrami funnel is
separated by an infinite distance from the funnel neck; i.e. from a singular circle of
radius a.

It is convenient to cut a Beltrami funnel along any of its generatrices (Figure
124). As a result, we obtain a swface which admits an isometric embedding into a
Lobachevskian plane, in the form of a certain region.

Figure 124.
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Indeed such a region in a Lobachevskian plane (we are working, for convenience,
with the Poincare model) is illustrated in Figure 125. This region has the form of a
curvilinear rectangle with vertices DO, AO' Bo- The sides of the triangle are fonned by

two parallel straight (in the sense of Lobachevsky geometry) lines coming from one
point 00 at the absolute. The third side of the triangle is the arc AoBowith length

equal to 2M. This arc is a portion of the circumference (in the Euclidean sense)
tangent to the point 0Cl at the absolute (i.e. on the boundary of the Poincare model).
Consequently, the region (DO, Ao, Bo) is an infinite band between two parallel straight
lines on the Lobachevskian plane and limited on one side to the arc Ao,Bo.

Figure 125. Figure 126.

On the Lobachevskian plane we shall now consider two families of coordinate
lines that fonn an onhogonal net (both in the Euclidean sense, and in the sense of the
Lobachevskian metric, since these two metrics differ only by Ii confonnal factor
which has no effect upon the onhogonality of intersecting curves). One of these two
families of curves is a set of parallel straight lines (in the sense of the Lobachevskian
plane) coming from a single point - at the absolute. In the Poincare model this is a
sheafof circle arcs (in the Euclidean sense) going onto the absolute at right angles.
The other family of curves is a set of Euclidean circles which in the Poincare model
touch the absolute, as shown in Figure 126.

We have obtained two families of mutually orthogonal curves. Curves of the
first family are straight lines in Lobachevsky geometry. Curves of the semnd family
are not straight lines in Lobachevsky geometry. They possess, however, an
important property. These lines are uniquely defined by the condition that all
"perpendiculars" going from points of one line are parallel to one another and
intersect at one and the same point at the absolute. It can be easily proved that any
two lines of the second family are congruent in the sense that they can be mapped into
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each other through the isometry of the Lobachevskian plane, Le. through a linear
fractional transformation.

We shall now consider an arbitrary line from the second family, Le. a
Euclidean circle tangent to the absolute at the point -. On this line we mark a pair of

points separated by a distance 2it. For simplicity we assume a to be equal to unity

and the radius of the circle (the Poincare model) to which the Lobachevsky geometry
is applied also to be equal to unity. Then the band between two perpendiculars
(Ao,co) and (Bo, (0) is isometric to the Beltrami funnel cut along its meridian (Le.

along its generatrix). Under this isometry, the orthogonal net of meridians and
parallels on the Beltrami surface transforms into an orthogonal net of curves of the
fIrst and second families on the Poincare model in the band (00, Ao, B). On a

Lobachevskian plane (the same as on an ordinary Euclidean plane) there always
exists a reflection (isometry) relative to an arbitrary straight line. In particular, we
can reflect the band (-, A()o B) relative to the straight line (-, Ao). As a result we

shall obtain a new band isometric to the initial one and, therefore, to the cut Beltrami
funnel. Again reflecting this new band (-, A I' Ao) relative to the straight line

(-,AI)' we obtain a band (-,A 2• AI) with the same properties etc., as shown in

Figure 127.
Note that the reflection relative to a straight line on a Lobachevskian plane is an

isometry. Consequently, the curve from the second family through a pair of points
Ao,Bowill be sent to itself since any isometry which preserves the point - sends

curves to the second family again into curves of the same family. Figure 127
illustrates the result of this infmite sequence of reflections. It is clear that all the
segments Ai Aj _1 (where 0 ~ i < -) have one and the same length 2it. A similar

procedure gives rise to bands (-, Bj, B j_ l ) with the same properties. Thus, we

obtain a disc D2 (Figure 127) limited to a curve from the secOnd family (i.e. by a '
circumference) and subdivided into an infinite number of bands convergent at the
point - at the absolute. Now we are in a position to construct a locally isometric map

of the whole disc D2 onto a Beltrami funnel (already without a cut). Given this, each
band of the type (co, Aj,Ai-I)' (-,Ao.Bo) and (-,Bj,Bi-I) isometrically winds

round the Beltrami funnel covering it exactly one-time. Consequently, the disc D2

will wind round the Beltrami funnel infinitely many times, as shown in Figure 128.
Thus, we have constructed an infinite-sheeted covering ofa Beltrami surface.

The arguments above give rise to a natural question of wbether or not a whole
Lobachevskian plane (and not only a part of it, e.g. the band descibed above) can be
isometrically realized in a three-dimensional space in the form of a smooth
two-dimensional surface of constant negative curvature. The answer appears to be
negative (0. Hilbert).
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Figure 127.
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Figure 128.

The generalization of this theorem is due to N.V. Efunov who shows that a
two-dimensional plane endowed with an arbitrary complete smooth Riemannian
metric with a curvature restricted from above to a negative number also admits no
global isometric embedding into a three-dimensional space.

The Lobachevskian plane is closely connected with two-dimensional closed
orientable surfaces which, as we know, are homeomorphic to a sphere with g
handles (where g is the genus of the swface). The point is that all such surfaces can
be represented as a quotient space of a Lobachevskian plane with respect to a certain
discrete isometry group.

DEFINITION 1. Let r be a certain discrete group of a Lobachevskian plane. A

subset D of the Lobachevskian plane is called theftuu:Uunental regionfor the group r
provided there following conditions hold: 1) D is a closed set; 2) the union of sets
of the form y(D), where 'Y E r coincides with the whole of the Lobachevskian plane;

3) this covering of the Lobachevskian plane by the sets y(D) is such that with a
sufficiently small neigbourhood of an arbilTary point there intersect only a finite
number of sets of the form y(D); 4) the image of the set of interior points of D does
not intersect the set of interior points of D under any other than the identity
transformation from the group r.

It can be easily proved that as a fundamental region on a Lobachevskian plane
for an arbitrary discrete isometry group we can choose a convex polygon "Jit!t a
finitie number of sides.

We shall now give an example of a discrete isometry group (the group of
motions) of a Lobachevskian plane whose fundamental region is a 4g-gon (with
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angles equal to 7t/2g) with centre at the centre of the unit circle (in the Poincare

model) (see Figure 129).

Figure 129.

We shall divide the sides of our 4g-gon in pairs and shall consider pairs of opposite
sidesa Suppose AI, a" ,A2g are "translations" of the Lobachevskian plane under

which pairs of opposite sides exchange places (Figure 129). Each subsequent
transformation A j+I is obtained from the previous one Ai by a rotation of the

"translation" direction by the angle 1t -1t!2g, i.e. by conjugation using the matrix Bg

of rotation by the angle 1t -1t!2g. It can be readily verified that the transformations

AI' ... ,A2g are linked by the relation AI· .a. • A2g .A I I ..... A'21 = 1.
Proceeding from this we can derive explicit fonnulae for matrices of transformations
AI' ... ,A2g in realization of a Lobachevskian plane on the upper half plane. In

doing so, we shall write the transfonnations AI' ... ,A2g by means of some matrices

from the group SL(2, IR).
We may assume that the motion Al (in realization on the upper half plane)

sends an imaginary semi-axis into itself. Then it has the form w ~ A.W, A. = eD,

where a is s doubled leg of a triangle with angles 1t!2, 1t/4g, 1t/4g (Figure 129). The
above-said leg can be easily calculated. For the quantitiy a we obtain

a = 2 10 cos ~ + cos 2~ ~ = .lL.
sin ~ 4g

The matrices A 2, a" , A 2g are obtained from the fust matrix A I through its

conjugations using the matrix Btf' i.e. A k = Bg-
k+I Al Bgle-I, where B g is the matrix

2g-1
of rotation through the angle 1t ~ around the pOint i (on the upper half plane).

This means that
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. 2
g

-
11sm 1t 4g

2g -1)
cos 1t 4g

And finally we are led to

(
. )-k+lA

k
= C~s a. SlO a.

- sm a. cos a.

r cos 13 + (cos 2J3)11l

sin 13

o

o

x
sin 13

III
cos 13 + (cos 213)

( )

k-l
cos a. sin a.

x _ sin a. cos a.

2g-1
a. = 1t 2g • 13 = t. k = 1. 2•...• 2g.

CLAIM 3. A group with generatrices AI' ...• A 2g and with the relation

A 1 A 2 ••• A 2g A II ... A 2'1 = 1 is isomorphic to a group with .generatrices al. b1•

... • ago bg and with the relation alblallbll ... agb~glbgl = 1. In particular, this

group is isomorphic to the fundamental group of a sphere with g handles (i.e. a
two-dimensional closed connected orientable surface ofgenus g). This surface is
obrainedfrom thefundamental region D ifon the boundary ofthis region we identify
points corresponding to one another under isometries AI' A2• ...• A2g. This implies

that on any on·ented surface ofgenus g (where g > 1) we can determine a Riemannian
metric ofconstant negative curvatures. This metric is induced on the surface by the
metric of a Lobachevskian plane under the factorization described above. A
Lobachevskian plane covers a two-dimensional surface of genus g in an
infinite-sheeted and locally isometric manner.
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1. A point M is moving unifonnly along a straight line ON which rotates
unifonnly about a point O. Construct the equation of the trajectory of the point M
(the spiral of Archimedes).

2. Verify that the length of a smooth curve can be calculated as the limit of the
lengths of broken lines which consist of segments joining successively a fmite
number of points on the curve, the maximum length of the segments tending to zero.

3. Prove that in a Euclidean space a straight line segment has the minimal
length among the lengths of curves joining its two end-points.

4. What is the angle of intersection of curve lines given by the following
equations in Cartesian coordinates on a plane

a) r- +;- = 8x, ;- = x3/(2 -x);
b) r- +;- = 8, ;- = 2x;
c) r- = 4y, y = 8/<x" + 4).

5. Prove that the length of the segment of a tangent to the astroid J?f3 +-Jf3 =
a2l3" bounded by the axes of Cartesian coordinates is constant and equal to a.

6. Prove that the segment of a tangent to the tracttix

a 1 a + (i _i,,//2 (2 2,1/2
Y = 2' n 2 2,1/2 - a -X) ,

a- (a -x )

bounded by the y-axis and the point of tangency has a constant length equal to a. The
tractrix is used in constructing a Beltrami surface which models in a
three-dimensional space pan of a Lobachevskian plane (to do so, we should rotate the
tractrix around its asymptote).

(*)
The most difficult exercises are marked with an asterisk.
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Section 1.2 .
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1. Prove that the family of functions u =x + sin y; v =y - 1/2 sin x on a
Euclidean plane is a regular coordinate system.

2. Write the Laplacian operator~ = cru + cru in a polar coordinate system
al dy2

on a plane.

3. Let Q(x) =bij:i J. where bjj bjj is a quadratic fonn. B(x. y) =bjj:i/ is

the corresponding bilinear form. Prove that the linear transformation A in IRn
preserves the bilinear fonn. B(x. y) = B(Ax. Ay) if and only if it preserves the
quadratic form. Q(x) = Q(Ax) (the vectors x and yare arbitrary).

Section 1.3

1. Consider a stereographic projection of a sphere of radius R in a space 1R3

onto a plane passing through the centre of the sphere. The projection is defined as
follows. We join a variable point P on the sphere with its nonh pole and continue the
segment till it meets the equatorial plane. Then we associate the intersection point P'
with the initial point P. Let the sphere be coordinatized by spherical coordinates 9. cp
and the plane by polar coordinates r. cp. Find the dependence between (9, cp) and

(r. cp) under a stereographic projection.

2. Prove that a stereographic projection of a sphere onto a plane is a confonnal
map, that is, preserves the angles between the intersecting curves.

3. How shall we write the metric of a sphere after the change of coordinates
(9, cp) -+ (r, cp) induced by a stereographic projection?

4. Prove that under a stereographic projection of a sphere onto a plane each
flat-cross· section of the sphere (i.e. the circle resulting from the intersection of the
sphere by the plane) is sent either into a circle or into a straight line (on the plane).

Section 1.4

1. Define the "vector product" in pseudo-Euclidean three-dimensional space of

index 1. i.e. in !RI. assuming
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a) Verify that for basis vectors eo, el' e2 (where eo is time-like) pairwise

vector products have the form eo x el =- e2, eo x e2 =el' el x e2 =eo.

b) Prove that x is a bilinear anti-symmetric (i.e. skew-symmetric operation and

that for it the Jacobi identity holds

2. Prove that in a space IR7 an orthogonal complement of the time-like vector is

a space-like hyperplane. What mayan orthogonal complement of a space-like
Qight-like) vector be?

3. In a pseudo-Euclidean space ~ consider a pseudo-sphere of real radius,

i.e. a one-sheeted hyperboloid (instead of the two-sheeted one which we considered
in Section 1.4).

a) Write the formulae of a stereoographic projection of a one-sheeted
hyperboloid onto the coordinate plane. Describe the set of points of the plane which
compose this image. b) Calculate the pseudo-Riemannian metric induced by an
envelope pseudo-Euclidean metric on a one-sheeted hyperboloid.

4. Suppose a Lobachevskian plane is realized as the upper half plane y > 0 of a
Euclidean plane x, y. We shall call "straight lines" in a Lobachevskian plane the
Euclidean semi-circles with centres on the x-axis (Le. "at the absolute of the
Lobachevskian plane) and the Euclidean half lines bearing on the x-axis and
onhogonal to it. We shall call a triangle in a Lobachevskian plane a figure formed by
three points and by the segments of "straight lines" joining these points. Prove that
the sum of the angles of a triangle in a Lobachevskian plane is always less than 7t (if

the triangle is non-degenerate).
5. Calculate the circumference on a Lobachevskian plane (as a function of its

radius measured in the Lobachevskian metric). For comparison, calculate the
circumference on a two-dimensional sphere.

Section 1.5

1. Find the curvature of an ellipse in its vertices if its semi-axes are equal to
a and b.

2. Prove that if the curvature of a curve is identically zero, the curve is a
straight line.

3*. Let S be the area between a flat curve and a secantat a distance h from a
1.

tangent, the secant being parallel to the tangent Express the quantity lim S3 in terms
h~O h

of the curvature of the curve.
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4. A straight lin OL rotates about the point 0 with a constant angular velocity
ro. A point M moves along the straight line OL with a velocity proportional to the
dlstance IOMI. Construct the trajectory described by the point M (a logarithmic
spiral).

5. A ring of radius a is rolling rectilinearly without sliding. Compose the
equation of the trajectory of a point M braced with the ring and separated from its
centre by a distance d. For d = a we obtain the so-called cycloid, for d > a a
lengthened cycloid, for d < a a shortened cycloid.

6. A circle of radius r rolls without sliding along a circle of radius R remaining
all the time outside the latter. Compose the equation of the path of a point M of the
rolling circle (epicycloid). Do the same for a circle of radius r rolling inside a circle
of radius R.

7. Find the curve given by the vector equation r = r(t), where - 0:0 < t < 0:0 if
r"(t) = a is a constant non-zero vector.

8. A flat curve is given by the equation r =(~(t), t~(t)). Under what condition
will this equation define a straight line?

9. Find the function r =r(~) knowing that in polar coordinates on a plane this
equation defines a straight line.

10. Calculate the curvature of the following flat curves:
a) y =sin x in the vertex (sinusoid),
b) x = a(1 +m) cos mt-am cos (1 +m)t,

y = a(1 + m) sin ml-am sin (1 +m)t (an epicycloid),
c) y =a ch x/a (a chain line, i.e. a curve formed by a heavy sagging chain

fixed at the end-points),
d) xy. =(tl- - y.) (b +y)2 (a conchoid),
e) ,:z = Ql cos 2~ (a lemniscate),

f) r =a(1 + cos~) (a cardioid),

g) r =a~ (a spiral of Archimedes),

h) r - (a COS
3t, a sin3t) (an astroid),

i) y - - In cos x,
j) x =3?-, y = 3t- f for t =1.
11. Find the curvature of the following curves given in polar coordinates:
a) r = a~k,

b) r =a. at the point ~ =O.
12. Find the curvature of a flat curve given by the equation F(x, y) =O.
13. Suppose a family of curves be given by the differential equation

P(x, y) dx + Q(x, y) dy = O. Find their curvature.
14. Natural equations of a flat CUIve are equations of the form: 1) k = k(l), 2)

F(k, l) =0, 3) k =k(t), where I =l(t) is the arc length (counted from a certain fixed
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point) and k is the curvature of the curve. Compose natural equations for the
following curves:

a) x = a cos3t, y = a sin3t,

b) y = x3/2,
c) Y =:x?-,
d) y = In x,
e) y = a ch x/a,
f) y = ex.

Section 1.6

1. For a helix r =(a cos t, a sin t, bt) fmd the Frenet frame, curvature and
torsion.

2. Find the curvature and torsion of the curves:
a) r = e'(sin t, cos t, I),
b) r = a(ch t, sh t, 1).
3. End the curvature and torsion of the curves:

a) r = (r-(3/2)lfl, 2 - t, f),
b) r = (3t-f, 3r-, 3t+t).
4. Prove that if the torsion lC(l) of a curve is identically zero, the curve lies in a

plane (Le. the curve is flat). Find the equation of this plane in space.
5. Describe the class of curves v.rith a constant curvature and torsion:

k(l) =const., lC(l) = const.

6. Describe the class of curves with a constant torsion: lC(l) =const

7.. Prove that the curve. r = r(t) is flat if a.Tld only if (r, ;", ;::) = O. where
( , , ) denotes the mixed product of the three vectors.

8. Prove that for a smooth closed curve the following equality always holds

f (r dk + lCb df) = O.

9. Prove that the Frenet formulae can be represented in the form v= [~, v],.
n = [~, n], b = [~, b]. Find the vector ~ (the so-called Darboux vector).

10. Solve the vector equation r' = [ ro, r] where ro is a constant vector in space.

11. Prove that the curvature and torsion are proportional (Le. k = ClC, where
k * 0 and C is a constant) if and only if there exists a constant vector u such that

(u, v) = const
12. Let normal planes to a curve, spanned by vectors n, b pass through a fIxed

point Xu. Show that the curve lies on a sphere centred at this point.
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13*. Prove that a curve lies on a sphere of radius R if and only if the following
relation holds

R2 = ..!.. (1 + (k,)2 ),

k2 (Kt)2

where k is the curvature of the curve.

q., r, ;:-)
14. Prove that K = .

f, r)

15. For a smooth curve r = r(f) consider a curve n(l) (where n is the nonnal

vector to the curve at a given point); t is the natural parameter on the curve n(l).

Prove that dl*Idl =(~+ r)ll2.

16. Let

( 0 HI) OJ
A = A(l) = - k(l) 0 K(l) = (a~<l).

\ 0 -K(l) 0

Let the vectors tj = rj(l) be solutions of the system of equations drjldl = aij rj,

j = I, 2, 3, where r1(0), r2(0), r3(0) is a given orthononnal frame.

a) Prove that the frame r1(l), r2(l), r3(l) is orthonormal for any I.
I

b) Let r(l) =ro +J
o

r1(l) dl. Prove that r1(l) =v(l), r2(l) =nU), r3(l) =b(l),

where v, n, b are the tangent, the normal and the binormal t~ the curve r(l), the
curvature and torsion of this curve being equal to k(l) and K(l).

17. Let a curve lie on a sphere and have constant curvature. Prove that this
curvature is a circumference.

18*. Let r = r(l) be a time-like curve in a pseudo-Euclidean space [R~ and

(;.(l))2 =(r~2 - (;1)2 - (,2)2 =1, ,: 0 being greater than zero. We introduce vectors

v, n, b assuming v =r, v· =len, b =n x v. Prove the pseudo-Euclidean analogue of
the Frenet fonnulae:

v = kn,

it. = Iev-leb,

b = len.
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19. In a pseudo-Euclidean space IRi solve the equation;' = CJ) x r, where CJ) is a

constant vector.
20. Prove that the trajectories of motion of a material point in a central field of

force are flat curves.
21. A curve lying on a sphere and intersecting all the meridians of the sphere at

a given angle is called a loxodrome. Compose the equations of a loxodrome. Find
the vectors of the Frenet frame of this curve at its arbitrary point Calculate the
curvature and torsion of this curve.

22. Given a curve r =(v cos u, v sin u, lev) with v =v(u). prove that it lies on
a cone. Define the function v(u) so that the curve intersects the generatrices of the
cone at a constant angle 9.

23. For what b value does the torsion of the helix r = (a cos t, a sin t, btl have
the maximum value?

24. Prove that if all normal flat lines contain a vector e, the given line is flat.

Section 1.7

1. A two-dimensional torus in a three-dimensional Euclidean space can be
given in the fonn of a swface of revolution of a circle about a straight line lying in the
plane of the circle (and not intersecting it). Write the parametric equations of the
torus and the induced metric on the torus.

2 2 2
2. Find the metric induced on an ellipsoid of revolution x2 + Y ~ z =I by

a b
an envelope Euclidean metric, i.e. find the first quadratic form of the ellipsoid.

3. Find the, metric induced on, an ellipsoid of revolution r(u, $) = (p(u ) cos "

p(u) sin " z(u)). Verify that its meridians (given by the ~l;lations $ = const.) and
parallels (given by the equations u =const.) form an orthogonal net on the swface.
Find the bi-sectrices of the angles between the meridians and parallels.

4. Recall that the lines intersecting the meridians of a sphere at a given angle a
are called loxodromes. Find the length of a loxodrome.

- 5. Let F(x, y, z) be a smooth homogeneous function, Le. one satisfying the
equation F(cx, cy, ez) =en F(x, y, z). Prove that on the conic swface F(x, y, z) =0
the metric is Euclidean outside the origin.

6. Construct the parametric equation for a cylinder for which the curve
p =p(u) is a directrix and the generatrices are parallel to the vector e.

7. Construct the parametric equation of a cone with the vertex at the tail of the
radius-vector, for which (the cone) the curve p = p(u) is a directrix.
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8. Construct the parametric equation ofa swface fonned by tangents to a given
curve p = p(u). Such a swface is called an involute swface.

9. A circle x = a + b cos v, z =b sin v, 0 < b < a, rotates about the z-axis.
Construct the equation of the swface of revolution (this is a torus). Prove that the
coordinate lines (Le. the parallels and meridians) fonn 2.."l ortl}ogonal net on the
swface.

10. Construct the equation of a swface fonned by rotation of a chain line
y = a cosh x/a about the x-axis. Such a swface is called a catenoid. Find its principal
curvatures.

11. Construct the equation of a swface formed by rotations of a tractrix

p =(a 10 tan <: + ~) - a sin t, a cos t) around its asymptote. This swface is called

a Beltrami surface (pseudo-sphere). In a three-dimensional Euclidean space it
models a part of a Lobachevskian plane. Calculate its first quadratic fonn. Prove
that the induced metric coincides with the metric of the Lobachevskian plane.

12. A swface is called ruled if it is given by the parametric equation r = r(u, v)

= p(u) + va(u), where p = p(u) is the vector function determining the distribution of
straight-line generatrices of the ruled swface. Construct the equation of a ruled
swface whose generatrices are parallel to the plane y = z and intersect the parabolas

I- =2px, z =0 and 1- =- 2px, y =o.
13. Calculate the first quadratic fonn of the following swfaces:
a) r =(a cos u cos v, b sin u cos v, c sin v) (an ellipsoid),
b) r =(v cos u , v sin u , leu) (a helicoid).
14. Suppose that the fIrst quadratic fonn of a swface is known to be of the

fonn d12 = dzil + (,r + a2) dv2• Calculate the angle at which the curves u + v = 0 and
u - v = 0 intersect

Section 1.8

1. Show that on a standard two-dimensional sphere, the sum of the angles of a
triangle composed of arcs of large circles is greater than x.

2. Express the sum of the angles of a triangle on a two-dimensional sphere in
tenns of the area of the triangle (the triangle is composed of arcs of large circles).

3. Prove that for any Riemannian metric there exists such a local coordinate
system with respect to which the matrix of the Riemannian metric is unit at a given
point. Note that it is generally impossible to reduce the metric tensor to the unit form
simultaneously at all points of a hole neighbourhood of a point. An obstacle to thi!:
may appear to be a non-zero Riemannian curvature tensor.



SELECI'ED EXERCISES 463

4. Prove that on a pseudo-sphere (Le. on a Lobachevskian plane) the sum of
the angles of a triangle composed of segments of "straight lines"is less than x'..Find
the relation between the sum of the angles of the triangle (on a Lobachevskian plane)
and its area.

5. A surface is given by the equation r = (u sin v, u cos v, v). Find
a) the area of a curvilinear triangle 0 ~ u ~ sinh v, 0 ~ v ~ vo;

b) the lengths of the sides of the triangle;
c) the angles of the triangle.
6. Prove that the first quadratic form of a surface of revolution can be reduced,

through the appropriate choice of curvilinear coordinates, to the form d/2 =du2 +
G(u) dv 2• Perform this operation for a sphere, a torus, a catenoid and a
pseudo-sphere.

7. The system of curvilinear coordinates on a surface is called isothermal if the
first quadratic form of the surface relative to these coordinates is expressible as

dP =l(u, v) (du2 + t:JV2). Find the isothermal coordinates on a pseudo-sphere.
8. A sphericallune is a figure formed by two large semi-circles with common

end-points (at the extremes of the diameter) on a sphere. Calculate the area of a
sphericallune with an angle a at the vertex.

9*. The Liouville surface is a surface whose first quadratic fonn is
representable as d/2 = (j(u) + g(v» (du2 + dv2). Prove that a surface locally
isometric to a surface of revolution is a Liouville surface.

Section 1.10

'1. Calculate the area of a circle on:
a) a Euclidean plane,
b) a sphere,
c) a Lobachevskian plane.

2*. Let a Lobachevskian plane be realized on the upper half plane of a
Euclidean plane. As "straight lines" we should take here either Euclidean half lines
orthogonal to the real axis, or semi-circles with centres at the real axis. Let ABC be
an arbitrary triangle in a Lobachevskian plane, a, b, C- non-Euclidean lengths of
the sides BC, AC, Af3 and let a, ~, 'Y be the magnitudes of its angles at the vertices
A, B, C. Prove the equalities

) h
cos a + cos ~ cos 'Y

acosa= ,
sin ~ sin 'Y
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h b
cos f} + cos 1 cos a

b) cos = ,
sin 1 sin a

APPENDIX 7

) h
cos1 + cos a cos ~

ccose= .
sin a sin f}

3. Prove the analogue of the theorem of sines for the Lobachevskian plane:

sinh a = sinh b = sinh c = (Q) 1/2

sin a sin f} sm 1 sin a sin f} sin 1 '

where Q = cos2a + cos2 ~ + cos21+ 2 cos a cos f} cos 1-1.

Section 1.U

1. Calculate the second quadratic form of a right helicoid x = u cos v,
y=u sinv,z~av.

2. Given a surface of revolution

r(u, v) = (x(u), p(u) cos cp, p(u) sin cp), p(u) > 0,

a) fmd the second quadratic form.
b) find the Gaussian curvature K at an arbitrary point of the surface. Find out

the dependence of the sign of K on the direction of convexity of the meridian.
c) calculate the curvature K in the particular case p(u) = u,

2 2,.lfl
a + (a -u) 2 1

x(u) = ± (a In - (a -u1 fl), a> 0
u

(a pseudo-sphere).
3. Find a surface all nonnals to which intersect at one point
4. Calculate the Gaussian and the mean curvatures on a surface given by the

equation z = j(x )+ g(y).
5. Prove that if the Gaussian and the mean curvature of a surface embedded in

a three-dimensional Euclidean space are identically zero, the surface is plane.
6. Prove that on the surface z = j(x, y) the mean curvature is equal to

H = div ( grad/ ).
(1 + Igrad/ll

1a

7. Suppose a surface S is fonned by tangent straight lines to a given curve
with curvature k(l). Prove that if the curve preserves the curvature k(l), then the
surface S preserves the metric (i.e. is changed by an isometric one).
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8. Prove that if the metric of a surface is given by dl2 = A2 du2 + B2 dv2,

A =A(u, v), B =B(u, v), the Gaussian curvature has the form

9. Prove that the only swfaces of revolution having zero mean curvature are
the plane and the catenoid. (Recall that the catenoid is obtained by rotation of a curve
y =a cosh x/a.) We mean here full swfaces, Le. such as those on which geOdesics
are infinitely continued.

10. Prove that any cylindrical surface is locally isometric to a plane.
11. Prove that any conic swface is locally isometric to a plane.
12. Calculate the second quadratic form of the swface

x = (u2 + a2) If2. cos V, Y = (u2 + dl) If2. sin v,

z = a In (u + (u2 + a2)1f2.).

13. Prove that two surfaces of equal constant Gaussian curvature are locally
isometric. In particular, any surface of constant positive Gaussian curvature is
locally isometric to a sphere. Any surface of constant negative Gaussian curvature is
locally isometric to a pseudo-sphere (a Lobachevskian plane).

14. Prove that for the metric dP = A(U, v) (du2+ d;) the Gaussian curvature
2 2

can be represented in the fonn K =-1 111n A., where 11 =-!-r +b is the Laplacian
2Ao au ()v

operator (see Exercise 8).

Section 1.12

1. Suppose a swface S is formed by tangent straight lines to a curve. Express
the Gaussian and the mean curvatures of the swface S in terms of the curvature and
torsion of the curve.

2. TPe direction determined by a vector a tangent to a swface is called
asymptotic if the second quadratic fonn on it is equal to zero, Le. Q(a, a) =O. A line
on the swface is called asymptotic if, at each point of this surface, the tangent has
an asymptotic direction. These lines are defined by the differential equation

LdJil+2M dudv +N dv' =0, where Q= (~ ~)-
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Find the asymptotic lines on the swface
a) z = a~/y + ylx) ,

b) z = xI-.
3. Prove that for asymptotic directions making a right angle to exist at a given

point on a surface, it is necessary and sufficient that the mean curvature be equal to
zero at this point

Section 1.13

1. Let the metric on a swface have the form dl2 = dx2 + f(x) dy 2,

o < + (x) < 00. Prove that this metric can be reduced to the conformal form

dl2 = g(u, v) (du 2 + dv2).

2*. Prove that a two-dimensional pseudo-Riemannian metric (of the type
(1, 1)) with analytic coefficients can be reduced, using the change of coordinates, to
the fonn dl2 = 'A.(t, x) (dil- d.x?-) ..

3. Prove that the group of matrices SU2 is homeomorphic to a standard

three-dimensional sphere.
4. Prove that the groups of complex matrices GL(n. lC) and SL(n. lC) are

connected sets. Prove that GL(n. [R) consists of two connected components.

Section 1.14

1. Prove that the space of positions of a rigid segment on a plane is a smooth
manifold.

2. Prove that the set of all straight lines on a plane is a smooth manifold
homeomorphic to a Mobius strip.

3. Prove that the group of matrices S03 is homeomorphic to a

tluee-dimensional projective space.
4. Give an example of a smooth one-to-one map of two smooth manifolds

which is not a diffeomorphism.
5. Show that on a sphere (and on a circle) there exists no atlas consisting of

one chart
6. Construct the embedding of a torus r =SI x ... X SI (n times) in [R'I+l.

7. Construct the embedding of a manifold 52 x S2 in ~.

8. Prove that a sphere 5n given in (R'I+l by t'le equation {x l )2 + ... + (,tJ+l)2

= 1 is a smooth manifold. Construct on this sphere an atlas of two charts.
9. Prove that a two-dimensional torus T2 (realized e.g. as a surface of revO­

lution in 1W) is a smooth manifold. Construct on this torus an atlas of four chans.
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10. Prove that the union of two coordinates axes on a plane is not a manifold.
11. It is possible to endow the following sets with the structure of a smooth

manifold?
a) A one-dimensional triangle on a plane (i.e. a closed broken line with three

links).
b) Two one-dimensional triangles on a plane with the vertex as a single

common point.
12. Prove that an n-dimensional real projective space (RP'I is a smooth (and

real analytic) manifold. Construct on this manifold an atlas of n + 1 charts.
13. Prove that an n-dimensional complex projective space ([pn is a smooth

(and complex analytic) manifold.
14. Prove that the graph of a smooth function ,X'l+l =f(x1..... ,X'l) is a smooth

manifold and a smooth manifold in (R'l+l.

15. Prove that the group of matrices S02 is homeomorphic to a circle and the

group 02 is homeomorphic to a disconnected union of two circles.

16. Prove that the groups of matrices GL(n. lR). GL(n. ([) are smooth
manifolds. Find their dimensions.

17. Prove that the set of all straight lines passing through a point on the plane
is homeomorphic to a circle.

18. Prove that in the composition of two smooth maps. the Jacobian matrix is
the product of the Jacobian matrices of the cofactors.

19. Prove that the rank of Jacobian matrix does not depend on the choice of
the local coordinate system

20. Calculate the rank of the Jacobian matrix of the map f: lR2~ lR2• where
fix. y) = (x, 1).

21. Construct the explicit formulae for a smooth diffeomorphism between a
plane and a two-dimensional open disc (on the plane).

22. Prove that any smooth manifold has such an atlas that each chart is
homeomorphic to a Euclidean space.

23. Show that the stereographic projection of a sphere onto a tangent plane
from the pole opposite to the point of tangency is a diffeomorphism everywhere
except at the pole of the projection.

- 24. Ide~tiiy S2"and"lLpl (constru~t a diffeomorPhism):

Section 1.lS

1. Find geodesics on the following Riemannian manifolds:
a) a Euclidean plane.
b) a standard sphere S2 in IW.
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c) a Lobachevskian plane given either as the Poincare model in an open circle

dr2 + 2 d6/ dx2 dy2
with the metric r or on the upper half plane with the metric \

(1-r12 y

2. LetJtu) > 0, g(v) > 0 be smooth functions and let a be an arbitrary
constant Prove that the level lines of the functions

z(u, v) = f em ± f dv
Vtu) - a)1I2 (g(v) + a) 1/2

are geodesics of the metric d12 = (j{u) + g(v» (du2 + tJVl) given on the plane.

COMMENT. Suppose a plane on which Cartesian coordinates (u, v) are introduced
is filled with a transparent substance having a variable refractive index l(u, v). If at a
cenain point (Uo, vo) there exists a source of light, then the light from this source
propagates in the (u, v)-plane not along straight. lines, but along lines which are
geodesics in the conformal metric dP = l(u, v) (d,r. +dv2).

3. Prove that the meridians of a swface of revolution are geodesic lines.
4. Prove that the parallel of a swface of revolution will be a geodesic if and

only if the tangent to the meridian at its points is parallel to the axis of rotation.
5. Show that the geodesic lines of a surface with the first quadratic form

dP =v(du2 + d,l) are represented on the (u, v)-plane as parabolas.

Section 2•.1

1. Prove that the trace (spur) of the operator A =(~), i.e. Sp A =~ does not
change under coordinate changes, i.e. is a scalar. ,

2. Prove that if gij is a tensor of type (0, 2), where det (gij) ;= 0, then the

inverse matrix (gfi), where g"j gjl: =O'~ determines a tensor of type (2, 0).

Section 2.2

1. Prove that in a Euclidean space IW there exist no tensors of rank 3 invariant
under rotations (i.e. such that their components remain unchanged under rotations).
Prove the same for tensors of any odd rank.

2. Let there be given an arbitrary linear operator acting from the space of
tensors of type (k, s) to the space of tensors of type (P, q). What type of tensor is
thi ?s.
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Section 2.3
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1. Calculate the components of the metric tensor on a plane in a polar
coordinate system; in rW in a) a cylindrical and b) a spherical coordinate system

2. Assuming the gradient of a function f to be a composition of two
operations - taking partial derivatives and raising the indices - write the gradient
of the function:

a) in polar coordinates,
b) in cylindrical coordinates,
c) in spherical coordinates.

Section 2.4

1. Calculate the operator * on skew-symmetric rank one and rank two tensors
in two- and three-dimensional Euclidean spaces, where gij = flit

2. Calculate the operator * on skew-symmetric tensors of any rank in a
four-dimensional space endowed with the Minkowskian metric

+1

o

-1
-1

o

-1

Show that the skew-symmetric rank two tensor in a Minkowski space is determined
by a pair of quantities - a vector in rW and a skew-symmetric tensor in [R3 with
respect to linear changes in the spatial part, which do not affect time.

3. Express the vector product of two vectors in IR3 by means of algebraic
operations on tensors and by means of the operator *.

4. Classify symmetric and skew-symmetric tensors of rank two with respect to
pseudo-rotations in Minkowski space. Compare the result with the case of Euclidean
space. (It is useful to solve this problem in the two-dimensional case.)

5. Classify tensors of rank one, two, three, four with respect to rotations in
[R2 and rW, which preserve a unit square (respectively, cube in rW). Do the same for
onhogonal transformations preserving the square (cube).

Section 2.8

1. Prove that a connection is compatible with the metric if and only if for any

vector fields" I' ~I' ~2 the folloVoing equality holds



470 APPENDIX 7

2. Prove that under an infinitesimal parallel transport of the vector ~j by axt its

components change as follows (up to small quantities of high order):

3. Suppose in a region U we are given a connection; P is a fixed point of this
region. T =Tp is a tangent space to U at this point. We shall define the map

E: T ~ U. Let ~ be a vector from T. We let a geodesic )'(t) with the initial velocity..

vector ~ from the point P and set E(l;) = ~(l).

a) Show that the map E is defmed in a certain neighbourhood of the origin in
T and that it is a local diffeomorphism there.

b) Show that in coordinates determined by the map E all the Christoffel

symbols r'ij vanish at the point P.
4. The equation of motion of a point electric charge in a magnetic field has the

•• [r,r]
form r =a • a =const Prove that the charge trajectory is a geodesic line of

Irl
3

a circular cone.
5. Prove using geodesics. that the motion that leaves motionless a point and

the frame at this point is identical.
6. For a symmetric connection r)k compatible with the metric gij' prove the

validity of the identities:

7*. Prove that two sufficiently close points on a Riemannian manifold can be
joined by a geodesic which is locally unique (i.e. unique in a small neighbourhood
containing both points).

8. Let the metric have the fonn dfl =g" d,J- +,J- +,J- dcp2. Prove that the line

~ =CPo coming form the centre is a geodesic.
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9. Suppose M is a surface in a Euclidean space [Rn. 1t is a linear operator

projecting IRn onhogonally onto the tangent space to the surface M; X and Y are

vector fields in lR". tangent to the swface M. Prove that the connection compatible
with the metric induced on the swface M has the form

VxY = 1t (Jt aYk)'
Clx

Section 2.9

1. Let there be given a piecewise smooth curve :tif>. i = 1. 2. restricting a

region U. Prove that ~cj) =JuJK (g)112 dx1 ~ tJ.:X2 is the angle of rotation during

parallel enclosure along the curve :r!(t). where K is a Gaussian curvature.
2. If this curve (see Exercise 1) consists of three geodesic arcs and if the

curvature is constant, the sum of the angles of such a geodesic triangle is equal to

1t + Ka. where a is the area of this triangle. (prove it!). Consider the cases of a
sphere and a Lobachevskian plane.

3. Let ;i..... ;n be vector fields in a Riemannian (or pseudo-Riemannian)

n-dimensional space: gij = ( ;j. ;j ). [;j. ;j] = t! ij~ Calculate the components of

the symmetric connectionIij (where V~.;; = rkij!;,V compatible with this metric.
')

4*. Make parallel (counter--clockwise) transport of the vector; = (;A:) along
...,

the contour of a square with side E spanned by coordinate axes:t.~. Let ;(E) be the
result of this enveloping transport Prove that

-k k

lim ; (E)-~ = _R~;l
£-to £2 '}

5. Prove the validity of the Bianchi identity for the curvature tensor of a
symmetric connection compatible with the metric

6. Derive from the previous formula the following identity for the divergence

of the Ricci tensor: VI Rm
l = In. aR .

Clxm
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Section 2.10

1*. Let Xl' ... • Xn be onhonormal vector fields in an n-dimensional

Riemannian space and let co l' •..• co n be the dual basis of the I-forms

co,09 =Sij (all indices may be regarded as lower). Define the I-forms COjj and the

2-forms nij setting coi} = -rjA: COb ni} = In. Rijkl O)k A 0)1' Here V xA: X j = rijA: X j.

{R(XA:> X~ Xj' Xi ) = Rijld; summation is over twice repeated indices.

a) Prove that 0)•. =- 0) ••I} )1'

b) Derive the following relations (Le. structural Cartesian equations):

dco· = - 0). A co'·I ) I}'

dco·· = - O)il A 001' - 0...I} !1 IJ'

dO. .. = - 0.'1 A oo/:+- co'lI} '} !1 I'

Section 3.1

j iii j
1. Let 0:1 =cI

"
d1. Derive the formula 00 1 A ... A Cl) A: =J }.l ... },A: dX 1 A ...

1 '" A:

... A tIlA:. where ~.: :::~: is the minor of the matrix (01-) positioned at the intersection

of rows with numbers ill .... iA: and columns with numbers h . ... .h: In particular.

col A ... A con = det (dJ dxl A ... A tbfI.
2. Find the dimension of the space of k-forms (at a given point).
3. Let Xl' .... Xn be linearly independent vector fields in an n-dimensional

region. and let [Xj. Xj] =O. Prove that there exists (locally) a system of coordinates

(xl.....~ such that the field Xi is tangent aXi~) = SA:i to the i-th coordinate axis.

Section 3.2

1. Lett sn -+ IRP" be a map associating a point XES" with the straight line
through the point x and through the origin in (RR+l. Prove that all the values of the
map f are regular.

2. Letf. SOn -+ sn-l assign to each orthogonal matrix its first column. Prove

that all the values of the mapf are regular. Find the pre-imager l(y).

3. Letf. U" -+ S2n-l assign to eaCh unitary matrix its first column. Prove that

all the values of the mapfare regular. Find the pre-imagerl(y).
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4. Prove orientability of the following manifolds: a) a torus 'fl, b) a sphere
Sn, c) projective spaces ~+l and ([]"I. Prove non~orientability of the following

manifolds: a) IRP'J\ b) a Mobius strip.·
5. Cut a Mobius strip along its middle line (i.e. along the circle). Is the

manifold obtained orientable? Repeat this process several times.
6. Prove that a Euclidean space contracts continuously along itself into a point

Prove that on a sphere S", n > I, any two paths with coincident end-points are
homotopic (the end-points are the same, and the homotopy is motionless at the
end-points).

Section 3.6

1. Prove that by glueing together a Mobius strip and a disc along identical
diffeomorphism of their boundaries, we obtain a projective plane.

2. Prove that by glueing a Mobius strip into a torus, we obtain the so-called
"Klein bottleU

, i.e. a two-dimensional non-orientable manifold which is also
obtainable by glueing together two Mobius strips (by way of identification of their
boundary circles).

Appendix 1.

1. Prove that any motion of a Euclidean space is given by an affine
transformation of the form y =Ax + b, where A is an orthogonal matrix (i.e. by a
composition of rotation and translation by a constant vector b).

2. Prove that the matrix group of affine transformations in an n-dimensional
Euclidean space is isomorphic to the group of matrices of the order n + 1 of the form

(~ ~). where A is a non-degeoerate n x n matrix and b is an aIbilrary

n-dimensional vector-column.

Appendix 3

1. Find all symmetry groups of all regular polygons on the plane.

2*. Find all symmetry groups (groups of motions) of all regular convex
polyhedrons in three-dimensional space. Among these groups, point out those that
are non-commutative.
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1. Addition to Appendix 2

ADDmONAL MATERIAL

The Einstein equation for a gravitational field in the absence of matter and for all other
physical fields has the fonn Rij =0, where Rij is the Ricci tensor. In the presence of

matter the Einstein equation changes. It has the universal form Rij - 1/2 Rgij = ATij'

where A =81tGc-4, G is the gravitational Newton's constant, G =6.67 • 10-11

N· m2/kg2, c is the speed of light in a vacuum. c = 2.9979 • 108 mls. The tensor Tij

is called the energy-momentum tensor. If the "matter" is either a fluid or an
electro-magnetic field, then the following fonnula holds (see [I], [29])

l( 11 pU)T.. = - - F jJ F. + 4 g.. Fkl (the field),
'J 41t'C } 'J

The usual matter ("fluid") is characterized by the 4-velocity U, pressure p and energy
density e, where e =£(p). The Maxwell equations for the electro-magnetic field
remain the same in their geometrical meaning as in the Minkowski space where the
gravitational field is trivial (see Section 2.11). IfF = Fab tJXl" fb!' is the differential

2-forrn corresponding to the field strength tensor, then we have (the metric and the
covariant derivatives are determined by the gravitational field) dF = 0 (the first pair of

Maxwellequations),F b
b
= 41t j (thesecondpairofequationsj herej is the,4-vector

a; c a a

of current) or *d *F =~', where j =j dx
a

• So we can say that a gravitational fieldc a

is described by a pseudo-Riemannian metric on~, and an electro-magnetic field is
described by the simplest one-component gauge field (see the end of Secion 2.7).
where N = I, and the field curvature tensor R coincides with the field strength F.

Taken together. they form the geometry of a five-dimensional space, as
indicated in Example 3 at the end of Section 2.10. It is remarkable (and it was an
important discovery in the sixties and seventies) that nuclear forces and strong
interactions effective at distances of the order of 10-13 cm and smaller are also
described using geometric objects. namely, multi-component non-Abelian gauge
fields (connections) with groups SU3, SU4, ••• and some other: fields affected by

these connections.
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The unified theory of strong and weak interactions uses the same methods; if
not quantized, individual geometric fields do not have direct physical meaning here:
their set yields a base underlying the difficult and not at all purely geometric
quantization procedure in which there are more questions than answers. So there
appeared internal degrees of freedom corresponding to so-called quarks which are
essential only at small distances. Now we observe processes already at distances of
the order of 10-17 to 10-18 em, i.e. deep in the nucleus. It ~hould be noted that in all
these processes the gravitational field is not subjected to any quantization procedures
(and generally does not playa role in them). The reason is very simple - the
gravitational forces are much weaker than all other forces on these scales. They are
essential as classical, non-quantum forces at large distances: the other forces
(including electro-magnetic, due to the attraction of opposite charges only) are
effectively more shon-range than gravitational ones. Gravity becomes essentially
"quantum" on a very small "Planck" scale - the characteristic unit length which can
be composed of the product of powers of three fundamental constants: The Newton
constant G (the symbol of gravity), the speed of light c (the symbol of relativity)
and the Planck constant h =6.6262 . 10-34 11Hz (the symbol of quantum theory),
lpl =al/2 h1/2 c-3fl,::= 1O-33cm.

It should be noted here that the Planck time tpl == 10-43 s shows (by order of

magnitude) during what time the global evolution of the Universe was detemlined by
purely quantum laws. The results of direct .observations of experimental physics
now differ from Planck's scales by a great many orders of magnitue. The search for
indirect observational consequences for quantum-gravitational phenomena has not yet
yielded any definite results. There exists, in modem literature, a considerable
number of (sometimes mathematically very elegant) papers showing attempts to
'formulate a theory interpolating nuclear, weak and quantum-gravitational processes.
Such papers are based entirely on mathematical intuition and should therefore be
regarded as purely mathematical. Who knows what physical phenomena will come
out "on the way" from nuclear to Planck's scales?

Some people ("conservatives") think that the existing theories (string theory
and others) are too daring. There exists a serious objection to such type of theories
because the laner suggest that nothing will happen "on the way" from nuclear to
Planck's scales. In any case, there is no need for hurry until some observational
data appears~' .

On the contrary, quite recently, there has appeared an idea that as the scales
decrease, the number of degrees of freedom necessary for a convenient
systematization of physical "events" (i.e. dimension) may change, and even the
concepts oflocally Euclidean topology of space is not necessary. Although the idea
of discreteness of space in the naive sense as a lattice already does not satisfy the
intellect of theoreticians, more complicated spatial and analytic models based, for
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instance, on discrete normalizable fields ofp-adic type may, perhaps, appear to be of
use. But at the present time there are no serious models of this type. These ideas
have appeared within recent decades for purely mathematical reasons, namely, due to
the evolution of topological methods of algebraic geometry towards arithmetical
discrete structures. Very many people, however, share the idea that the ensemble of
mathematical concepts, notions and methods used in contemporary physics will
surely be insufficient for the physics of the XXIst century. According to modern
considerations, the structure of the Universe on a large scale is determined only by
gravity- the other factors are now unknown. Suppose that on scales of galactic
clusters (- 1022 em) the Universe is approximately spatially homogeneous.

Mathematically, this is expressed by the fact that in the approximation the
space-time manifold~ ("the cosmological model'') admits the group of motions G
with three-dimensional space-like orbits ("spatial cross-sections" t = const.). If,
besides, the angular distribution of matter in the Universe is approximately isotropic
at all its points, then the number of parameters of the group G should be equal to 6.
The metric should satisfy the Einstein equation wiili the energy-momentum tensor 'of
the usual matter (fluid), where either p = 0 ("dust") or p = E/3 (relativistic fluid,
radiation). The solution of the equations (see [1], [29]) shows that the Universe is
non-stationary (A.A. Friedman, the early 20s).

Astronomical observations of the 30s led to the conclusion that the Universe is
actually expanding, the galaxies are receding, and the farther the faster. Comparing
the observational data with the solutions of the Einstein equations, we come to the
conclusion that it took the processes proceeding to the Universe up to now not more
than 10 to 20 billion years. This is a remarkable conclusion of the 30s; later it
became clear that no other observations (e.g. the age of objects of the solar system)
contradict this one. The consideration of anisotropic cosmological models in the
framework ifGTR also left these conclusions unaffected and revealed the possibility
of interesting phenomena at early stages of the evoluti~n.

The discovery of background radiation in the 70s confirmed the idea that the
Universe has been monotonically expanding for a very long time, and h~s changed
scales by many orders of magnitude. So, the opinion that the Universe expanded
infinitely in all the four directions is the only obvious possibility compatible with
physical laws, has been shared for no more than about three hundred years.

2. Addition to Appendix 3. On quasi-crystals

Quite recently, a new type of crystals - "quasi-crystals" - has been discovered
e}tperimenta1ly by physicists. The atoms of these quasi-crystals are positioned in 1R2

or IFf in a translation-invariant manner. Their lattice R c [R'I (n = 2, 3) is such that
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there exists no finite number of atoms of such that the rest could be obtalned by
integer combinations of n basis translations. Such lattices are not already determined
by crystallographic groups - discrete sub-groups of the groups of motions of IR II

•

These lattices are described in one of the following two ways.

WAY 1. We are given a multi-dimensional crystallographic lattice /[ in Iff. where
N> n and the physical space is positioned as a sub-space IR" c Iff perhaps in an
irrational manner. We set the radius d> 0 and associate with the atoms all the points

of the lattice if separated from the sub-space IRII c ~ by a distance smaller than d.

Their position in 1R3 is determined by the orthogonal projection.

DEFINmON 1. A quasi-lattice R is a set of points in IRn obtained by an orthogonal

projection onto IRII from points of the lattice If lying close to [Ii" (i.e. at a distance
smaller than d).

The choice of the number N. of the multi-dimensionallanice. of the sub-space
IRII and of the number d should be discussed in each particular case. In the most
interesting cases there exist finite symmetry groups of the lanice in Iff which leave
invariant the sub-space IRII (for example. fifth-order symmetry which is not realized

in ordinary crystallographic groups in IW and !R3 is realized for n= 3. N =6).

WAY 2. We determine in 1R 2 or in 1R3 a finite number of convex polyherons

K 1•••• .Km •

DEFINTI10N 2. The Penrose lattice is a partition of IRII (n >: 2. 3) into polyhedrons
congruent to K1.... • Km• where two polyhedrons either have a common side. or a

common venex. or do not intersect The lattice itself is a set of \;eritees.

Not any Penrose lanice is a quasi-crystal. On a polyhedron Kj we determine a

function ~{x) constant on the boundary. The partition of IR II into polyhedrons

-congruent to K1• .... Km naturally give rise to a unique function F(x) on IR". equal to

the translation of~{x) on each polyhedron.

DEFINITION 3. A Penrose lattice is said to be a quasi-crystal if for any!j{x) the

function F(x) is quasi-periodic. Le. is expansible into a Fourier series with some
fmite set of basis frequencies (COl..... CON)' lj being integers:

N
F(x) = LA, , exp [21t iLL. co, ].

I' ... N pI J J
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The mathematical theory of quasi-crystals is still at the initial 'Stage of its
development It is very likely that very interesting geometrical problems exist here.

3. Addition to Appendix 5. Multi-valued functionals and the Dirac
monopole

An interesting topological situation is observed for the motion of a charged particle in
a topologically non-trivial magnetic field. Recall that the magnetic field is defined as
a skew-symmetric 2-tensor (or a differential2-form) in a three-dimensional space tW
or in its region V c 1R3• We denote this form H = Hab tJ:tl/\ tb!' (a, b = 1,2,3).

This is the spatial pan of the electro-magnetic field tensor Fcc.p (a, ~ =O. 1, 2, 3),

F ab = Hab. The form H is always closed: dH = O. This allows us to introduce

locally the vector potential A = Aa fbfJ, where H = dA, and to define the Lagrangian

and the action (see the corresponding example from Appendix 5):

Here e is the panicle charge, the metric gab in the Euclidean case has the form

2gab = mOab, m is the particle mass.

What is to be done if the field H is topologically non-trivial, Le. if there exists a
two-dimensional cycle (a closed surface) Qc V such that the flux. is not equal to

zero: ff H * 01
Q

EXAMPLE. Suppose V = 1R3\O, the cycle Q coincides with the sphere S2 and

I:~~2 =1. For a spherically symmetric "monopo~e" we have IF =coost .XJ/Tl,
HI = H23, H2, = - H I3 , H3 = H I2• Since the vector-potential does not exist in the

entire region V. the action functional is not defined as functional on all (e.g. closed)
trajectories y. We shall denote by F the set of all smooth closed parametrized curves

in the region (manifold) V. Here V may be not only a region in tW, it may be any
n-dimensional manifold on which a closed 2-form Hi is defined: dH = O. We shall

cover V with a set of regions VZ' i.e. V = u;cV;c with the properties that 1) for any

smooth curve y there exists a "number" x such that y lies wholly in the region V;
2) on each region V;c there globally exists a vector-potential H =dAr

We shall denote the set of all curves 'Y c V;c by Fr Obviously. we have

F = ux,F;c. For example, for V = iR3\0 the index x can be associated with the ray l;c
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from the origin to infinity. The region V% has the form V% = lW\lr The region V%

is contractible. Any smooth curve 'Y in lW\O does not meet a single ray 1% (even a

continuum). The vector-potentials A% are defined. For curves 'Y c V% we have the

"action"

defined in the region F% of the functional space F.

LEMMA. For curves 'Y E F%l "F~ (i.e. the curves 'Y lie in the intersection ofthe

regions 'Y C V%l " V~) the difference ofthe actions is locally constant.

Proof. Let the closed curve "((t) depend on the parameter t, i.e. 'Yor = "((t, t). For

'Yor C V%l " V~ we have

S' dA{%l) dA{%2) iff h' h' . thmce = , the d erence does not depend on t, w IC lmpbes e lemma.

Thus, on all regions F% of the topological space F the functionals S% are given

whose difference is locally constant In this case, the set (S%) determines the

one-dimensional class of cohomol6gies [S] E'H 1(F; Hi) and we speak of

"multi-valued functionals". In other words, the variation oS is a closed but,
possibly, not exact I-form on the infmite-dimensional manifold F. The requirement
of "quantization" suggests that a single-valued functional - the Feynman
"amplitude" exp [2JtiS(Y)] be defmed on F. This implies that the class [S] should be

- integer: [S] E Hl(F; ~) .c Hl(F; [R). In other words, the "contour integrals" of the

I-form OS 911F oyer the contours in F should be integer.

"iiii; above example of Dirac monopole the contour in F is a surface in IW.
We arrive at the condition of "quantization of the magneic fielcl"flux" through a sphere
S2 c [R3, The topological analysis of this type of situation and extension to
multi-dimensional problems of field theory appeared only in the early 80s (S.P.
Novikov).
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Section 4. Addition to Section 1.12. Minimum surfaces and
boundaries between physical media

In Part I of the book we acquainted ourselves with an important concept of mean

curvature H = A.l + A.2' where A.l' A.2 are the principal curvatures of a two­

dimensional swface M2 in IW. The mean curvature occurs naturally in many physical
problems. As an example we shall present the Poisson theorem. Suppose a smooth
surface M2 in 1R3 is a boundary (interface) between two media (e.g. two liquids, two
gases or between a liquid and a gas, etc.) which are in equilibrium. Let PI and P2 be

pressures in the media. Then the mean curvature H of the surface M2 is constant
(does not depend on the point) and equal to h(Pl - pi), where the constant A. = 1/h is ­

called the surface tension coefficient andPI - P2 is the pressure difference.
We shall apply this result, for example, to the well-knowTl physical object­

soap bubbles. They occur on wire contours when the latter ill!. l.l~en out of a soap
solution. We shall discuss two cases:

a) a closed soap film - a bubble, ie. a fIlm without boundary;
b) a film bounded by a wire contour.
In Case a) the film separates two media with distinct pressures (inside and

outside the bubble). As a model we can take a soap bubble blown out of a tube.
Consequently, here H =h(Pl - pi) =const > O. In Case b) the film separates two

media with equal pressures, therefore, H =const=O. Here the gas on both sides of
the fl1m is, in fact, one and the same medium. Ifwe neglect gravity, then in Case a)
the condition of constancy of mean curvature implies the statement that a soap bubble
homeomorphic to a sphere is a standard sphere (of a constant radius). This is a
non-trivial theorem. Freely falling soap bubbles acquire, therefore, the shape of a
sphere. We shall concentrate our attention on Case b) of zero mean curvature. It
turns out that swfaces of zero mean curvature are locally minimum in the following
sense. Let us consider all possible small enough perturbations of the swface M2•

We shall call a perturbation small if it is is small in amplitude and concentrated inside
a small region (i.e. outside a cenain small ball the swface remains unchanged). We
shall call a swface locally minimum if no small perturbation of this swface decreases
its area.

THEOREM. A surface M2 in Iff is locally minimum ifand only if its mean curvature
is identically zero.

Soap bubbles pulled on contours do not decrease their area under small
perturbations. We shall write analytically the local minimum condition.

From the definition of H it follows that
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H = GL-2MF+EN ,

EG-r

where E du2 + 2 Fdu dv + G~ is the fIrst quadratic fonn and L d';' + 2M du d v +
+ N dv'l is the second quadratic fonn of the surface. It is mentioned in Section 1.13
that on a smooth surface we can always choose (locally) confonnal coordinates u, v
such that with respect to which E = G, F = O. Consequently, in these coordinates the
condition H =0 is equivalent to the identity L +N =O. From this it follows that

;jr + ;jr = 0, where r(~, v) is the radius-vector of the surface. Thus, in confonnal
ai al
coordinates ~r =0, where ~ is the Laplace operator, i.e. the radius-vector of the
minimum surface is a hannonic vector-function with respect to our confonnal
coordinates. Hence, the equality H = 0 can be regarded as the differential equation of
the minimum surface. We shall write it with respect to coordinates. Following

Section 1.12, we shall choose on M 2 local coordinates in a neighbourhood of a
regular value, such that x and y change in the tangent plane to the surface and z be
directed along the nonnal to the surface. We shall detennine the surface locally in the
fonn of a graph z =f(x, y). Then the equation of the minimum surface will become

(l +.ti) /yy - 2fxf/ry + (l + fy)f:a = O. We shall now give several examples.

EXAMPLE 1. We consider a surface fonned by rotation about the x-axis of a curve
given by the equation y = a cosh x/a, where a is a constant This curve determines
the fonn of a heavy sagging chain fixed at two points. The surface obtained is locally
minimum and is called a catenoid. In Euclidean coordinates x, y, z, a catenoid can
also be given in IW by the equation Ql(x2 +I) =cosh2(az), a =const.

EXAMPLE 2. A helicoid is given by the graph of the function z = arc tan x/y.
Geometrically, this surface is obtained when a straight line A which intersects
orthogonally a vertical straight line B moves unifonnly up this straight line B (with a
~nstant velocity) and at the same time unifonnly rotates about the B.

EXAMPLE 3. The Sherk surface is given by the equation

1 cosay
z = -In ,

a cosar

h fi z cosy Min' .....& • 01' di . nalw ere a = const, or ( or a = 1) e =-. Imum SWlaceS in am u- menSlO
cos x

space can be defIned as surfaces which do not decrease in area (volume) under any
sufficiently small penurbation with small suppon.
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EXAMPLE 4. Consider [R2m =a:m and let z = x + iy. Let gl(z)• ...• gm(z) be
complex analytic functions. Then the surface given by the radius-vector

r(z) = (/1(z)• ... • f1m(z)).

where f2p+l(z) = Re gp(z).f2p(z) =1m gp(z). 1 Sp ~ m. is minimum. Thus. a

complex analytic curve in a:m regarded as a two-dimensional surface in [R2m "" (Cm is

a minimum swface.

Let M2 C IW and let E. F. G be coefficients of the flI'St quadratic form of the

surface. If M2 is given by the radius-vector r(u. v) = (x1(u. v). x'-(u. v). XJ(u, v)).
I; I;

then we may consider the complex functions ch(z) = ~ - i: .where z = u + iv.

We can easily make sure that the following two equalities hold:

33 2It $i (z) = E- G-2iF and It 1$I;(z)1 = E + G.
~1 ~1

From this it follows that 1) the functions $I;(z) are complex analytic if and only if

J'(u, v) are hannonic functions of u and v; 2) the coordinates u and v are conformal
3

on K- if and only if It $; (z) =0 (the condition (1)); 3) ifu and v are conformal
~1

3 2
coordinates on M2• then the surface M2 is regular if and only if It 1$1; (z)1 :;II!: 0

b:l
(the condition (2)). Formulae (1) and (2) were pointed out by Weierstrass.

THEOREM. Suppose the radius-vector r(u, v) defines locally the minimum surface
M 2 in [R3. u and v being conformal coordinates. Then the functions $I;(z) are

complex analytic and satisfy the conditions (1) and(2). Inversely, let $1'~'~ be

complex analytic functions satisfying the conditions (1) and (2) in a simply-connected

domain D on a plane [R2(u, v). Then there exists a regular minimum surface given
by the radius-vector r = (x1(u. v), x'-(u. v). XJ(u, v)) defined on the domain D and

I; I;ax . ax
$1; (z) = au -I av .

It turns out that equation (1) can be solved explicitly.

THEOREM. Let D be a simply-connected domain in a complex z-plane and let g(z)
be an arbitrary function meromorphic in the domain D. Let thefunctionf(z) be
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analytic inDo Suppose at those points where g(z) has a pole oforder m thefuncrion

f(z) has zero of order not less than 2m. Then the functions $1 = 1/2f(1 _ g2),

$2 = i/2f(1 +l) and ~ = fg(3) are analytic in D and satisfy equation (1), that is,

$r + $~ + $~ = O. Inversely, any triple offunctions analytic in D and satisfying the

equation cI? + $~ + $~ = 0 is representable in the form (3), except in the case where

$1 := i $2, $2 := O.

This implies the following representation for a minimum surface:

hi = Re If(I-l) dz + cl'

2i2 = Re I':tt1 +g2) dz + C2'

2x3 = Re Ifg dz + C3·

As an independent complex variable we can take the function g. Then for minimum
simply-connected surfaces we obtain the classical Weierstrass-Annepert
representation

Xl == Re I F(g) 0 -l) dg + aI'

:x?- == Re I iF (g) (1 +l)dg+a2'

x3 = Re I 2F(g) g dg + a3'

where F(g) == l/2fdzldg is called the Weierstrass function. If, for example, we set
F(g):= 1, we obtain the known minimum Anneperr surface. For F == - 1/2 g2 we

obtain a catenoid, for F == 1/0 - 14g4 + g8)1/2 the Schwarz surface, and for

F == 1 - 1/i the non-orientable Henneberg swface.
It is clear that when the boundary contour is deformed, the minimum surface

(modelled by a soap film) is deformed too. What is the character of this dependence?
What is the solution of the equation for minimum surfaces on the boundary
conditions? We shall consider for simplicity some two-parameter family of boundary
contours (Le. a two-parameter family of deformations of a given contour). As an
example we shall take the following contour. On a standard torus T2 == Sl($) x

Sl('V) we take ordinary angular coordinates $ and 'V, where 1$1 ~ 1t and I'VI s: 1t.

Then on this torus we take a union of two strips (bands) given by the inequalities 1$1

~ u and I'VI ~ v. In other words, the region QUI' is obtained by a cross-wise glueing

of two flat rings of width 2u and 2v, respectively.
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As the contour rill' we take the boundary of the region QIlV on the torus.

Changing u and v, we change the position of the contour rill' in space. The contour

rill' is homeomorphic to a circle. We fix arbitraty values of the parameters u and v

and consider all locally minimum two-dimesional surfaces with boundary r U1/' From

among these surfaces we select only those homeomorphic to a disc. They are,
generally speaking, few. By calculating their areas we obtain a set of numbers
depending on u and v. For some values u and v these numbers may coincide.

We have obtained a certain multi-valued function which may be naturally called
the area function of minimum surfaces. This function is defined on the domain
where the parameters u and v vary. This domain may be regarded as a square on a
plane. We can therefore, construct the graph of this multi-valued function in IW. It
illustrates the character of the dependence of the areas of minimum surfaces on the
boundary contour. Separate branches (leaves) of the multi-valued function may flow
together, may have branching points on the graph, etc. In other words, this graph
characterizes the topology of the space of solutions of the minimum surface equation
(under variation ofboundary conditions).

THEOREM. In the above example the graph of the multi-valuedfunction of the
areas ofmlnimumfilms is represented as a surface refe"ed to as a "dovetail".

This surface and the corresponding singularity are well known in the modem
theory of singularities. It is also known that the "dovetail" can be represented as a
surface in a three-dimensional space of polynomials of the form x4 + ax?- +bx + c,
which consists of points (a, b, c) corresponding to polynomials with multiple roots.

The appearance of this surface (and analogous ones) in the theory of minimum
surfaces is a reflection of deep topological properties of. minimum surfaces
discovered of late. A systematic study of the topology of minimum surfaces
(including minimum surfaces of arbitrary dimension) has started rather recently. For
the review of the progress in this field see, for example, the books by A.T.
Fomenko, [25], [35] and by Dao Chong Thi and A.T. Fomenko [36]. The same
books elucidate the role of minimum surfaces in physics, chemistry, biology, animate
nature, etc.
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acceleration vector 47
action principle 361
affme connection 210,219
affme coordinates 210
affme transformation 118
algebraic operation 177
alternation 182
angle between two curves 2,4,26
angular momentum 366
arc (of a curve) 7, 66
area 73, 78
atlas 128
axial vector 195

Beltrami's equation 126
Beltrami surface 444, 445
Betti numbers 415
binormal 56
boundary 8
boundary ofa cell 417
boundary points 10
bounded region 12
bouquet 417
branching points 145
Bravais lanice 388

canonical transformation 438
Cartesian coordinates I
Cartesian space I
catenoid 481
Cauchy-Riemann conditions 118, 311
cell 416
cell chain 417
cell complex 416
chain 413
chain boundary 413
Christoffel symbols 155
classical mechanics 188
closed manifold 287
coboundary 4143
cochain 414
cocycle 414
cohomology group 402, 414
commutator 432, 434
compact manifold 287
complex analytic functions 118
complex linear transformation 114
complex numbers in geometry 114
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component of a tensor 169
cone 64
conformal coordinates 122
conformal Euclidean metric 122
conformal transformation (mapping) 118,
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connection 474
conservation law 157
conservative system 13
continuous medium 172
contraction 178
convex boUndary 109
convex surface 103
Coulomb gauge 379
covariant differentiation 209. 212
covector 154
covering 337
critical point 318
crystal lattice 385
crystalline structure 385
crystallographic group 385
curvature 47
curvature tensor 219
cycle 413, 418
cylindrical coordinates 17,20

deformation 292
degree of a mapping 287
derivative of a function 13
differential forms 254
differential-geometric connection 210
differentiable manifold 128
differential of area 73
dimension (of a space) I
Dirac monopole 478
directional derivative 8,12, 13,250
divergence of a vector field 190, 201, 265
double integral 78
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Eigenvalues 96
Eigenvectors 112
Einstein equation 244
Einstein's hypothesis 135
electric field 195
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electro-magnetic field 220
embedding 322
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energy 154
energy conservation law 430
energy-momentum tensor 244
equilibrium position 303
Euclidean connection 198
Euclidean space 2
Euler characteristic 328, 415
EUler-Lagrange equations 154
Euler's theorem 112
even permutation 186
exact form 402
external field 365
extremal 154
extrinsic geometry 61

field of a dipol 316
field strength 220
first quadratic form 67
flat curves 46
flow of liquid 304
force 154
Frenet formulas 48, 49
fundamental group 328
fundamental region (for the group) 452

Galilean transformation 368
Gauge field 219
Gauss map 318
Gauss theorem 294
Gaussian curvature 65, 98
general position 299, 318, 324
general theory of relativity 135
geodesic curvature 232
geodesic 151
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graph of a function 120
gravitational field 135
Green formula 271
group manifolds 129
groups of motions 144
groups of transformations 135

Hamiltonian 433
Hamiltonian equations 434
Hamiltonian gauge 379
Hamiltonian system 438
handle of a surface 139
hannonic function 312
Hausdorff manifolds 132, 149
helicoid 481
Henneberg surface 483
hermitian scalar product 114

Hessian 65
hexagonal lattice 389
holonomic constraints 19
homology group 413
homotopy 292
Hooke's law 174
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integral of motion 436
integral of a function 78
integral trajectory 303
intrinsic geometry 61
intrinsic invariants 61
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invariants 61
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Jacobian matrix 19
Jacobian 19
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local coordinates 128
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Lorentz group 363

manifold 127
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magnetic field 195



Maxwell's equations 195
mean curvature 65, 98
metric invariant 61
Minkowski space 8, 33
minimal surface 480
MObius strip 330
momentum 154
Morse function 318
multiple-valued algebraic function 120
multi-valued coordinate 16
multi-valued functional 478

natural parameter 8, 46
negative curvature 447
NeWlon-Leibniz formula 279
non-degenerate critical point 56, 323
non-Euclidean space 343
non-singular point 62, 302, 323
non-singular surface 62
normal cross-section 99
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one-parametric transformation group 366,
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oriented manifold 287
orthogonal matrices 52, 163
Osrrogradskii formula 270

parallel field 217
parallel transport 229, 230
parametric equation 61
particle charge 361
particle mass 361
Penrose lattice 477
periods of a closed form 409
permutation of indices 177
Poincare model 43
point group of crystal 392
Poisson bracket 432
polar coordinates 20
potential 13, 136
pressure 173
primitive vectors 385
principal curvalUre 65, 98
principal direction 96, I I2
principal normal 56
product of tensors 178
projective place 130
projective space 130
proper maps 290
pseudo-Euclidean space 8, 33
pseudo-sphere 34, 445
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quasi-crystal 476
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radius of curvature 47, 54
rank of the tensor 169
region 9
region with boundary 10
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regular curve 3
regular point 62, 288
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relativistic mechanics 378
Ricci tensor 239
Riemann surface 120, 138
Riemannian curvature tensor 236
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scalar curvature 240
scalar product 2
scattering processes 371
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second variation 422
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skew-symmetric metric 438
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skew-symmetric tensor 182, 184
small defonnation 182
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smooth curve 46
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smooth manifold 128
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space curve 54
space-like vector 9
space-time continuum 135
spatial reflection 369
spherical coordinates 17, 21
stationary flow 304
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Stokes formula 270
strain tensor 173
stress tensor 172
sUbmanifold 130
surface 61
surface of rotation (revolution) 445
surface tension coefficient 480
symmetric cell 389
symmetric connection 214
symmetric tensor 182, 184
symmetrization 182
symmetry group ofcrystal 392
symmetry operations 392

tangent vector 3, 133
tensors 169
tensor transformation law 163
time-like vectors 9
time reflection 369
torsion 59
torsion tensor 236
tolal derivative 156
total flux 262
trace 178
tracing 178
translation along a vector 30,385
triangulation 414

unitary matrices 114
unit normal 49

vector 2
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vector of geodesic curvature 232
vector-potential 220
vector product 55
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Vortex-free flow 309
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