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SERIES EDITOR'S PREFACE

“‘Et moi, ..., sl Javail su commenl en revenir, One service mathematics has rendered the
Jje 0y serais poini all&’ human race. It has pnl common sense back
Jules Verne where it belongs, on the topmost shelf mexi
Io the dusty camister labelled ‘discarded non-
The series is divergent; therefore we may be sense’.
gble 1o do something with it. Erc T. Bell
0. Heaviside

Mathe.natics is a tool for thought. A highly necessary tool in a world where both feedback and non-
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above ope finds such statements as:
‘One service topology has rendered mathematical physics ..."; ‘One service logic has rendered com-
puter science ..."; “One service category theory has rendered mathematics ...". Al arguably true. And
all statemeats obtainable this way form part of the raison d'étre of this seres.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
volumes have appeared it seems opportune to reexamine its scope. At the time I wrote

“Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the ‘trec’ of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought 1o be completely
disparate are suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystai
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to this there are such new emerging subdisciplines as ‘experimental
mathematics’, “CFD’, “‘completely integrable systems’, ‘chaos, synergetics and large-scale
order, which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.”

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit -the deeper underlying interrelations more effort is
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will
continue to try to make such books available.

f anything, the description I gave in 1977 is now an understatement. To the examples of
interaction areas one should add string theoty where Riemann surfaces, algebraic geometry, modu-
lar functions, knots, quantum field theory, Kac-Moody algebras, monstrous moonshine (and more)
all come together. And to the examples of things which can be usefully applied let me add the topic
‘finite geometry’; a combination of words which sounds like it might not even exist, let alone be
applicable. And yet it is being applied: to statistics via designs, to radar/sonar detection arrays (via
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to
be no part of (so-called pure) mathematics that is not in immediate danger of being applied. And,
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and
nu:lnencs, the traditional workhorses, he may need all kinds of combinatorics, algebra, probability,
and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the
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extra mathematical sophistication that this requires. For that is where the rewards are. Lincar
models are honest and a bit sad and depressing: proportional efforts and results. It is in the non-
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appred-
ate what I am hinting at: if electronics were linear we would have no fun with transistors and com-
puters; we would have no TV; in fact you would not be reading these lines.

There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace
and anGtommuting integration, p-adic and ultrametric space. All three have applications in both
electrical engineering and physics. Once, complex numbers were equally outlandish, but they fre-
quently proved the shortest path between ‘real’ results. Similarly, the first two topics named have
already provided a number of ‘wormhole’ paths. There is no telling where all this is leading -
fortunately.

Thus the original scope of the series, which for various (sound) reasons now comprises five sub-
sertes: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (cverything
else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis-
dpline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role in several different mathematical and/or
scien dfic specialization areas;

- new applications of the results and ideas from one area of scientific endeavour into another;

- influences which the resuits, problems and concepts of one field of enquiry have, and have had,
on the development of another.

Like algebraic geometry differential geometry is a notoriously hard subject to teach and to ‘self-
study’. Partly because it is very large and it is not easy to select a coherent basic chunk, partly
because it is well developed and advanced. On the other hand the subject is of vast importance in
terms of applications especially to modern physics. Indeed it is impossible to do or understand
gauge theories for example without a solid differential peometry and topology background. The
authors have some 15 years experience in teaching a coherent course on the topic covering all the
essentials. This volume is the distilled essence of their course. It is a pleasure and honour to wel-
come such a mice text by such eminent authors in this serjes.

The shortest path between two truths in the
real domain passes through the complex

domain.
J. Hadamard

La physique ne nous donne pas sculement
T'occasion de résoudse des problemes . elle

nous fait pressentir Ia solution.
H. Poincaré

Kyoto, August 1990

Never lend books, for no one ever relurns

them; the only books 1 have in my library

are books that other folk have lent me,
Anpatole France

The function of an expert is 0ot to be more
right than other people, but 1o be wrong for
more sophisticated reasons,

David Butler

Michiel Hazewinkel



Preface

For a number of years, beginning with the early 70's, the authors have been
delivering lectures on the fundamentals of geometry and topology in the Faculty of
Mechanics and Mathematics of Moscow State University. This text-book is the result
of this work. We shall recall that for a long period of time the basic elements of
modem geometry and topology were not included, even by departments and faculties
of mathematics, as compulsory subjects in a university-level mathematical education.
The standard courses in classical differential geometry have gradually become
outdated, and there has been, hitherto, no unanimous standpoint as to which parts of
modem geometry should be viewed as abolutely essential to a moden mathematical
education. In view of the necessity of using a large number of geometric concepts
and methods, a modernized course in geometry was begun in 1971 in the Mechanics
division of the Faculty of Mechanics and Mathematics of Moscow State University.
In addition to the traditional geometry of curves and surfaces, the course included the
fundamental priniciples of tensor analysis, Riemannian geometry and topology.
Some time later this course was also introduced in the division of mathematics. On
the basis of these lecture courses, the following text-books appeared:

S.P. Novikov: Differential Geometry, Parts I and II, Research Institute of
Mechanics of Moscow State University, 1972.

S.P. Novikov and A.T. Fomenko: Differential Geometry, Part III, Research
Institute of Mechanics of Moscow State University, 1974.

The present book is the outcome of a revision and updating of the
above-mentioned lecture notes. The book is intended for the mathematical, physical
and mechanical education of second and third year university students. The
minimum abstractedness of the language and style of presentation of the material,
consistency with the language of mechanics and physics, and the preference for the
material important for natural sciences were the basic principles of the presentation.

At the end of the book are several Appendices which may serve to diversify
the material presented in the main text. So, for the purposes of mechanical and
physical education the information on elementary groups of transformations and
geometric elements of variational calculus can be extended using these Appendices.
For mathematicians, the Appendices may serve to enrich their knowledge of
Lobachevsky geometry and homology theory. We believe that Appendices 2 and 3
are very instructive for those who wish to become acquainted with the simplest
geometric ideas fundamental to physics. Appendix 7 includes selected problems and
exercises for the course.

The list of references may assist in further independent study. A more detailed
text-book which provides deeper insight into geometry and its applications is Modern
Geometry [1].

vii



CONTENTS

Series Editor's Preface

Preface

PARTL

1.1
12
13
14
1.5
1.6
1.7

1.8

1.9

BASIC CONCEPTS OF DIFFERENTIAL GEOMETRY

General Concepts of Geometry
Coordinates in Euclidean Space
Riemannian Metric in a Region of Euclidean Space
Pseudo-Enclidean Space and Lobachevsky Geometry
Flat Curves
Space Curves
The Theory of Surfaces in Three-Dimensional Space.
Introduction
The Theory of Surfaces.
Riemannian Metric and the Concept of Area
The Theory of Surfaces.
The Area of a Region on the Surface

1.10 The Theory of Surfaces.

The Theory of Curvature and the Second Quadratic Form

1.11 The Theory of Surfaces.

Gaussian Curvature

1.12 The Theory of Surfaces.

™ot

Invaniants of a Pair of Quadratic Forms and Euler's Theorem

1.13 The Language of Complex Numbers in Geometry.

Conformal Transformations. Isothermal Coordinates

1.14 The Concept of a Manifold and the Simplest Examples
1.15 Geodesics

PARTII. TENSORS. RIEMANNIAN GEOMETRY

21
2.2
2.3
24
25
2.6
2.7

Rank-One and Rank-Two Tensors

Tensors of General Form. Examples

Algebraic Operations on Tensors

Symmetric and Skew-Symmetric Tensors

Differential Calculus of Skew-Symmetric Tensors of type (0, k)
Covariant Differentiation. Euclidean and General Connections
Basic Properties of Covariant Differentiation

vii

15

33
46
54

61

70

77

89

159
168
177
181
188
198
211



CONTENTS

2.8 Covariant Differentiation and the Riemannian Metric.

Paralle] Transport of Vectors along Curves. Geodesics

2.9 Riemannian Curvature Tensor.

Gaussian Curvature as an Intrinsic Invariant of the Surface

2.10 Skew-Symmetric Tensors and the Theory of Integration
2.11 The General Stokes Formula and Examples

PART III. BASIC ELEMENTS OF TOPOLOGY

3.1
3.2
33
34
35
3.6
37

Examples of Differential Forms

The Degree of Mapping. Homotopy

Applications of the Degree of a Mapping

Vector Fields

Functions on Manifolds and Vector Fields

Singular Points of Vector Fields. The Fundamental Group
The Fundamental Group and Covering

APPENDICES

References

Index

Appendix 1 The Simplest Groups of Transformations of Euclidean

and Non-Eunclidean Spaces
1Q INon-ENchaean 5paces

Appendix 2 Some Elements of Modern Concepts of the Geometry

of the Real World

Appendix 3 Crystallographic Croups
Appendix 4 Homology Groups and Methods of their Calculation
Appendix 5 The Theory of Geodesics, Second Variation and

Variational Calculus

Appendix 6 Basic Geometric Properties of the Lobachevskian Plane
Appendix 7 Selected Exerices on the Material of the Course
Additional Material

221

234
245
268

280
287
297
302
318
328
337

W
P
(¥

385
402

422

455
474

485

487



PART 1

BASIC CONCEPTS OF DIFFERENTIAL GEOMETRY

1.1 General Concepts of Geometry

Let us turn to the subject matter of geometry. Our first acquaintance with geometry
goes back to school years. School geometry (the geometry of the ancient Greeks)
studies the various metrical properties of the simplest geometric figures, that is,
basically finds relationships between lengths and angles in triangles and other
polygons. Such relationships provide the basis for the calculations of the surface
areas and volumes of solids. We would like to pay attention to the fact that the
central concepts underlying school geometry are the following: the length of a
straight line (or a curve) segment and the angle between two intersecting straight lines
(or curves). The angle was always measured at the point of intersection of these
lines. ’

In the university we are given a course in analytic geometry, whose chief aim is
to describe geometric figures by means of algebraic formulae referred to a Carresian
system of coordinates of a plane or of a three-dimensional space (e.g. an ellipse in a
plane is described by the equation x*/a? + y?/b” = 1). The words “analytic geometry”
are obviously indicative of the method, whereas the objects under study are the same
as in elementary Enclidean geometry. Differential geometry is also the same old
subject except that here the subtler techniques of analytic geometry, differential
calculus and linear algebra are widely used.

We shall systematize our basic concepts of geometry as follows.

First, our geometry develops in a certain space consisting of points P, @, ... .

Second as in :\nnl\:hr- geometry. we introdnce a svstem of Carresian
[ Va8 LY Svaava AVMHVY & OOl Vi L WrsCurans

coordinates x1, ... , x* for the space, that is, associate with each point of the space, a
set of numbers (], ..., x™) which are the coordinates of the point. The number of
coordinates » is called the dimension of the space.

It isrequired that distinct points be assigned distinct n-sets. Two points P and
Q with coordinates (!, ..., x*) =P and (¥}, ..., ") = @ coincide if and only if
x' =y for all i.

Conversely, each set of numbers (x, ..., ¥*) must be assigned to some point
P of the space. Then, such a space is called a Carzesian space — points of the space
are identified with all sets of numbers (x!, ... , ¥*), where — < ! < +oo and the
integer n is the dimension of the space.
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Third, geometry requires that we can define the concept of the length of a
segment in space and the concept of the angle between two intersecting curves at a
point where they intersect.

To a certain approximation we may say that we live in an Euclidean
three-dimensional space in which we have introduced Cartesian coordinates with
special properties:

a) each point P is assigned three coordinates (x!, X2, x°);

b) if the coordinates of a point P are (xl,xz, 13) and the coordinates of a
point Q are (¥!, y?, y3) then the square of the length of the rectilinear segment joining
the points P and Q isequal to 2 =(x! ~y')? + 02 - y)? + (& - ¥)% )

In the case where conditions a) and b) are fulfilled, the space is called
Euclidean, and the Cartesian coordinates with such properties are called Euclidean
coordinates.

From the course in linear algebra we know that it is convenient that points of a
Euclidean space can be associated with vectors. We have a point O as the origin.
The vector going from the point O to a given point P will be called the radius vector
of the point P, The Cartesian coordinates (xl, ... » X") Of the point P will be called
the coordinates of the vector. We can make a coordinate-wise summation of two
vectors & = (x!, ..., ), 1 = (%, ..., "), which join the point O, respectively, with
the points P and @, to obtain the vector § + 1} with the coordinates e+, ..,
x"+ y"). We can also multiply a vector by a number. Vectors ey, €3, €3
coordinatized, respectively, by e; = (1,0, 0), = (0, 1,0) and e5 = (0, 0, 1) clearly
have length 1. Tt is shown below that they are mutually perpendicular and that any
vector £ with coordinates (x', 22, 2°) can be expressed as & = x'e; + 2e, + Xe;.
The space is here three-dimensional and n = 3. The definition is, of course, similar
for any n. Thus, a Euclidean space may be regarded as a linear space (or a vector
space), for which the square of the distance between any two points (end-points of

. " H H
radius vectors) § = !, ..., X" and n= (y', ., ¥") is measured as 2= El - y‘)z.

In the Euclidean 3-space we have n = 3, for the Euclidean plane n = 2, and the case
n > 3 is simply an extension to higher dimensions.

In the Euclidean space there exists an operation called the scalar product of
vectors, which is of fundamental importance.

DEFINITION 1. If we take a vectof E=(t, ..., " and a vector } = O, ..., ),

n
then their Euclidean scalar product is the number En =0 = El XY=yl + 22+ .

. +X%" in the literature, the scalar product &n is often denoted by (§, 1) or
(S, ).
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Making use of this concept we can say that the square of the length of the
straight line segment going from a point P with the radius vector £ = o, ... x")oa
point Q with the radius vector 1} = (yl, —.» ") is the scalar product of the vector
£ — M by itself, and the length of any vector ¥ = (2} ..., 2" is equal to (yy)7?,
where Yy is a scalar square of the vector 7.

The length of the vector v is often denoted by i = (2.

From analytic geometry we know that the angle between two vectors & =
¢, ..., X and M =@, ...,»" is also expressed in terms of the scalar product
of these vectors, namely:

&n &
o ”am'?  Em

cos ¢ =

Thus, the concepts of length and angle are closely related with the concept of
the scalar product of vectors. Subsequently, it is just the concept of a scalar product
that we take as the basic concept of geometry.

Now let there exist a segment of a curve in a Euclidean space given in the
parametric form:

xl = fl(t), ...,lﬁ = jﬂ(t)i

where f(t) are differentiable functions of the parameter ¢, and the parameter 7 runs a
segment from a to . The rangent or velocity vector of the curve at the instant of time
t is the vector:

) = (dfl ,_

A curve is called regular if its velocity vector is nonzero at each point of the
curve.

DEFINITION 2. 'The length of the curve segment is the number:

b b
[ = J.(v(t) vy P dr = Ilv(t)l dr.

Yo malnc sxrmedo olaa foo.
411 OUICL WOlUD, UIC ICTE

length of its velocity vector.

o)
Won
=

o
]
©
:l
b
<
[N
=
o
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If a curve X, =f(1),i = 1, ..., n, intersects another curve ¥’ = gi(s),i = 1, ...,
n, at 1 = f5, then we can speak of the angle between these two curves at the point
where they intersect. Denote the tangent vectors to the curves at ¢ = 1, respectively,
by:

2=
1l
]
B
Ny’

DEFINITION 3. The angle between two curves at the point of their intersection
t =15, is the angle between two vectors v, w, that is an angle ¢ such that there holds
the equality:

w

cOS = .
¢ vl wl

The two larter definitions can be regarded as important facts to be included in
the course of mathematical analysis. However, they may also be regarded as basic
definitions. Then we should check the consistency of these definitions with the
visual concepts of curve lengths and of angles between any two curves in Euclidean
space. By this verification, we wish to demonstrate once again that, from the modemn
point of view, the whole geometry is based on the concept of the scalar product of
tangent vectors.

Why have we preferred here to give definitions rather than to formulate
theorems on the length of a curve segment and the angle between two curve
segments? :

The point is that mathematical theorems can be proved only if some definitions
of the basic quantities are given. What was the definition of length that we dealt with
earlier? Let us analyze carefully our old concept of length. That was the length of a
straight line in Euclidean space. We could, therefore, define the length of a
polygonal arc (i.c. a broken straight line segment) as the sum of the lengths of the
straight line segments composing it. Next, following the definition of a
circumference, familiar to the reader from secondary school, we may represent a
curve segment as the limit of a sequence of broken lines and define its length as the
limit of the lengths of the broken line segments aproximating our curve. From school
mathematics we know that the circumference of a circle of radius R is 2nR. Next,

analytic geometry teaches us that the length of a straight line segment — a vector §
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with coordinates (¥, ... , y*) — is equal to ((yl)2 +..+ (}”‘)2)1’2 (by Pythagoras'
theorem).

An approximate calculation shows that our definition of length yields the same
result.

1. The straight line segment. For simplicity we suppose that a segment comes
from the origin. Then it is given by the formula ¥ = y't, where0 <1< 1. Forr=0
the coordinates x’ are all zero, while for r = 1 all the coordinates x = y"; the
corresponding point is the end-point of the vector €. The length of a straight line
segment is conventionally given by the forrnula:

1 L
1 n
dx N2 . edo 2
L= J"‘ \/ (G +-+(F) = O+ 0P+ ..+ )
0
Using our definition of a straight line segment, we have arrived at exactly the same
formula.
2. Thecircle. The circle (in a plane) is given by the equations:
x' = Rcost, 2 = Rsint,

where 0 <t < 2x.

The circumference is equal to:
- 2: - - - - L t ~
A R " s \im
¢ = ) (R*sin*t+R*cos’t ) dr = 2mR.
0

Thus, for the circle also, our definition of length gives the answer it should.

3. Our definition of length clearly satisfies the requirement that the length of an arc
made up of two pieces be the sum of the lengths of those two pieces.

It is already apparent that our definition of length satisfies all the necessary
requirements to serve our intuitive ideas concerning this quantity.

However, we still have an obstacle in our way; let us examine carefully our
definition of the length of a curve segment.

The length of the curve (¥ = £(r)} is calculated by the formula:
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b
I = le(t)ldr, V() = (-‘Z—l,... .-i‘g:).

where vl = (vv)“2 = & / E"l(%i)z

It should be emphasized that our formula for the length of a curve segment
refers to parametrized curves 2=f1),i=1,2,..,n,a<t<b. Simply speaking, _
we “run” along the curve with a parameter ¢, which varies between g and b, at a speed
v(1) = (df'/ds, ... , df'/dt), and this speed v of our motion along the curve enters
explicitly into our formula.

What will happen if we trace out the same curve segment with a different
speed? We are moving from the point P = (fl(a), ... ,f"(@)) to the point Q = (f‘(b),

" ...,f(b)). Shall we obtain the same number if we move alon g the same curve from

P10 Q, but at a different speed?
The precise formulation of this question is as follows. Suppose that we have a

new parameter T varing from o' 1o b' (@' £ T < b') and that the parameter t is
represented as a function of T: ¢ = #(t), where #(a') = a, #(b") = b and dt/dt > 0.

The inequality df/dt > 0 implies that we move along the curve with parameter 1
in the same direction as along the curve with parameter f. For what follows we
should remember that di/dt = ldifdxl > 0.

Then our curve can be represented in the following form:

2 =) = fev) = ¢, i=1,..,n

With the new parametrization, the speed at which we move along the curve is
given by:

i n
vi(D) = (gg— y oy g-g—- , wherea'€t<b'.
dt dt

(The prime here does not indicate differentiation.)
The length of the curve has the form:

b
I =]hW(D)lde.
!

We should prove the following equality:
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b b
?
j WD) L dt = J' (o) | .
a a

Let us verify this equality. Since:

: _/"dg"z_ p o dy
Ml = .-E(E) .E‘;('EE) -

n i 2 a n 2
- &l - JEGY -2 [ED

we have:

?.I' ¥ —f 12 e = [ wyia
J. V(1) ldt -l v(e(t)) E T -J v(?) Idr.

a

Thus, we have arrived at the result:

b' b
jlv‘(t) ldt = J W) ldr. =1 (the curve length),

Conclusion. The length of an arc of a cu
which the arc is traced out.

It is even simpler to show that the length of a curve segment does not depend
on the direction in which the segment is traced out, and that the angle between two
curves does not depend on the way in which the parameter on the curves is chosen
(but it does depend on the direction).

If a curve in a plane is given by the equation x! = f{x?), then we express 22 in

terms of ¢ to obtain;

rve is independent of the speed at

o _ & &’ _
dr - L2 dl

Therefore v = (_d_12_ , 1), and the length of the curve is calculated by the formula:
dx
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b b -
1=J'lv(t)ldr=J' 1+d—f2 de’
a a dx

(the coordinates are customarily denoted as xt=x, 22, =)
In a space with coordinates (x!, x2 x°) = (x, y, 2), for a curve z = f{x),
¥ = g(x) we obtain the following expression for the length:

| = j:\/l + (%)2+ (%—)2. dx,

if a€x<bh.

REMARK. We may dispose of the choice of the parameter £ along the curve in a
different way, namely, we may choose the parameter ¢ such that vl = ¢, where cis a
constant; then the length is given by:

b
I = _[Mdt = c(b-a).

a
A parameter 1, such that W(#)l = 1, is called a narural parameter — it is equal to the
segment length which we trace out.

We have discussed the basic, simplest concepts of classical and analytic
geometry such as lengths, angles, Cartesian coordinates, Euclidean space; it has also
been shown that the most convenient basic concept which determines Euclidean
geometry is the concept of the scalar product of vectors in terms of which we can
express the length of a curve segment and the angle between two curves. We have
given the formula for calculating the length of a curve arc in terms of the integral of
the length of the velocity vector and established the correspondence of this formula
with the usual intuitive idea of length.

In Euclidean (and general Riemannian) geometry we encounter only a positive
scalar product. We shall adduce an example of a non-positive scalar product of
vectors of a four-dimensional space (x!, x2, 23, 2% = ¢f) which plays a fundamental
role in the theory of relativity:

- Xy 2P

where € = (1, x2, %3, 2%, 1 = (yj,yz. ¥, yo). Such a space is called a
pseudo-Euclidean (Minkowski) space.
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We have here three types of vectors:

EE > 0 (space-like)
EE < O (time-like)
EE = 0 (light-like).

We can readily see that the lengths of the vectors determined here by the usual
formulae may appear to be imaginary or zero, and the angles may appear to be
complex. For this reason it is more convenient to use a scalar product. Strictly
speaking, this example was given just as an illustration of the general assertion that
the most important basic concept of modern geometry is a scalar product.

These concepts are not yet enough for the development of modern geometry.
We shall now discuss such useful, and later on, necessary concepis as function in
Cartesian space (x’, ..., X, its gradient and directional derivative, the concept of a
region in space and its boundaries, and finally go over to general coordinates in a
region of space. All these concepts are not, of course, new for us; they are familiar
to the reader in this or that measure from the course in mathematical analysis where
they are likely to have been introduced formally — axiomatically.

Our goal is to treat these concepts from the point of view of geometry.

The concept of function is clear enough: the majority of physical functions can
be measured by numbers in a certain system of units, and the value of this quantity is
a function of the position of the object (system) in space. The position of a
mechanical system of n material points in a Euclidean three-dimensional space is
described by a set of coordinates of points (x'!, x12, x13; x?!, x?2, x23; . ;
x™, 22, ) and velocities of points (x ', x 12, x 13 %21, x22,x23, _;x", x"2,
x ) where x V= dx¥/dr (one of the indices, namely, the first one indicates the
number of the point. Letus put x ¥ = vW: then we see that the state (position) of the
system is described by the point of a 6n-dimensional Cartesian space:

Wy j=1,2,3, i=1,2,...n

Besides, we often consider constraints on the position of points — especially
holonomic constraints of the form:

fa G, x12, 213, X" a2 ) = o, g=12, ..,s,

involving no velocities v/,

M sl mmtetne corm obnll Ao 2o o 9 .o UV o
(ror velocites we shall detive the reiation 2,97, /ox
if
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To describe these constraints imposed on a system, we shall need the concept of
functions f.

Recall that the holonomic constraints in mechanics are the equations f, = 0
relating the coordinates of a system.

As an example, we shall say that in classical mechanics an ideal rigid body is
understood as a system of n points (n is large) with the following constraints: the
distance between any pair of points is constant.

Sometimes it is possible to impose the following constraints:

LG, P <0, g=1,2.,5
or
fq(xll' eoe 'X"S) < 0- q = 11 21 ey 5

which define regions (with or without boundary) in a Cartesian 3n-dimensional space
of positions in the system. We encounter many such examples in mechanics. Now
we must introduce the general concept of a region.

Suppose we are given an m-dimensional Cartesian space with coordinates
xl ., xm,

DEFINITION 4. A region without boundary is a set of points, in an m-dimensional
space, such that together with each point of this set it also contains all points of the
space sufficiently close to it.

In terms of “e - 6" we have: for any point P of a region there exists a small
3 > 0, generally depending on this point, such that all points of the space are
contained in the region provided that their distance from the point P is smaller than 4.

A region with boundary is obtained from a region without boundary by simply
adjoining all boundary points, that is, points that can be reached from within the
region, by sequences of interior points converging to them.

The whole space is, of course, a region. Another simple example of a region
without boundary is a region, in a plane, consisting of points of this plane o, ),
such that (x1)? + (x®? < 1 (an open disc).

The corresponding region with boundary consists of all points of the plane,
such that (x!)? + ()2 < 1 (this can be verified).

This example is in a sense typical.

The following simple theorem holds.
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THEOREM 1. Let in an n-dimensioan! Cartesian space (x', ..., X") there exist a
family of continuous functions fy(x), ... , f,(x), where x = (x', ..., x"). Consider
the set of points satisfying the inequalities:

H(0) <0, ....f0) < 0.

Then this set of points is a region without boundary.

Proof. Suppose in a space there exists a point P = (x&, ... » Xg) with coordinates
satisfying the inequalities:

fGD, o xl) < -6 <0, b . xD) < -5 <0,...
e 1Sy oo X5) < =By < O

Since all the functions f; are continuous, by the definition of continuous functions,
there exists a small number & > 0 such that the values of all functions fj, ... , f are
still negative at all points Q whose distance to the point P is less than 8. (Recall the
“g — 6"-definition of continuous function).

Thus, we choose the number 6 in such a way that at points Q with the distance
to the point P smaller than § the inequality Ify(P) - f(Q) <min (gy, .., €p), =1, ...
.., @ holds. At all such points Q we have f}-(Q) <0,j=1, .., q. Therefore in the

space, all sufficiently close points surrounding the point P belong to our set of
points, and the result follows.

Note that when movine alone curves from within the recion we can, bv virtue
Note that when moving along curves Irom within the region we can, py virfue

of continuity of the functions f;, reach only those points at which f; < Q (perhaps not
all of them).

EXERCISE. Solutions of the set of inequalities f; < 0 may also include, besides a

region with boundary, some extra points. For the case of one inequaltiy f < 0 show
that these extra points are those of the local minimum of the function f.

Usually in applications, if a region has a smooth boundary, it is given by one
inequality fx) < 0 (Ax) <0). If the boundary has angles, edges, faces, etc. then it
(the boundary) is given by several equations and the region by several inequalities.

EXAMPLE. A plane (x!, x?) and a region
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ad +b2 < A, X' +dx < B
(ad-bc = 0).

Here a pair of half lines is the boundary of the region (Figure 1).

Figure 1.

Very important, and frequently encountered, is the concept of a bounded region
in space, i.e. a region such that all points sufficiently far from the origin do not -

belong to it. The simplest example is a ball {f:(xi)2 <R2} with a sphere as
=1

boundary.
Having discussed this general, and intuitively obvious, concept of a region in
space, we now proceed to the gradient of a function and the directional derivative.
Suppose we are given a smooth (i.e. continuously differentiable) function
fix!, ..., ¥ in Euclidean space with Cartesian coordinates. The function may be
given only in a region of space — we now have the right to use the mathematically
rigorous concept of a region.

DEFINITION 5. The gradient of the function fix}, ..., x*) at a point P = (x}), .
... ,xg) in a given Cartesian system of coordinates of Euclidean space (or of its
region) is the vector grad f with coordinates:

gradfl, = (—@}, 'i..).- ;=X g,
ox ox z=x, =1 gy

where ¢; are the basis unit vectors, and all the derivatives dffdx; are calculated at the

point P =(x}, ... , Xp).

If we regard the gradient as a function of the point P, we shall obtain the
so-called vector field, that is, the situation frequently encountered in mechanics and
physics when at each point of a space or of its region a vector is given which is fixed
to this point — in our case this is the vector grad f at the point P.
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The reader is acquainted with the geometrical meaning of the gradient: if the
motion originates at the point P, then the function fincreases in the same direction in
which grad f goes from the point P. In mechanics, for example, for conservative
systems, the forces have the form of the gradient of a certain function (called
potenrial), only if taken with a minus sign since the force hampers the motion of the
system up the levels of the constant height of this potential.

Let us ask a question. Suppose we are given the function fx!, ... , ¥*) and a
certain curve ¥ = gi(t), i=1, .., ninspace (the parameter ¢ varies between the @ and
b values).

If we consider the function f{x) only at the points of this curve, then it will
naturally become the function ¢(r) of the time r. What is the rate with which this
Junction f(gl(t), v » 8(D) = §(2) varies with varying parameter t? This question can
be easily answered. By the differentiation rule of composite function we have:

1

dy _ ¥ dg & dg

d hand l d mes n d -
ox ox

We can readily see that this is a scalar product of the gradient f by the velocity vector
of the curve:

d
-}=(gradf)-\r.

where:

R A dg’.
gadf= T e, v T,
=lox =
e; being the basis unit vectors.
On the basis of this result, we deduce the following definition.

DEFINITION 6. A derivative of the function fx, ... , x") with respect to the
direction of the vector E = (5, ..., y") calculated at the point P = (x} ..., xp) is the
scalar product of the gradient of the function f (calculated at the point P) by the vector
E. Formally, we have:

LA R A
ag 1=1 ax‘
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The derivative with respect to the direction of the vector will be denoted by df/dt.

EXAMPLE. The directional derivative of the i-th coordinate unit vector is simply a
partial derivative with respect to the i-the coordinate:

g | o i i
%, ? - o7 F = %)
i ox
One of the main properties of differentiation with respect to direction is as

follows.

PROPOSITION 1. If we are given a curve ¥ = g'(t), i = 1, .. , n, such that at
points of this curve the scalar product of the gradient f by the velocity vector is equal
to zero, the function f is constant along the curve.

Proof. 1% =gi(4), i=1, ..., n is our curve and 6(r) = fig'(B), ... » g"(t)), then

g do_
"dT—-E--(gradf) v,

(at points of the curve), where
a’g1 dg"
v= (G )

is the velocity vector of the curve. Since by the condition (grad ) « v =0, it follows
that d¢/dt = 0 and ¢(z) = const., and the assertion follows.

When we begin to study differential equations and we meet the equations of
mechanics and physics, we come across the concept of the “integral of equation™
which is a function constant along the trajectories — the solutions of the equation.
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1.2 Coordinates in Euclidean Space

In the preceding section we have defined the concept of a region in an n-dimensional
Euclidean space — a region without boundary and a region with boundary — and
proved the theorem stating that a family of continuous functions f;(x, ... , ¥*),
fz(xl, e 3 X)) ey fq(xl. «- » X") specifies, with the help of the rigorous
inequalities f;{x) < 0, a region without boundary. By means of the inequalitites fi(x)
< 0 the family of functions often determines a region with boundary.

As mentioned above, a region with a smooth boundary (without angles) is

usually given by one inequality f{x) < 0, whereas a region with angles, edges, etc. is
given by several functions:

A& < 0, fol) < 0, ¢> 1.

As an example, we shall consider the regions of the type of polyhedra given by a set
of linear inequalities:

fl(x) = auxl+...+al,,1" < A,‘.

fk) = aq1x1+... +a,x" < A,

where Aq are numbers, » are coordinates and ay are numbers. We have also defined

an important concept of a bounded region.

We have introduced the concept of the gradient of a function and the derivative
of a function with respect to the direction of a vector as a scalar product of the
gradient of this function by this vector. The following property of the directional
derivative has been proved.

If the gradient of a function has a zero scalar product with the velocity vector of
a certain curve (i.e. they are orthogonal), then the function is constant along this
curve. More generally, if a function f{x) is considered only at points of the curve
= gi(t), it becomes a function of the parameter t: ¢(f) = f(gi(t), w s £7(D), do/dt
being equal to (grad f) « v and to dffdv (the derivative with respect to the direction of
v), where v = (dgl/di, ..., dg"/d1) is the velocity vector.

Note that in connection with the concept of directional derivative we shall,
additionally, consider some properties of vector fields, introduce the concept of a
dynamical system and its integrals, and then describe the important special classes of
dynamical systems.
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In this section we shall be concermed with a verv important concent of eeneral
LR 2 v sadi UL CONCCITIVA Wil @ Vi y A2pPUildlls VRiivvph UL gentrie

regular coordinates in Cartesian space or in a region of this space.

We shall recall the well-known types of coordinates with which the reader is
already acquainted:

1) Cartesian coordinates x!, ... , X

2) in the plane — polar coordinates r, ¢, where x=rcos 0, x2=rsin ¢; with
a special choice of the polar axis we always have r 2 0.

Next, the pairs (r, ¢) and (r, ¢ + 2nk) for an integer k describe one and the
same point P = ', x3. All the pairs (0, ¢) describe one and the same point (the
origin of coordinates). We can see that the angular coordinate ¢ is rmulti-valued (¢ =
¢ + 2nk), and at the origin there arises a singularity. This point will be called a
singular point of the system of coordinates. If we expresse r in terms of x?, 22, then

r= ((xl)2 + (xz)z) 12 This function is non-differentiable when x! =0, x> =0

(which is obvious).
Considering the derivative of the function r with respect to the direction of the

vector & = (!, y%) we obtain (at the point x%, x%):

& _ o y1+ ar yz - x1yl+x2y2
& ox! ax? r

*

r=(G"? + &)

The limit of this expression for x! — 0, x> — 0 does not exist: it depends on
the choice of a line (with a direction preserved) along which we move towards the
point (0, 0). If we move along a straight line x! = 0 (varying x? > 0), then:

=22 =y2 (x1=0, x2>0).

If x? = 0, then dr/dt = x'yY/r=y! (*=0,y' > 0). Thus, moving towards
the point (0, 0) along these two curves, we obtain two distinct limits y2oryl,
respectively.

We may regard the function p = ?=xy+ (x2)?, rather than r, to be a
coordinate. This function is differentiable when x! = 0, 2= 0, and we have
x! = (p)2 cos ¢, x2 = (p)!? sin ¢.

However, grad p =0 at the point (0, 0).



COORDINATES IN EUCLIDEAN SPACE 17

We have the choice of two versions:
a) either a radial coordinate r non-differentiable at the point (0, 0),
b) or a radial coordinate p = r which is everywhere differentiable, but

grad pl, g = 0.

In doing so we of course assume either r or p = r* to be a function of

Nactacinm nmardinatac oo | 1»2\
ol iLaldll CUULULLIAILO (A 4 A ).

Let us now consider cylindrical and spherical systems of coordinates in a
three-dimensional space (xl.xz, 13) =(x,y, 2).

The cylindrical coordinates r, ¢, z, where z=z, x = rcos ¢, y = r sin ¢, are
polar coordinates in the (x, y)-plane.

Here r = 0 gives a straight line — the z-axis along which the coordinate system
“spoils”.

For the spherical system of coordinates (Figure 2) we have r, ¢, 6, for which:

z=rcosO, x=rsinBcos¢, y = rsin0Osin ¢,

- z
@4+ AP

0<¢=<2n g0 =y~

- o N
= J, COS U

[@=)
A
(=3

r=(2+y+22)2

Figure 2.
We can see again that the function r=r(x, y, z) is non-differentiable at the

point (0, 0, 0).
R+P) "

Furthermore, the function sin® = ) is non-differentiable
(P +y* +2)

N
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We see that all these coordinate systems, as distinguished from the Cartesian
one, have points which may be thought of as singular in the sense that at these points
one of the coordinates is either non-differentiable (as a function of a Cartesian
-coordinate) or differentiable, but its gradient is equal to zero.

So, in a region of space let there be given initial (Cartesian) coordinates
x o xm

Let there also be given some other coordinates (zl, ... » Z") in the same region.

By definition, we can write the equality:

xi = x‘.(zli e iz"\, i= 1; vee p My
or
d=dEt, .M, j=1,..,n

These equalities imply that each point of the region can be assigned either a set
of Cartesian coordinates j(xl, ... » X") or a set of new coordinates (zl, ., 2", and
therefore the Cartesian coordinates can be expressed in terms of the new ones and
vice versa.

Let us analyze the linear coordinates in space:

. n ..
X =Xaz, i=1 ., n.
i=1 7
For z to be expressible in terms of x, it is necessary and sufficient, as the reader
knows from linear algebra, that the matrix A = (aj-) has the inverse A1 =B = (b':,-) or
else the determinant of the matrix A is different from zero.
The inverse matrix B is defined as follows: B = (bj-), where:

o i i
jglbja!t:sk;

1, i=k

0 .
5 =4 E = (8, ) is a unit matrix.

o, izk

Thus, the Cartesian coordinates (x) of the point P are expressed through the
new set of numbers (z) by means of the matrix A = (a;-).
Briefly, we can write:

X =4: (d =3 d7).

j=1’
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An important agreement: to avoid repetition of .thc 2 si gn, we shall henceforth
imply it in any formula where one and the same index is twice repeated: once as a

n .. J
lower and then as an upper one. For example, ):l a;z’ is written as a;z’ .
F

If to the point P there corresponded the set of coordinates (xl. e » X)), in the new
coordinates to this point there corresponds the set (2L, ..., 2%), such that = a"jzj,
i=1, ..., n.

It should be noted that o’ = 3x'/37, and these numbers are constant. The
determinant of the matrix A is not equal to zero (the matrix is said to be
non-degenerate).

Let us now examine arbitrary new coordinates:

X =2, .., M, i=1,..,n,

and the point P = (xJ, ... , x3).
We assume that the new coordinates determine each point P, which

manne that en ane oo Af nambacs 2l w2 tha cmana ragienn wwe e crnduing
aivalid ulak w ﬂ.lly oLl Ul LLUMIVUCL D> \AO' LET Y -&0’ il uIv DPIIUC ICEIU.II. wu alw DLUUJIIIE

there corresponds at least one set (z(l). . » 20), such that x; =x‘(z},, s Z0)s
i=1,..,n

DEFINITION 1. The point P = (x}, ... , x}) is called a non-singular point of the
coordinate system (2!, ..., 2" for ! =z}, ..., 2" = 2} (where x§ = X (2}, ... , zD))
if and only if the matrix:

ar i
A= (=1, ) =@
o7 =y,

has a non-zero determinant (or if there exists an inverse matrix).

This matrix is called the Jacobian marrix, and its determinant is called the
Jacobian (the Jacobian matrix is denoted as (dx/9z), and the Jacobian as 19x/9z1 = J).
The inverse transformation theorem (a particular case of the general implicit
Junction theorem) is proved in mathematical analysis.
Given the new coordinates x’ = x* (zl, oy ZMi=1,..,n xé =xi(z(1,. .
. » 2{) and the Jacobian J = I9x/0zl= 0 forz = z(,i, i=1,..,n we can express

the coordinates zl, we s 2" in terms of xl, .. » X" within a sufficiently small
neighbourhood of the point P = (x}, ... , x&), so that 2 =z2'(x}, .., x™), 2§ =

zi(x%), vy X0, E=1, ..., n. Given this, the matrix bf,-= 9Z/ax is inverse to the
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matrix ag = ax'.‘lazq, so that;

o o 4 [N i=k

o 0, i#k
This assertion for n = 1 looks like this: if x = x(z) and dx/dz # 0 (z = z;), then we can
express z = z(x) in such a manner that % %’ = 1 in a sufficiently small neighbour-

hood of the point x,,, where X, =x(zo). i

This assertion is already familiar to the reader in the case of linear changes of
coordinates x = Az, x = (x’ ye s Xz = (zl, we s 2V, where = a':,-z"; then the
numbers a",, = 9X/07* are constant. In this case, z = Bx, where B is the inverse
matrix to A.

Let us now look at polar, cylindrical and spherical coordinates.
1. Polar coordinates: x! =x, 2= y, n=2, where:

x=rcos¢, y=rsing, 2! =r 20, 22 = ¢.

Let us construct a Jacobian matrix A = (9x/22):

& &

A= ar o | (cosQ) -rsincp)
By oy T \sin¢ rcos¢
or 3¢

For the Jacobian we have:
x

J = 1Z)=r> 0.
oz

Hence, the Jacobian is equal to zero at the point r =0 only. In the region r> 0 (¢ is
arbitrary) the new coordinates do not have singular points.

2. Cylindrical coordinates: for cylindrical coordinates r, ¢ z in a space d=1x
2=y, X =z we shallhave z=z x=rcos ¢, y=rsin ¢. By analogy with the
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polar coordinates, we find the Jacobian matrix 4 = (9x/9z):
cos¢ -rsind 0
A=])sin¢g rcos¢ O
0 0 1

The Jacobian is equal to zero for r=0only. In the region r > 0 the coordinate system
does not have singular points.

3. Spherical coordinates: ,=x, 2=y, 2=zz2=r, 2, =0, £= ¢, where:
x=rsinBcos¢, 0SO<m,
y=rsinBsin¢g, 0£0<2n,
z=rcos 0, rz0.

The Jacobian matrix is:

sinBcos¢ rcosBcos¢ —rsin0sing }
A = |sin@sing rcos 0 sin ¢ rsin © cos ¢
cos® —-rsin® 0

The Jacobian J = lax/0z1 = rsin© (check!).

_ ... Wecan see that in the region r> 0, 6 # 0, 7 this Jacobian is not equal to zero,
and therefore the spherical system of coordinates does not have singular points here.
Points r = 0 (for any 6, ¢) or 6 =0, © (for any r, ¢) are singular. Here, on the
contrary, we cannot express 7' in terms of xl, w. » X", at least so as to obtain
differentiable functions z = z(x) (at singular points) since the Jacobian Idx/dz!is equal
to zero at these points.

) Let us now set our initial problem: to calculate the length of a curve in general
coordinates z, where X =x"(zl, we s 2D, (xl, ... » X) are Cartesian coordinates. The
curve is given parametrically: Z= z'.(t), i=1,..,nor xf(zl(t), 4 (5) 5

¥ = J@, g0 = 20, ..., @)

According to Section 1.1, we have for the length of a curve segment:
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l= j () L ds,

where v(f) = (dglldt, ... , dgh/dp) is the velocity vector,

Wl = l(dg Y.

Since
g0 = 20, .., 7O,
it follows that:

gg_ =ai£"'i=1,.__’n_

a & @
Letd(z!, ..., z") = 9x'/az. Then dx¥/dt = dg'/dr = a'jdzlidr = d; Viz, where, by

definition, v, = (v}, ... , v") is the velocity vector in the coordinates 21, ..., 27, ie.

V:=%-,j=l,..,n

The velocity vector in the initial Cartesian (Euclidean) coordinates v = (dgi/dt), i=1,
..., 1, will be denoted by v,. The length of the vector in Cartesian coordinates has

the form:

W = ( )

. dg i .
Since —+ = a; - we have:

i k
LI STE S JOLS

where:
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Conclusion. In coordinates z!, ... , 2%, where X =X(zl, ..., 2%) the scalar square of

iy N
the velocity vector v, = (ﬁdz—, . %) of a curve segment is given by the formula:

e WO L
k
a.(zl, ,z") = ai
oz

How shall we describe the class of coordinates z!, ..., 2* such that the length
of the vector is expressed in them by the formula:

1 n
2 -, 12 1 dz dz
= = = — ———— "
v, | El(y),wherevz O s s ¥ (d""’ d)'
Such coordinates are called Euclidean. | L .
CorX, =G, ., (@ D= (0x'/02") = A, then it is necessary and sufficient
that for Euclidean coordinates there holds the property:

1, i=j,
gj =9 = { (by definition).
0, i=],

n
Since 8 = Elafaf, the property g..j=8‘:’. is called, as the reader knows,

orthogonality of the matrix (@%) = A. Under such conditions, x = x(z) is a linear
change, that is, the functions a", are constant and this change is an orthogonal
transformation.
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We shall briefly recall the material of the preceding section. Suppose we are given a
space (ora region of space) with Carteisian coordinates (x, ... , ¥") and some new
coordinates (z1, ..., 2%, ¥ = ¥(, ..., %) or x = x(2), the new coordinate system
possessing no smgular pomts J#0, .l' lox/9zl is a Jacobian.

If the length of an arc X = x¥() is measured by the formula:

f /i(dx dt,

JV;—I

we are dea_ling with Euclidean coor_dinates. In the new coordinates zl, 2t wWe
have Z =2'(1), i = 1, ..., n, where X(¢) = 21, ..., 2°(1).
For the length of the same arc, but already in the new coordinates, we have:

d' df

’=f & & & &

where ¥ =X (z1(s), ... , (), and ¢ varies from a to b and:

dt df A a2
\/gﬁ'&--d_=\/§1(%)'

o
&

o R

=-i
of

whence:

> ax ax* =5 ax ax"

g = —_—
I T Ead o Mol af
In matrix notation G =A o AT, where G = @)A= (x*/3z%) and ATisa transposed

matrix. Note that dz/dt = (dz'/dt, ... , dZds) is the velocity vector of the same arc

referred to the same parameter £, but this vector is measured in the new coordinates

2, L,
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By definition, we assume that dz/dr = € is the same vector as dx/dr =7 at the
point P = (z!(1), ..., 2(9) = (x}(»), ... , ¥*(1)) written in two coordinate systems, (z)
and (x).
If we have two curves 2 = f(t) and Z' = gi(t), i=1,..,n, which intersect
when 1= £, and have the angle ¢ between their velocity vectors, then:

EE
172

B E

cosH =

where

gl = ('li—j)x-_-:o’ EJZ = ('_a_;g‘_i)mo_

In the coordinates z, ... , 2” the formula for the scalar product is:

E.-; = (%)HO’ ézl = (gj;)mto’

wherei =1, ..,, n, t= 1, is the point of intersection of the two curves.

Nn tha hacio ~af thie sacnile wra chall tntradiian tha Amoname of Dincenmmt nem oo teta
Wil LIV Uadolo Ul LU 1Cbull., W Sllall uluwubc uic wlllrcpt Ul INICLLdliilall jJlic i

(see Definition 1).
A Riemanman metric in a region of space relative to arbitrary regular
coordinates z), ..., 27 is given by a family of functions gu(z L= gj,-(zl, .

.., 2"), and if we are given a curve 2=2@,i=1,..,n the square of the length

of its velocity vector v, = (dz"/dt L =10) at the point = £ is the number:

&' &l
P T T



26 PARTI

DEFINITION 1. A family of functions g;(z) = g;(2) is said to define a Riemannian
merric (relative to coordinates (2, ... , 27) if for any z!, ... , 2 the form g’
is positive. If det (g = 0 but the form has no fixed sign, then the family g;; is said
to determine a pseudo-Riemannian merric.

We define the arc length relative to the Riemannian metric or pseudo-
Riemannian metric g;; to be:

If we have two curves 2’ = f(t) and z' = gi(t) which intersect when ¢ =z, then the
angle between the curves is a number ¢ such that:

where &+ 1 = g; £’ [E1 = (€ - E)M2, ml = (m - M)!2, £, 7 are the velocity vectors at
the intersection point ¢ = 1.

If, in the same region, we take new coordinates y, ..., " such that 7=
Z0% ., ¥, i =1, .., n, and 18,0l = O (the Jacobian J # 0), then relative to the
new coordinates y!, ..., y*, the Riemannian metric is represented by a family of
functions g,-,-(vl. 2 ) 8'j = 8; where:

k
g = %y?-—gu %y,z-’.- = gb'_(y’. v 7.
In matrix language:
g =Aog 0 AT,
where

A=) ¢=@)e=Gp
3y i
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The length of arcs and the angles at which they intersect are calculated in the new
coordinates y!, ..., " by the same formula, but now instead of gg(zl. vy 27 we

should put g::,(yl, <y ¥"). All the above refers to the definition of Riemannian
metric.

EXAMPLES. Euclidean metric.

1. Let n = 2. In the plane, polar and Cartesian coordinates are related as follows:
x! =rcos ¢, x* =r sin ¢; relative to Cartesian coordinates, the metric has the form:

1, i=j, N 0)
g; =8 = io’ re, @) = 01

while relative to polar coordinates we have:

' 10
(glj) = 0 r2 .
This means that for the curve r = r(t), ¢ = ¢(2)

= !\/(:;)2+r2 (-?)Edr.

2. n=3. Relative to Cartesian coordinates, we have g; = §; relative to cynlindrical
coordinates r =y!, ¢ =y%, z = y°:

(g'.j) =

oo =
o N, ©
- o

for the length of an arc we have:

! = ;[\/(%§+r2(";—¢ 2+(ﬁ;i)2 dr.

o1 .- . v e ar 2 ~" 3 . .
Relative to spherical coordinates y* = r, y* =0, y° = ¢, we have:
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fa

1 0 0
2

) = |0 0

“ IogzzJ

and for the length of an arc:

! = !\/(i:-)z + rz[(%e-)2 + sin® 6(522)2:{ dr.

The Riemannian metric is often given by the formulae for the differential of length
dl or (dl)? as follows:

in Cartesian coordinates:

@’ = g:l @x"’,

in polar coordinates when n = 2:

@? = (dr)* + A(dg)?,

in cylindrical coordinates:

dI? = (dr)? + (o) + (dz)%,

and in spherical coordinates:

@? = (dry? +((d8)? + sin® B(de)?) r*.

We have defined the Riemannian metric g;; in a region of space with coordinates
.., 2, gy= g;J.-(zl, w+ 2"). A merric is said to be Euclidean if there exist new
coordinates x', ... , X, X = X2}, ..., 2", 18x/0z1 # 0, such that:

Relative to coordinates xJ, ... , ¥* we have:
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(1, i=j,
8y =8 = 0, i#j,

and the coordinates xl, ..., " are termed Euclidean coordinates.
We always require that the determinant lg;l be non-zero or, in other words, that

the metric g;; be non-degenerate.

If the matrix (gv(zl, «.» ")) determines a positive quadratic form— that is,
the lengths of all non-zero vectors (and, therefore, of all curve segments) are
positive, then we say that g;; represents the Riemannian metric. If the determinant
lg; is non-zero, but the form g E'E/ has no fixed sign, then we say that there exists
a pseudo-Riemannian metric.

Of particular importance is the case where n =4 and the form g;; E'E ateach
point z}, ... , z2} can be brought to the form (E!)? + (E2)2 + (32— (%> These are
the metrics on which the general theory of relativity is constructed.

Now we shall consider Riemannian metrics, i.e. g;; & &/ > 0 (at all points).

What metrics do we know for the case n = 2?7 Above, we have already
acquainted ourselves with metrics on the Euclidean plane and in the standard
two-dimensional sphere given in spherical coordinates by the equation r = ry.

Restricting the space metric to a sphere, i.e. putting r = r, we come to the following
metric:

di? = ((d0) + sin® 6 (dp)?) r&.

Replacing the usual trigonometric function sin by the Hyperl:;olic‘sh, we shall write
another metric dP = (d)()2 + shzx(dq))z. This metric turns out to be connected with
Lobachevsky geometry which is treated in Section 1.4.

So, we compare three metrics in two-dimensional space:

1) Euclidean metric; in Cartesian coordinates, x, y, this is:

dif = &2+ dy?,
or in polar coordinates r, ¢:
dP = dr +rPdp%
2) Metric of the sphere: in spherical coordinates 6, ¢:

dP = d0® + sin® 0 do*;
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3) Lobachevskian metric;
dP = dy® + shPydd? .

This metric may equivalently be given in Cartesian coordinates x, y in a half plane
y > 0 by the formula:

2 2
d[z=dx_+_2dl_
y

Why do we distinguish these three metrics?

Why is the Lobachevskian metric added to the Euclidean one and to the metric
of a sphere? What common property have all these three metrics?

These three metrics appear to be the most symmetric. What is the exact
meaning of this?

Let us consider transformation of the change of coordinates 2 = 2ot o Y.
We have:

g,_az" o
= 8y = -
iy o

If g% = g;;» the wransformation is called the motion (or symmetry) of the metric —
it exactly preserves the form of the scalar product.

EXAMPLE. Suppose n =2, (x,y) are Cartesian coordinates in the plane, and
gy= 08, is a Euclidean metric.
a) Consider the rranslation:

X=x+x, X,

(xox +x,=x)
Y=y +3, (}7-45 +Y, =yJ'
b) consider the rotation:
x= x.cosq>+37 sin ¢,
= —fsin¢+§cos¢, ¢ = const.

All these transformations are motions of the Euclidean metric. They are
described by three numbers (xg, yg, $)-
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Another example is a sphere.
It is positioned in a three-dimensional Euclidean space with spherical
coordinates r, @, ¢ and is given by the equation r = r.

Obviously, any rotation of a Euclidean space about the origin (about any axis)
represents the motion of the sphere, that is, on the sphere r = ry, it does not change

A lammtlhn Al thhn Aivcmrae nead ahn ccealan Laseaaa el n

the ICNigins OI ¢ Curves ana ine angics ociween nen. How many rotations arc
there?
Rotation is given (in Cartesian coordinates) by an orthogonal matrix:
4 @ &
A=|d & &
g @ &

which determines the coordinate transformation:
4 =dy.

Given this, we have:

3 i 2
Z@)=1 15js3,

1, j=k
“lo, jek.

If the vectors ey, ey, e3 were ortho-normalized: e ¢; = §;;, then the vectors Ae; = a/l 7
are also ortho-normalized,
The matrix A is described by nine numbers aj which satisfy the six equations &}
a; = .
So, all the rotations are described by three numbers (e.g. by the Euler angles
¢, Vv, © which the reader will come to know in mechanics).
Thus, the metric of a sphere also has a three-dimensionaal set of motions.

The third example is a Lobachevskian metric.
Consider the upper half plane (r,y), y >0 and anelement of the arc length
{/"\2 (dx) + (dy) Asen

al) ————————————— ASS

2
y

me that:
A SbAAEADE
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z=x+iy (*f=-1), Z =x+1iy.
az +b -
Ifz = — 17 and the numbers a, b, ¢, d are real, then on condition that

the determinant of the matrix k d ) is equal to unity, we obtain the transformation
=x(x, ¥), y =y, ¥),

Y a0 B L L
ax'+iy)+o

xX+iy = W.

Verify by a direct calculation that this is the motion of the Lobachevskian plane.

How many types of such motions exist? The motions are given by the matrix

c d

dimensional set.

(“ b ) under one condition that ad —bc=1. We see again that this is a rhree-

therefore, we can assume that ad —bc = 1.)
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1.4 Pseudo-Euclidean Space and Lobachevsky Geometry

As emphasized above, from the contemporary point of view the construction of one
or another geometry should be started with the introduction of scalar product which
is, thus, the basic concept.

Recall the basic properties of the Euclidean (i.c. positive definite) scalar

product. If (€, )= )X E'.T]" (we are considering a Euclidean space lRﬁ of dimension n)
i=1
then:

D En)=mEx

2) A&, m) = (& A) = AEn);

3) (E..-Tl+¢) = (E..vﬂ)+(§¢).

4) €& 20 (E,E) =0ifandonlyifE = 0;

5) (E+n.E+m)” < (€ ©)?+(M,m)" (inequality of miangles).

Properties 4 and 5 characterize positive definiteness of the scalar product; they
do not hold for pseudo-Euclidean scalar products.

DEFINITION 1. A linear real space of dimension n is called a pseudo-Euclidean
space of index s if in this space the following bilinear form is given:

&M, = ~En! — B+ E e s BT

If s = 0, we obtain a Euclidean space. A pseudo-Euclidean space of index s
will be denoted as R?. The space [} is the space of the special theory of relativity
and is called the Minkowski space.

REMARK. Investigation of the space R}_; is reduced to investigation of the space
R since all the lengths in [R}_ can be multiplied by i; then, obviously, the form
(€, M),_s will become the form (§,M),. We may always assume, therefore, that
s £ [n/2] (integral part).

As in Euclidean space, the length of the vector £ in the space R} is determined
by the formula:
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but the lengths of the vectors in R}, as distinguished from R", can be zero and purely
imaginary.

In the space R", the set of all points €, such that IEl =p, forms an
(n - 1)-dimensional sphere S™* 1 (hypersphere). In the pseudo-Euclidean space R},
we can also consider a set of ponts § whose distance from the origin is p (but now p
can be not only a real number, but also purely imaginary or zero). This set of points
will be referred to as a psuedo-sphere of index s and will be denoted by srl,
Clearly, So‘l = S*1, Indefiniteness of the form (&, n), gives rise to a more
diversified geometry on pseudo-spheres Sg Las compared with the case s =0. In the
sequel we distinguish psuedo-spheres of real radius, imaginary radius and zero
radius. A pseudo-sphere of zero radius is described by the following second-order
equation:

~EY - P+ @4+ @ = 0,

that is, such a pseudo-sphere is a second-order cone in R? with the vertex in the

origin. Clearly, all the vectors emerging from the origin and lying on this cone have
zero length, while the vectors going outside this cone have non-zero length. The
pseudo-sphere S™! of zero radius is called an isotropic cone.

REMARK. In the Minkowski space R}, the isotropic cone is entirely filled with light
vectors € (i.e. (€, E), = 0) and is called the light cone since a light beam started from
the origin will propogate along the generator of this cone.

Let us cosider examples. Let # = 1; then s = 0 (since we agreed to assume that
5 <{n/2]) and the space [R} is a usual real straight line,

Now let # =2; s = 1. The isotropic cone consists of two straight lines:
x! = +22 (we are considering a two-dimensional plane R? relative to Cartesian
coordinates x! and x% just in this usual plane we are modelling psendo-Euclidean
geometry of index one). This cone splits R? into two regions: in one of them,
(€, &), > 0 (namely, this is the region defined by the inequality b2 > Le); in e
other (€, &); <0 (namely, the region defined by the inequality W2l < Ix*l) (Figure 3).

The pseudo-spheres of real radius are the hyperbolas:
-+ = o (p=0),
and the pseudo-spheres of imaginary radius are the hyperbolas (Figure 4):

a2+ 22 = -0 (p=ia).
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Now let #=3, 5 = 1 (recall that the study of [R5 is reduced to the study of [5).

The isotropic cone (a pseudo-sphere of zero radius) is the usual second-order cone,
with axis x!, given by the equation:

It also splits the whole space into two regions (in conventional terms, “into internal
and external regions”) (Figure 5).
The pseudo-spheres of real radius are one-sheeted hyperboloids,
&P+ () = (p=w),
while those of imaginary radius are two-sheeted hyperboloids (Figure 6):

-+ 02+ (PP = -a? (p=io).

Figure 5. (V2 AV Figure 6. g \\V/
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Let us consider the case [R? in more detail. We shall be concerned with the
group of motions of the plane [R,z, i.e. the set of all linear transformations
C: [Rl2 - IR% preserving the form (, n1);. The transformation C preserves the form if
(CE, Cn)y = (&, M), for any vectors &, 1. But before calculating this group, recall a
similar calculation for the Euclidean scalar product.

If a linear transformation C: R" — R” preserves the form (€, 1)) = f; g‘}l" then

C is an orthogonal matrix, that it C! = CT. ThendetC=%1. Inthecasen 2, the

set of all orthoeonal matrices of order 2 can be written as follows:

WA RV MR LAY YD Wi Wil dy Wil W YTa4

[{ cosd sinﬂ_ cos¢ sin¢
0@ = j[ —-sin ¢ cos¢)’ sing —cosd } )

REMARK. The group of all orthogonal transformations in R" is denoted by O(n),
and the subgroup containing those orthogonal transformations which have a positive
determinant (i.e. preserve orientation of the space R") is denoted by SO(n).

Let us consider the SO(2) group (i.e. the set of rotations of a plane preserving

{ cosd sin (ﬂ
the orientation of the plane) and associate with each matri;

__________________ o ~ |-sin¢ cos¢)

complex number z = ¢* whose modulus is equal to unity. This correspondence will
be denoted by F. Clearly, ¥ is a one-to-one cormrespondence and is continuous in
either side, 0 < ¢ <2, i.e. ¥ determines “homeomorphism” between SO(2) group
and the circumference S! = {z = ¢*). Furthermore, ¥ also establishes an algebraic
isomorphism between the SO(2) group (operations in SO(2) are a multiplication of
matrices) and the S! group (the operation on S! is multiplication of complex
numbers: '

Zy7p = .t = )

A verificaton of this fact reduces to calculation of the matrix:

cos (¢ + V) sin(¢+\y)] cos ¢ sinﬂ cosy siny
—sin (¢ + ) cos(¢+\|l)} - —-sin ¢ cos¢)—sin\|r cos )

The whole group O(2) is obviously homeomorphic to a unity of two circunferences
(Figure 7).



PSEUDO-EUCLIDEAN SPACE AND LOBACHEVSKY GEOMETRY 37

80,

AN
Figure 7. \—jS’ uf

Now we go over to the plane [R2. Let C = (‘:_ 3) and (CE, Cn)y =€, ).

Recall that if B(E, ) is an arbitrary form of B, 1) = b; E: by; = by;, then this form
is assigned the symmetric matrix (by) in a one-to-one manner. If C is an arbitrary

linear transformation in space, then the mawtix B (following the form B(, 1))
transforms to a new matrix B’ (corresponding to the transformed form) which is
related to the matrix B as:

B' = CBCT.

R ..
For example, if B, 1) = 2 E'’, then B = E is a unit matrix; and if C preserves this
i=1

form, then B' = B = E, whence we have E = CEC", i.e. C'! = CT, which implies
orthogonality of the matrix C.

In our case, BE M) = € n) = -EN'+E7 ie. B = (—(1) (1))

Let C: R?— [R? (that is, C preserves our form); then B'=B = ("(1) (1’) thatis :

(-1 O)={Z c)(—l 0)(a b)=(—az+c2 -ab+cd)
01 d)\0o 1j\cad) \-ab+ca -b*+d)’
which yields the following relation for the numbers a, b, ¢, d:

F-a?=-1,ab =cd, -5 = 1.

In the case of the Euclidean plane [R?, each rotation was determined by the

angle of rotation ¢ of the orthogonal frame; an analogous parameter will also be
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introduced in the case of the pseudo-Enclidean plane [F?. Let us consider the frames
e;=(1,0), e; = (0, 1) and C(e;) = ae, + ce,, C(e,) = bey + de, and let P = c/a.

The direct calculation yields:
1 B
a==t= , c=1% .
a-p5" a-gy"”
1 1
d=1% Jl.rz’b=i 5
(1-p) (1-p9

Thus, the group of all transformations C preserving the pseudo-Euclidean
scalar product (€, 1), consists of the following matrices:

[ %1 +B
a-p5"*  a-py”

€= +B +1
| a-g»"*  a-py”

Instead of the angle of ordinary rotation ¢, we introduce the angle of hyperbolic
rotation Y by setting f =th y: then

c - [tchv £shy
“\xshy xchy )’

i.e. the group preserving the pseudo-Euclidean metric is the group of hyperbolic
rotations (Figure 8). Recall the group of orthogonal rotations of the plane [R? which
consisied of two connecied componenis {(iwo pieces) — two circumferences. The
group of hyperbolic rotations has a more complicated organization: it consists of four
connected components (four pieces):

chy shy) (-chy -sh\p),
shy chy )’ \-shy —chy p

chy -shy) (-chy sh\y)
shy —-chy ) -shy chy )].

Each of these pieces is homeomorphic to a real straight line R'.
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Figure 8.

REMARK. Of those four connected components, only one is a sub-group, namely:

chy shy )]|.

shy chy /[’
the rest of the components not being sub-groups. We can calculate the quotient
group of the complete group of motions from the connected component of unity. To

carry out this calculation, we should bear in mind the following general assertion: rhe
connected component of unity, Gy, in an arbitrary topological group G is always a

normal divisor (prove this!), and therefore the factor group G/G, is defined (its order
is equal to the number of connected components in the group G). In our example,
the direct calculation (to be carried out by the reader ) yields that the factor group
G/G, is isomorphic to the Abelian group Z, ® Z,. Note that the factor group
O(n)/SO(n) is isomorphic to Z,,

Now we shall turn to the metric iac of the cpace RS 'ancider the form:
L] LI A AAY bud A wh WA - AT AW

1 IO cn a
AWM VY WY S8ian i Guad B SaAw o oLiad Sl v Spitvw ¥ ile Ser WA SiiWw AWAASAs

BE,M) = € m)y = -Ei! +En?+ E¥n’.

The space [R% will again be modelled in the space 3, and therefore the Cartesian
coordinates in [R® will be denoted by x,y, 7 then (€, E); =—x% + 2 + 2% As we
have already established, the hypersphere (or pseudo-sphere) of imaginary radius
T =ip in aspace [R:f is a two-sheeted hyperboloid given by the following equation:

—pt= -2 +y+ 2

Since this hyperboloid is imbedded in IR?, we can say that “the geometry of the
space [Rf induces a certain geometry on the hyperboloid™.
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From the nmnt of view of Riemannian metric, the idea mmrpqced ahove will be

formulated as follows: “the metric of the space [R3 induces a certain metric on the

hyperboloid”. At the present moment, however, even without the general concept of
the metric tensor g;, we can already impart some meaning to the words “a geometry
induced on the hyperboloid”. Indeed, let us consider a hyperboloid —p? = — x2 + y?
+ 22 (for simplicity we shall restrict our consideration to one of its sheets; for
example, to the one described by the inequality x > 0); quite ordinary points of the
hyperboloid will be treated as “points” of the geometry induced on it, and the vanious
lines obtained on the hyperboloid when it is intersected by the planes ax+by+cz=

N nancing thran tha Aamain nf ranrdinatac wxAll ha thancht Af ac Sereniocht I3nac?” AF
v Pnouls uuUuEu wniv UJIEIII UL Uyl ullialvo Yill Ue uluuslll vi a‘a Dums‘lt v Ul

the induced geometry (Figure 9). We shall proceed to this geoemery., To do so, we
shall make a transformation which will bring into correspondence the geometry of the
hyperboloid and the geometry in a ring in the Euclidean plane. This transformation is
called a stereographic projection. The stereographic projection of the sphere S2 onto
the plane [R? is described in the theory of functions of one complex variable. Recall
the construction of this projection (Figure 10).

Figure 9. 2z +og ez =0 Figure 10.

The plane R2(= C) passes through the centre O of the sphere 2, and the
stereographic projection f: 52 —» R? assoociates each point x (which does not
coincide with the north pole N) with the point f{x) — the point where the ray Nx
meets the plane €. Given this, to the north pole there corresponds an infinitely
remote point of the extended complex plane, The south pole goes over to the origin.
The analogy between the usual sphere §2 and the psendo-sphere $2 is rather
widespread. In particular, the stereogrqphic projection of the pseudo-sphere 5% onto

the plane [R? is specifiedin a quite similar way.
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The pseudo-sphere S%: {- p2 = - x? +y? + 7%} is centred at the origin O; the
north pole is the point with Cartesian coordinates: (— p, 0, 0); the south pole is the
point ( p, 0, 0); the plane onto which we shall make the projection is the YOZ-plane
passing through the pseudo-sphere centre (by the way, the restriction of the form
(E, M), to the YOZ-plane is the following form: &2n2 + E3n>), that is, the
pseudo-Euclidean geometry of u‘-{% induces Euclidean geometry in the YOZ-plane.
Figure 11 illustrates the cross-section of a hyperboloid by a plane passing through the

X-axis. But since we have restricted our consideration to only one hyperboloid sheet
x > 0, it follows that the image of this sheet under projection f does not cover the

whole of the plane [R? = YOZ, but only an open ring of radius p.

N
N V4 7/
~
\\‘ ’/._\ V/A
1557
» Vs
r, /

(_151010) \V,, \\\ (}01010)
7N\ N
VAN .
/ N ~
/ S M
s N

REMARK. If we consider the whole of the pseudo-sphere Szl (that is, both the
sheets of the hyperboloid), then urider stereographic projection, the image of 52, as
distinct from that of the usual sphere S2, covers in one-to-one manner only part of the
plane YOZ (the north pole passes again into an infinitely remote point, and the circle
¥ + 2% = p? is not covered).
Let x, y, z be coordinates of the point x € 52 (where x > 0) and let (u!, u?) be

coordinates of the point fix) € YOZ, where fis a stereographic projection. We
calculate the relation between these coordinates in an explicit form.

Figure 11.

LEMMA 1. Letx=(x,y, 2); u = (!, u?). Then

X = p(—1+

20’ :
1,2 )

s I..2\2|-
@)~y T p
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2u1 2012
y = s sy oz = pu

~ahi-ah + gt ~H -+ pt

Proof. From Figure 11 it is seen that:

y X+p zZ _ x+p.
u! P u® p
that 1s,

y = ul(l+%); z u2(1+%).

Since - p? = — x? + 2 + 22, it follows that substituting y and z into this equation, we
obtain:

2p2

X =-p (1 +
)2+ P - pz

This concludes the proof of the lemma.

Under the stereographic projection f; S% — {y? + 22 < p?} = D?, the points of
the hyperboloid are transformed into points of the two-dimensional ring D? of
radius p. Into what curves on the ring D2 will the “straight lines” of our

geometry on the hyperboloid, i.e. lines of intersection of the hyperboloid by the
planes ax + by + ¢z =0 be transformed?

LEMMA 2. Each line of intersection of S with the plane ax + by + cz = 0
transforms under the mapping f into an arc of a circumference intersecting the
circumference y* + 2 = p® at a right angle.

REMARK. Recall that the angle between smooth curves at the point of their
intersection is the angle between their tangents at this point.

Proof of Lemma 2. By virtue of Lemma 1, to clarify the fact into what curve a
“straight line” on Sf is carried, it suffices to substitute the expressions of x, y, zin
terms of u’, 12 into the equation of plane ax + by + cz = 0. Let, for example, a# 0.
Then, after simple transformations, the equation:
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% p? 2 ul 2eu?
-a- + + =0
wuw-p* @Ww-p*  @u)-p?
is reduced to the form:

and B at a right angle,

pP4r = ()4 ().

REMARK. The image of the “straight line” from Sf under the mapping fis not the
whole of the circumference:

2 2 2, 2
(ul_%) +(u2_§ _b+c _pz’

&

_but only that part of it which is contained in the ring 2 + 2 < p.

Thus, we have completed the proof of the theorem: rhe geometry induced on
the pseudo-sphere S% by the geometry of the pseudo-Euclidean space IR:{ coincides
with the geometry arising in a ring of radius p in the Euclidian plane R provided that,
as points of this geometry, we take ordinary points of this ring, and as “straight
lines” of this geometry we take arcs of the circumferences intersecting the ring
boundary ar a right angle . (In particular, “straight lines” are, of course, all diameters
of the ring since they may be treated as arcs of circumferences of infiniely large
radius.)

REMARK. A geometry induced on a pseudo-sphere by the geometry of [R? is called

Lobachevsky geometry, and its model in a ring of radius p in a Euclidean plane is
called the Poincaré model of Lobachevsky geometry.
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REMARK. Lobachevsky himself obtained his geometry in quite a different manner,
without making use of pseudo-Euclidean spaces.

Using the Poincaré model, we can easily verify the classical Euclidean axioms
(postulates) except, of course, the fifth postulate (parallel axiom).

Indeed, from Figure 12 we can see that through a point exterior to a straight
line we can, using Lobachevsky geometry, draw infinitely many straight lines parallel
to a given one (i.e. not intersecting it).

2
e N

Note that if p — o, then Lobachevsky geometry becomes Euclidean geometry
(arcs of circumferences become straight lines). Later, when studying Lobachevsky
geometry, we assume p = 1.

Now we ask the question: what geometry, that is, the geometry with what
properties, arises if we cleave with planes an ordinary sphere 52 < R? rather than a
pseudo-sphere $3 c R}?

Consider the geometry in which “points” are ordinary points of the sphere
$2: (= 1in [R3) and “straight lines” are the various equators of the sphere s?
(intersections with the various planes passing through the centre of the sphere). This
geometry has, as it stands, the shortcoming that many straight lines (not only one)

th b & 4
may pass through two distinct points; this will be the case if we consider two

diametrically opposite sides of the sphere. But if, as “points”, we consider in our
geometry pairs (x, - x) where x spans the whole $2, then in this geometry there hold
Euclidean postulates, except order axioms and the fifth postulate. Namely, through a
point exterior to a straight line we can draw not a single straight line parallel to a
given one, i.e. any two straight lines intersect (any equators intersect at diametrically
opposite points of the sphere). The order axioms do not hold in the absence of the
concept “one point lies between two others™. The described operation (identification
of x and — x, where x spans S52) is equivalent to factorization of the sphere S? with
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respect to the action of the group Z,, which yields a two-dimensional projective

space [RP2; the geometry constructed on IRP? is called elliptic geometry.
Thus, we have distinguished three geometries:

1) Euclidean geometry,
2) Lobachevsky geometry,
3) Geometry on the sphere.

In spite of profound differences among them, all the three geometries can be
studied in parallel; they are widely interrelated. 'We shall return to their study from
the point of view of the metric tensor g;;. We have calculated the groups of motions
of these three “uniform” geometries; in these geometries, the groups of motions are
described by three parameters.

The space [R‘l‘ is called the space of the special theory of relativity, and the
geometry arising in this space is called Minkowski geometry. The coordinates in lRi1
are conventionally denoted by x, y, z (spatial coordinates) and ¢z (time coordinate);
then (€, M), = — c1r' +xx' +yy' +22. The isotropic cone (&, £), = 0 is called the
light cone, vectors € such that (€, £), >0 are called space-like, and vectors § such
that (€, ), <0 are called rime-like. Here c is the speed of light.
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1.5 Flat Curves

Several of the following sections are devoted to the branch of the classical differential
geometry associated with the concepts of curvature and torsion of curves in the
Euclidean plane and in Euclidean 3-space.

Let us consider a Euclidean plane with coordinates (x, y) and basic unit vectors
e)» €, where any point P is given by a radius vector r = xe; + ye, with tail at the
origin O and tip at a particular point P coordinatized by (x,y). The length of the
vector r is given by the Euclidean formula I = (rr)1?2 = (x® + 32 Suppose we are
given a smooth curve:

r@ = (x = x@, y =y,

where points of the curve are given as follows: x(f)e; +y(r)e,. The length of the
curve segment has the form:

z_j,/(x) +(y')dz—jd %,;'» -ﬁ’—,

where the differential of length:
dl=Wd, M= v=xe+ye

is the velocity vector.

We shall write v, = dr/dr indicating explicitly, thereby, the parameter with
respect to which the tangent vector is calculated. We shall often find it convenient to
consider curves parametrized by the natural (length) parameter:

x=x(), y =yl
Inthiscasev = Vv = (dx/d;’} €y T (d:r/d;’)ez =1

If the curve was parametrized by an arbitrary parameter r, x = x(1), y = ¥(r), we
have the relation d! = (x 2 4 y'z)” 2 dr. Two vectors (those of velociry and
acceleration) will play an important role:

dr

& +e
—_—=v, —-w,—xe y
a P
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If the parameter is natural (¢ = /), we shall have vf = 1. There holds a simple, but
frequently encountered, lemma.

LEMMA 1. If there exists a time-dependent vector v =v(t), where W = 1, then the
vectors v and v = d/dt are orthogonal.

didt(v-v) = w +w = 2w = dfdt (W) = 0,
therefore v » v = 0, which proves the lemma.

REMARK. If there exist any two vectors v = w(f) and w = w(r), then in Euclidean
geometry there holds the formula:

didt (vw) = vw+ww .

In application to a curve parametrized by the natural parameter [ = ¢, r = r(f) =
x(r)e, +y(t)ey, our lemma suggests:

v = drldl.

COROLLARY. The velocity vector V(t) and the acceleration vector w(t) = dv/d! are
orthogonal if the parameter is natural; ¢ = | (the arc length).

DEFINITION 1. The curvature of a flat curve is a magnitude of the acceleration
vector k = lw(g)l provided that ¢ = [ (the natural parameter).

DERIVATION. Itis immediate that:
v kn = d2 r
d : ]

where n is the unit vector normal to the curve and

w 1 &x

= e dzye
W \/(;{2_{)2+(é7 Crat+=2a)
ar”  df

The radius of curvature R is the number 1/k.

n =
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along the entire curve r(r);, a smooth field of normals An([) oriented so that the
frame (rf (D, v(D)), where v(J) is the unit vector tangent to the curve and directed
towards the increase of the natural parameter ¢ = I, have orientation coinciding with
that fixed in the plane. In that case the curvature K is defined as d¥r/di® = En(). If
d*r/dI* = 0 at each point of the curve, then I£1 = Ikl # 0. But if the acceleration vector

dr

vanishes at some points, then the direction of the normal n = _12 /Id_l;I may vary as
' d

distinct from the direction of the normal » (0. Thus, I£1=Id =k, but £ may change
sign for the opposite when moving along the curve (ldr/dll # 0).

Does this concept of curvature agree with our intuitive ideas?

The curvature has the following properties.

1) The curvature of a straight line is zero.

Proof. Letx=xy+ al,y =y, + bl (straight line), the parameter / being natural; this
means that:

2 .2 cdey? edvy?
a+b -(-E—) +(-E-) = 1.

Thcnw=£2—r- =0 andk=0,R =oe,
dr
2) The curvature of a circle of radius R is k= 1/R.

Let:
x=xg+Rcos /R, y=yy+Rsinl/R, R=const

Then é = 58 1R , dzy = - sin /R . Consequently, we obtain for the

ar R af R

e

curvature lwl = 1/R = k. An important theorem holds.

THEOREM 1. Given the paramerric equation r=r(l) of a curve, in terms of the
natural parameter 1, the following Frenet formulae hold:

kn = w,

= kv,

Rig R[S
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w o, .
where n = orl is the unit normal vector.

Proof. Since n is a unit vector, nn = 1, and the vectors, n and v are orthogonal,
according to Lemma 1, we have:

a) dn/dl L n (Lemma 1),
b) dn/dl=ov (n Lv and the dimension = 2).

Given vl = 1, we have lal = Idn/dll. What is the value of a? Since vn =0, we have:

A& } }
O-E(vn)—-d—n+v7-k+a(w) k+a 0,

(nn=1 w=1).

Whence a = - £, as claimed.

What is the geometric meaning of the Frenet formmulae? Since dv/dl = kn,
dn/dl = — kv and (v, n) is a unit orthonormal frame, it follows that:

v+ Ay

v+(Al)%

v+(kADn,

n+An

n+(Al)-‘j§—z n+(—=kADv

with accuracy of the order of the second power of small quantties.
Suppose kAl = A¢ (the increment of the angle). For small angles A¢

cos (A9) = 1+ O((A0)D),

sin (A9) = A¢ + O((A0)),

and we have:

v + (Av) = cos (Ad)v + sin (AY) n,

n +(An) = — sin (A¢)v +cos (Ad) n,
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that is, under this transformation the frame is rotated through the small angle A¢.
Hence, the Frenet formulae determine a rotation of the frame (y, n) in going to
a nearby point ! — 1+ Al with accuracy of the order ¢f irne second power of small
quantities.
This fact is sometimes also expressed by the formula:

_ 146
k= I-d—l,

where ¢ denotes the vector through which the vector v (or #) is rotated in moving
along the curve. The sign indicates the direction (clockwise or counter-clockwise) in
which the frame (v, n) is rotated when moving along the curve. The parameter t was
always taken to be the natural one.

It is now natural to ask how we go about calculating the curvature of a flat
curve parametrized as r(t) (x(t) y(t)) where ¢ is not the natural parameter"

In this case v,=r =xe; +y e, and bl = 1.: The vectors v,and v ,=r (the
velocity and acceleration) are not therefore necessarily perpendicular.

Let & = E(¢) = Ele; + E%e, be any arbitrary vector. For our curve we had

dl = Ir|dt= vl dr. For an arbitrary vector E(f) we have:

where v = Ir 1 and the velocity is determined relative to the parameter ¢ given along
the curve.
Suppose
En) = E =T
where E() is the unit vector of the tangent (it coincides with the velocity vector v in

the case where the parameter is natural).
By the definition of curvature:

dr
k= I?I = I—I = I—- (I I)I

(the length of the acceleration vector in the natural parameter is equal to the
curvature).
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By definition,
dV,_ld",_ld", v, div)
g malep =7 G wpE)-
!
1 (-. r d 2
=—(F -— = M);
i e &

v =7, % (FI)? = 275,
Thus, we obtain (assuming that Irl = 0):
d /v d,r 1 n ,FFy
k== (G =15 ()l = ﬁl’ ~-(=)r|
“@ “ K 4] 4B

For the curvature, we have:

dzrl_

—l -(Em)nl

WhC!B
-y - s _
g_r,q___._‘i_l_‘l.

&r

The components of the vector 7 = w _12. (r - ( r ) have the form:
d il

‘2 " 3cnx+§»3» , . rr4vey
HW=(I"—""——‘2 — -x)e1+ (J"‘——fi-’-?’zy 'Y)ez'
x +y x +y

Next, we have:
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-y nv2

Wt = 2 = XY-yx)
2 .23
x +y)

For the curvanre, we obtain the relation:

-y " 2
by —v xl
K = i et fad (an important formula).

2,2
(x +y)3

The numerator is the square of the determinant of the matrix A, where:

)

Thus, we have arrived at the following theorem.

THEOREM 2. If ar any point on a curve the velocity vector does not become zero,
then for any choice of parameter t for the curve x = x(1), y = Y1) there holds the
Sformula:

T i B 4 £
2,2
dr (x +y )3'2

wherex2+y2 0 sincelr 1 20,

Hence the absolute value of the acceleration d’r/dI?, i.e. the square root of the
sum of squares of the componenets of the acceleration is the number:
k = _"‘Z"_yz"'_ _
. 1 4.3/2
@ +3)"
We have obtained the basic theorems of the theory of plane curves in Euclidean
geometry. Let us make several remarks. We shall later prove the following property

of time-dependent orthogonal transformations.
Given an orthogonal matrix A = A(r), where:
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-z (jo-4-{- )

This fact is proved below. Its manifestations were the Frenet formulae

=(0k)
k= -k 0).

It was shown separately that the matrix B = dA/d! is an infinitesimal rotation
through an angle A¢ =kA! of the frame (v, n) in moving along the curve or a rotation
of the vector v since the rotation of the vector » orthogonal to it is thereby defined.
Thus, k = d¢/dl, where ¢ is the angle of rotation of the vector v.

dvfdl = kn, dnfdl = - kv, where k= k(D) and &

LEMMA 2. Let A(Y) be a smooth family of orthogonal matrices and let A(0) = E.
Then the matrix X = A () _, which is the derivarive of the family A(r) at the point
t=0, is skew-symmetric.

Proof. The orthogonality condition for the matrices A(f) is (A(f)a, A(D)b) = (a, b)
for any vectors a and b. Differentiating this identity with respect to 7, we
obtain the equality (A (f)a, A(Db ) + (A(a, A '(Db) = 0. When r = 0, we obtain
(Xa, b) + (a,Xb) = 0. Settinga=e; b= ¢;, we come to (Xe;, ) = - (¢, Xej),

ie. Y. =—v. where X = (x¥') Hers o. . are orthonormal, basic vectors. as
Avwy J Cad " YV AAWwWaA W 4& w3y U‘ L T J Al v WA IV AMIMAY WVHDLAY T wwhWAw, o

required.
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We now proceed to the theory of space curves,
For any curve x = x(1), y = ¥(r), z = 2(r) or in terms of the vectors r = r(r) there
holds the equalities:

d = IFldt = b, ldr = (2 +y%+22) 1P ar,

As in the planar case, we shall first consider the natural parameter / only, since it is in
terms of ! that our basic concepts are most conveniently defined. Our curve is thus
givenby r=r{l),x= x(l) y= y([) z=2 ([) where x, y, z are Euchdcan coordmates

By definition, v = r -xe1 +ye2 +ze3 andw=r =v -xel +ye2 + ze3 (we
use the dot to indicate derivatives with respect to [, d/dl, since r=10). We define
curvature as in the planar case.

DEFINITION 1. The curvature of a space curve r= r(r) is the absolute value of the
acceleration relative to the pai‘ameter I: k= wl=Irl (where dot stands for d/dl). The
radius of curvature is R = 1/k.

In the three-dimensional case, however, the velocity vector v = dr/d! and the
acceleration vector w = d2r/d[? are not enough to compile a complete reference frame
even if Iwl# 0. We know from Lemma 1, Section 1.5 that wy =0 or w Lv since
vl =1. Besides, it is obvious that in a three-dimensional space the curvature alone
is not enough to characterize the geometrical properties of the curve. Imagine, for
example, a curve winding round acylinder (x=R cost,y=R sin¢t, z=1) (a circular
helix). In addition to curvature, it has a third direction in which it is “contorting”
(Figure 13). The third basis vector can be taken orthogonal to v and w.

_____

~S -

Figure 13. 5
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We remind the reader of the well-known operation, from the linear algebra of
Euclidean 3-space, of the vector product of vectors.

If E, 7 are vectors in a three-dimensional space & = Ee;, 7} = n'e;, where ¢;
form an orthogonal basis (e; L e;, le;l = 1), then we can build a vector:

Y=[En] =-MmE, y=Ye,

where
Y = -8n% ¥ =8n'-En’ ¥ =Eq2-E1)

1 2 3
Elﬁé]

2 3 , which
n )

or£¥ is equal to the determinant of the part of the matrix (

remains after the i-th column is crossed out.
We can readily see that:

[E.n]=-MEL [E+&.n1 = [E,nl+[Enn] [AE. M) = ALE N

and it can be verified that Jacobi's identiry holds:

(&, n3 9] + [ &,n] + [..E] = 0.

The following properties of the vector product are also well-known to the
reader: the vector [E, n] is directed perpendicularly to the plane of the vectors
AE + um, the vector length being equal to I[E, Nl = IE1 Inl Isin ¢!, where ¢ is the angle
between € and 7,

2,0 2 1_cin2d = ﬂ_z.
cos“¢ = 1-sin” ¢ (I&Iml)

REMARK. If the vectors £ and 1 lie in the plane (x, y), their vector product is
orthogonal to the plane (directed along the z-axis) and [E, 1] = (' - E™n)e; and

I, nl = IE'E2 — En'1= IE) Il Isin ¢l.

We can now rewrite the formula for the curvature of a flat curve to obtain:
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. rrlo_ by —xyl?
b',|3/2 (1-:2+)-’2)3 12

for an arbitrary parameter ¢.

Thus, the general formula for the curvature of a flat curve is expressed in terms
of the length of the vector product [r, r ], and since the curvature is related, by virtue
of the Frenet formulae, to the rotation of the reference frame, it is natural to relate the
curvature to the angular velocity of the frame (v, n) directed orthogonal to the
(x, y)-plane. :

Now we are in a position to return to our space curve:

r=rl), T = (x,y,2):
2D, y=y), z=2z).

X

& d &
Then v(l) = v = ?el+%e2+-d—e3.

We assume that Iwl # 0 and bl # 0; such points are called non-degenerate
poinzs of the curve. We assume here Wl =1, wy =0 (or w L v). Consider the vector
b=[v,n], n=w/wi. We shali call b the vector of binormal to the curve or the
binormal to the curve, and n the vector of the principal normal to the curve, or the
principal normal).

We can readily see that:

bl = Wlinlisingl =1, bLlv, bln

We thus have an orthonormal frame (v, n, b) at each point of the curve where lwl 20
(i.e. at each non-degenerate point).

As in the case of scalar product, we shall find the following le
LEMMA 1. For two arbitrary vectors &(1) and n(f) in a three-dimensional space there
holds a Leibniz type formula:

d. - _rd dn
E[&rn] = ["&"111]"'[&1?]

The proof is immediate from the general Leibniz formula for differentiation of the
product of functions () =Ff g+ fg' .
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THEOREM 1. For any space curve r=r(l), where | is the natural parameter, the
Sfollowing Frenet formulae hold:

%=kn,
& bty
d

D _
d— 1]

where Ikl = |db/dI\ is a definition, and the number x is called the torsion of the space

curve (which need not necessarily be positive). In the planar case, we have b=
const. and therefore x = ldb/dli = Q.

Relative to the basis (v, n, b) at a given point of the curve where v = ¢, n =e,,
b = e3 we have, using matrix notation, de;/d! = bi,e-, i=1, 2, 3, the matrix B = (bi A
I,j=1,2,3 being of the form:

0 +k O}
B = |-k 0 -x )
0 +x 0)

We can see again that, as in the two-dimensional case, the matrix is skew-symmetric.

The proof of the theorem is given somewhat later.

In connection with the conc—c;—n of tﬁe 'vec'tor product [IE,"q.] of vectors E and n
we have made several remarks on the algebra which we are now in a position to
specify. A skew-symmetric matrix A = (a;), @; =— a;; in an n-dimensional space
((=1,..,mj=1,..,n)is determined by n(n — 1)/2 numbers a;;, where i <.

It can be verified that for two skew-symmetric matrices A, B of order n x n,
their commutator A o B — B o A = [A, B} = - [B, A] is again a skew-symmetric
matrix. For n =3, we have n(n - 1)/2= 3. Therefore, skew-symmetric matrices in a
three-dimensional space also form a three-dimensional linear space
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with coordinates 4., =X, .. =Y, a.;: =Z. Thug, the matrix A4 is interprested as a

LUDINIEANNS L2 T 4 £13 i3 = & > 2 i

vector in the three-dimensional space, (X, Y, Z), where X = a,,, Y = @53, Z = ap3.
The commutator [AB]=A B —-B oA appears to be exactly the vector

product of the vectors A and B regarded as skew-symmetric matrices for n = 3.
What is the algebraic representation of the scalar product?

n
It turns out that 2(4,B) = —Sp (A o B), where SpC = Zc..,C:(c.j),
i=l it i

Sp C is the trace (check it!).
Here we have used the notation:

“Sp” (= Spur) = the trace of the matrix.

It is sometimes denoted by “Tr” (= Trace).

Furthermore, the question has arisen why for the natural parameter / = ¢ we
have the equality: the absolute value of the acceleration = lxy — xyl = [[yw}l. The
derivation of this equaltiy is as follows. The acceleration is equal to w=(x,y ) and
(xy — x y)e; is the vector product of the velocity vectors v = x e; +y e, by the
acceleration w. We have:

v, w}l = Miwllsindl = wlisind! (bl = 1).
Since w L v, it follows that Isin ¢l =1, I[v, wlil =Wl = k.

We now proceed to the proof of the Frenet formulae for space curves.
Suppose the curve is given in terms of the natural parameter /:

r=rlD), x=x(), y=y(), z=z())
a dx dy dz
V== (?e1+7e2+7e3).

where v is the velocity of the motion along the curve, M =1,andw = dridP.
By definition, k = iwi, where k is curvature. We should prove the equalities:

dv
v kn
(by definition we have : n = w/lwl, w=0),

= —kv—xb,

=wn, b=[vn]

RS RE
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Proof. Introduce the formula db/dl = xn. Since b = [v, n], it follows that

div, n}
d

= [v,n}+[v,n] (bythe Leibniz formula);

then in accordance with the Lemma proved above, we have v Lvandn L n (W =
Inl = 1). Therefore, v =kn,n =av+ Bb, where a and P are unknown. Since
[n, n} =0, and [v, v] = 0 it follows that [v , n} =0,

[v, n} = P(v, b] = £ Pn.

Accordingly, % = % [v.n] = £ Bn = xn, where x is determined from this
equality.,

Thus db/d! = xn. The number « is called torsion. ff v=e;, n=¢;,b = e3, we
have:

de,
T l.ej (i,j= 1, 2, 3)
Next,
de
TRk, G=Rb-b-0,
de
%:f:m:]{ez (K=b%,bg=d=0).

We shall calculate dn/d! directly. Since 1 L n, it follows that ‘24 = ow +Pb.

Note that n = - [v, b}, and, therefore:

dlzb' = [v, b1+ [v,b ] = [kn, b} + [v, xn] =
= k[nb}+x[v,n] = kv +xb,
as required.

Now using Lemma 2 of Section 1.5, we shall give another proof of this
P‘\P-r\er Far tha ema v B = f”\ we havus-

“WSA widds A Wi RilW lmul AP =AU W LAY v
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pa

5 - ["? A

Recall that if A(#) is an orthogonal matrix, A(Q) = E, then %’I: o =B is

skew-symmetric.
If we make use of this fact, we can fill in all the question marks in the matrix B:

B=(3 ] °]=(_2 8_"}

?
0 x O 0 x 0)

This implies that dn/dl = - kv — xb if dv/dl = kn and db/d! = xn.

EXERCISE. Suppose we are given a helical line
x =xg+Rsint, y=y,+Rcost, z=al.

Write this curve in terms of the natural parameter / and calculate the curvature and the
torsion. It turns out that the curvature and the torsion are constant along this curve.

We have deduced the main facts from the theory of flat and space curves.

In conclusion, we should explain in what sense the curvature and torsion of a
curve in Euclidean space make up a complete set of geometric invariants for the given
curve.

In the Euclidean plane we have: given the dependence £E=F (), the curve is
uniquely restored to an accuracy of motion of the entire space. The function
(equality) £ = £(J) is sometimes called “the natural equation of a planar curve”. Here
k is the curvature with sign, which has been defined in Section 1.5.

In the three-dimensional case we have: given the functions k = k({), ¥ = x(/),
we can reconstruct the curve to an accuracy of motion of the entire space as a rigid
integer. This pair of equalities is called “the natural equation of the space curve”.

The next topic to be considered is the theory of surfaces in the
three-dimensional space.
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1.7 The Theory of Surfaces in Three-dimensional Space.
Introduction

In this section we shall be concerned with the ways of setting a surface, the
Riemannian metric (the first quadratic form)!. In the three-dimensional case, the
surface is the simplest object with, so to say, intrinsic geometry. What do we mean
by this?

We have investigated curves and their metric invariants in a plane and space.
These invariants (normal, binormal, curvature and torsion, Frenet formulae) depend,
however, on the manner the curve is embedded in space, and in this sense they are
invariants only of the way of embedding, the shape of the curve, i.e. are concepts of
extrinsic geometry. A curve has no intrinsic metric invariants: obviously, we can
coordinatize a curve with the natural parameter /, such that the lengths (on the curve)
between two points along both the curve and the straight line are measured in the
same way, that is:

!
! = [Ivtldr, v, =1 =@,y,2)
o

For surfaces this is not the case: for instance, it is impossible to coordinatize a
sphere (or even a piece of a sphere) in such a way that the formula for the curve
lengths in these coordinates be the same as those in Cartesian coordinates x, y in the
Euclidean plane.

What is the way to determine a surface? There exist three ways for a surface to
be specified:

1) asthe graph of a function (the simplest case)

z = fix,y),

2) as the graph of an equation (a more general case)

F(x,y, z) = const.,

3) by parameztric equations (similar to those for a curve) r = r(y, v):
x = x(u,v), ¥y = yuv), z=2z(u,v),

where u, v are running over a certain region in the plane (, v).

1 In Western literature the first (second) quadratic form is often termed the first (second)
fundamental form.
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T——n o~ T -

DEFINITION 1. We say that the equation F(x, y, z) = const. determines a surface
which is non-singular at a point P(xg, Yo, 29), Where F(xg, yg, 2g) = const. if the
gradient of the function F at the point P is non-zero, i.e.

aF _ _ _
‘Ex—el‘i'ayqz*'ja-z—es #0 x=x, y—yo, Z—Zo).

e . .. aF .
By the implicit function theorem if el | # 0, then near the point

oz %Yo
(xp- ¥0» Z9) = P the equation F(x,y,2z) = C can be solved for z: z=f{x, y), where
29 =fxg, ¥o)» and in a certain neigbourhood of the point (xg, yg) in the (x, y)-plane,
oF oF oF

F(x,yfx,y))= C. We shall obtain F(x,y,z) = C, > dx + g. dy + = dz = '0,
whence:
o _  dFfx 9_‘_ _ _BF/'c)y

& oFjz ' oy oFjoz

Consequently, for the surface F(x, y, z) = C in a neighbourhood of the point
(xg» Yo» 29} the parametric representation z = f{u, v), x = 4,y = v (near the point
Xo= Uy, Yo = vp) holds. We can see that locally, near a non-singular point on the
surface, the surface can always be given parametrically. In other words, the surface
near a (non-singular) point can be parametrized by local regular coordinates u, v.
Inversely, let a surface be given parametrically: r = r(u, v), i.e.

x =x(uv), y=yu,v), z=:z(uyv.

DEFINITION 2. A point P = (xg. ¥, 29) = (x(1g, Vo), Y(Ugs Vo) Z(tig, Vp)) On the

enrface ic palle
il AW AW Wweld s

S

.
nan-cinanlarif tha mamiy-
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¢ ¥

has rank 2.



SURFACES IN THREE-DIMENSIONAL SPACE . -, 63

THEOREM 1. If a surface is given parametrically and if the point P = (ug, vg) is

non-singular, then near this point the surface can be given by the equation F(x, y, z)

=0, where F(xg,yg,20) =0and F I(x # 0, i.e. both the definitions of
o Yo %)

non-singular points are equivalent.

Proof. By the definition of non-singular point, the rank of the matrix A equals 2.

Let, for the sake of definiteness, the determinant have the form:

Recall the inverse function theorem: let x =x(u, v), y = y(4, v), let the Jacobian at
the point (g, vy) be non-zero and let x = x(iy, vp), Yo = ¥(ig, vp); then at a certain
neighbourhood of the point (xg, yo) we can find the inverse function:

u = ulx,y), uy = uixgyo)

v = v(x,y), vp = v(xgYoh

(au v dx 9y
. .a“g].m. .(wa]
e matrix t X o being the inverse to the matrix La" > 1

> ¥ ) > )

By virtue of this theorem, we shall find the expression u = u(x, y), v = v(x, y) and
substitute them into the expression for z = z(u, v) = z (u(x, y), v(x,y)), where
z = 2(ug, vg) = z(u(xp, ¥o)» v(xg, ¥o))- We obtain the expression for the surface in
the form z = Ax, ¥), z; = fxg. yo) near the non-singular point (xg, ¥o, Z9), Which
completes the proof of the theorem.

Thus, we have arrived at the conclusion that locally, in the neighbourhood of a
non-singular point P = (xy, ¥, Z9) on the surface, all the three ways of defining
surfaces (by smooth functions) are equivalent.
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EXAMPLES

1. The ellipsoid Xfa® +y*b* + 2/c* =1 (Figure 14).
This surface

a) has no singular points,
b) is not globally the graph of a function (whereas locally it is),
¢) has no global parametrization (such that all the points are non-singular).

2. The one-sheeted hyperboloid x*a*+y*/b* - 2/c* = 1 (Figure 15).

This surface

a) is not globally the graph of a function,
b) can globally be given parametrically.
3. The wo-sheeted hyperboloid — x*/a® — y*/b* + 2/¢* = 1 (Figure 16).
This surface is such that one half of it can be given both as the graph z = f{x, y) and
parametrically.
4. The cone x*/d® +}'2/b"’-22/c2 = 0 (Figure 17).

Here the point (0, 0, 0) is singular.

Figure 14. Figure 15.
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Figure 16. Figure 17.

We now turn to the intrinsic geometry on the surface itself.

We have already made some introductory remarks concerning the curvature of
the surface. Let us return to this concept. Suppose we are given a surface with
(xg ¥0» 2p) as a non-singular point on it. Choose an orthonrmal frame, where z is
normal to the surface while x and y are tangent to it. Then locally near the point
(x0» Yo» 20) the surface is given in the form z = f{x, y), zy = flxg, ¥o), and

7] - ZF| .o

R F o0

Consider the second differential of the function z = f{x, y) or

Zdzf- (dx) +2 azgy

dx dy + f (dy)
UJ

. & 2 .
and construct the matrix a.. = f , wherex1 =x,x =y (the matrix is called

ij
ar' oy
hessian). We shall view this matrix as quadratic at the point (xg, ¥q, 2g), where

dffox = 0, af/dy = 0.

DEFINITION 3. Principal curvatures of the swface are eigenvalues of the matrix a;;
at the point where the surface is given in the form z = f{x, y) and grad f=0.

The Gaussian curvature is the determinant of the matrix (a;) at this point, and
the mean curvature is the trace of the matrix at this point. The trace is therefore equal

l.U u11 + u22 = K-l + 5.2, thlc K.l a.uu K.z ailc CIECIIVNUCD, K= K.lﬂ-z = dCl \uul -

ay1a99 =~ 0212 (Gaussian curvature),
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The Gaussian curvature of the surface turns out to depend only on the intrinsic
metric properties of the surface (this assertion is proved below).

We have defined the concept of curvature in special coordinates associated with
the point under investigation: the z-axis is normal to the surface, while the x- and
y-axes are tangent to the surface at this point. Then locally the surface is written in
the form z = f(x, y), grad f being equal to zero at the point (xg, yg). Such
coordinates can, of course, always be chosen.

We now turn to a consistent presentation of the basic concepts of intrinsic
geometry of the surface. To begin with, we introduce the Riemannian metric on the
surface; all intrinsic geometric invariants will be expressed in terms of this metric. In
this connection it is instructive to recall the concept of Riemannian metric.

Let a surface (or a piece of this surface) be given parametrically: r=r(u, v),
r = (x, y, z), where (u, v) are the coordinates of a point on the surface. The point

will be thought of as non-singular, i.e. the rank of the matrix A = ( Tu ); u :"}
xV R A

is 2, where X, =5, X, = etc.

a‘ y ?aT y
How have we defined the Riemannian metric? Suppose we are given the curve
u=u(t),v=v(.
b

What is the length of the curve | = JW‘l dt, v,=(u,v)? Herev, = (u, v)is
a
the velocity vector in the coordinates u, v and
|V,|2 = 8tjx.j J':f, x1= u, xz =v, gy= g‘-j(u, V).

We have called the family of functions g;j(u, v) (in the coordinates (i, v) the
Riemannian metric; it determines the arc length, as well as the angles between two
curves at the point where they intersect.

How shall we define the arc length? What are the values of g;(u, v)? (Here
u=xl,v=x%.

Note that the curve u = u(f), v = v(r) is given in the coordinates (u, v) on the
surface, but the surface itself lies in a Euclidean 3-space (x, y, z), where r = r(u, v),
r=(x, y, z). Naturally, the arc (curve segment) length u = u(f), v = v(t) on the
surface is understood as the length of this arc in a three-dimensional Euclidean space.
Recall that the surface lies in the space.

We shall write the curve in the form:
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x = (u(), v(D)) = x(1),
y = @), v(0) =y,
z = 2(u(), v()) = 2(1).

For the arc length in a three-dimensional Euclidean space we have
: 1
L v 2 '2 n
! = j GP+y +z) @&  (by definition).
a

Since x u+ d v, etc., then we come to
= ame =V, efc,,
o ov

x2+y2422 = Eu +2Fuv + Gv? = gyx™y,
where

E=gn F=ga=gy G=gyn u=x, v=2x,
and

g = +yi+z = E

812 = XX, +Y Y, +z,2, = F,

82 = G +¥i+% =G,

r, = x,,el +}’,‘ez+zue3 =TI

ry = X1ty tze = ro,
gy =rigy ((=12; j=12)

The functions gifu, v) = (E, F, G) are defined in the coordinates of the

surface,

The expression g;; dx dxi = E(du)? + 2F dudv + G(dv)? is usually called the
Jirst quadratic form (or the Riemannian metric on the surface). The first quadratic
form is a quadratic form defined on tangent vectors to the surface at a given point.

If the surface is given in the form F(x, y, z) = C, then the Riemannian metric

on the surface (the first quadratic form) is:



68 PART I

IJ,.\2 . ll\2 - 11\2
\@x) +ay) +iaz)

under the condition that F(x, y, z) = C. This implies that:
F,dx+F,dy+F,dz =0 (F, = oFfox , ...).

If at the point under investigation 9F/0z = 0, then:

F F
dz = --Fidx--pidy =Adx+Bdy and z=fx,y).

z z

Therefore, on the surface F(x, y,2)=C, x=u, y=v

F F 2
(@0 + ()P + (@) = (@) + ()P + (F_=¢x sy ),

z

5

2 b

H

F2
gm=E=1+ -i, 312=F=
F,

where u=x= xl, v=y= x2. If the surface has the form z = f(x, y), then

g11=1+7%81 =ffy g22=1 +£3,.

Thus, the Riemannian metric on the surface appears here as the way to calculate
the lengths of curve segments in the coordinates u, v which describe points of the
surface. Since the surface lies in a three-dimensional (Euclidean) space, we deal here
simply with the length of this curve segment in a three-dimensional Euclidean space.

Let Euclidean coordinates x, y, z be given in the form of the function
x=x(u, v), y = (i, v), z = z(u, v) on the surface. By definition:

(dx)? + (dy) + (d2)* = gydx’ d¥/,
x'=u P=v; g1 =E, g13=F, g =G.

The metric g,-J(xl, x?) on the surface is said to be Euclidean if there exists a pair of

functions on the surface i (x!, x2), v (x!, x%), such that (du )? + (dv )% = gij dx* dx’,
For the surface in a rhree-dimensional Euclidean space we have:
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(@) + (dy)? +(d2)* = Zgydx' d,

x =x(u,v), ¥y =yuv), z = z(4,v), u=xl. Vv = xz,

i.e. the metric is decomposed into the sum of squared differentials of three functions
x(u, v), y(u, v), z(u, v) rather than two (generally speaking). If the metric on the
surface decmposes into the sum of squared differentials of two fuctions, these two
functions are Euclidean coordinates on the surface, and the metric on it is Euclidean.

EXAMPLE. The metric of a cylinder is Euclidean. The equation of the cylinder has
the form f{x, y) = C (the coordinate z does not enter). Euclidean coordinates on a
cylinder are coordinates z and the natural parameter [ of a flat curve fx, ) =C,
u=z,v =1

We have:

(d0)? + (dy)® + (dz)? = (d2)? + (dD>.
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1.8 The Theory of Surfaces. Riemannian Metric and the Concept of
Area

In Section 1.7 we introduced three ways in which a surface may be given in a
three-dimensional space: by the equation z =f(x, y) or F(x, y,2)=C, grad F =0,
and parametrically by r = r(u, v), r = (x, y, z), where u, v are parameters. Tangent
vectors to a surface are the velocity vectors of the curves lying on the surface.

X Y 7Y,
| is equal to

At a non-singular point, where the rank of the matrix ( )
xV yV zV

2, these three ways are locally equivalent.
We have also defined the Riemannian metric on the surface (given

parametrically)
dh? = (dx)? + (dy) + (d2)? = gdx' d¥,

where x' = u, xX* =v, 811=F g12=82 =F, gy =G. The Riemannian metric
has been defined to meet the requirement that for any curve on the surface u = u(t),

b
PR
v =v(1) its length on the surface |/ =J‘ (gl.jx x' ) dr coincides with its length in
a

the three-dimensional Euclidean metric of an envelope space:
H 12
! =j(;c2+y'2+z'2) dr,

where
x(0) = x(u(n), v(®)), yO = yu@, v(1)),
2(0) = z(u(), v(t), u = x%, v= x>

Thus, by definition:

(dx)? + (dy) + (dz)* = g;dx' d¥,
where

dx = x,du+x,dv,

dy = y,du+y,dv,

dz

z, du+2,dv,
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(x, =9x/du, ... ). If the surface is given in the form z =f{x, y), thenx=u,y = v,
and therefore

@? = 1+ (@x)? + 26f, dxdy + (1 +£3) (dy)?

or
g =1+f gi2=8n = ffy 822 =1 +f2y :

If the surface is given in the form F(x, y, z) = C and grad F # 0, then on the surface:
dF = Frdx+F,dy+F,dz = 0.

Inthecase F,#0,wecantake u=x,v=y

F, F,
X
dz = Adx+Bdy, A = - = B =X,
z H
whanra (Al\z - !Hv\z A fr’u\z L (A Ava R Ju\z {an tha cnrfaral  Tha vartar F ic
Wilwilve \sb) o g 1 \“JI T WA T “JI AViL Lilw oulldviw ). 1illwv Ywiwiul 5 43

called a tangent vector to a surface at a point P if it is the velocity vector of a certain
curve lying on the surface which passes through the point P.

If £ = Ele, + E%, + E%e; is a tangent vecior to the surface then we have

F.E'+ F; 24+ FE*=00rE L grad F. From this, we come to the conclusion that the

vector grad F is normal to the surface F(x, y, z) = C. When the surface is given
parametrically by r = r(u, v), r (x, y, z), we have two vectors:

=

ry =ry = (xuez +yue2+zue3),

n ny=ra= (xve2+y,.ez+z.,e3).
These are both tangent vectors to the surface, If they are linearly independent, their
vector product [E, B} = [r,, r,] is orthogonal to the plane r,, r,, that is, gives a normal
vector to the surface.

With the Riemannian metric we can measure the length of any curve u =f{r),
v = g(r) on the surface and the angle between two curves at the point of their
intersection, since the scalar product of the velocity vectors (f;, g ;) and (f5, g) at the
intersection point (g, vg) of the curves (f1(2), g1(2)), (f5(2), g2(0), u =£(r), v =g,
i=1, 2, is given by the formula (at the point ug = f(1p), vo = g{20)):
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MM = &N b &5 = £iUo Vo)
m= i él): N2 = (fzv 8.2)-
Another question arises: How shall we measure the area of a region on a

surface?

If we have a Euclidean plane with coordinates x, y and a region U in this plane,
then the area of U is given, as we know, by the double integral o(U), i.e. the area of

the region has the form o(l) = ﬂdx dy. If we make a (one-to-one) change of

] 7]
variables:

x = x(u,v), y = yu,v),

we come to the formula:

o) = .U by, - yuxvl du dv,
v

where V is a region in the (u, v)-plane comresponding to the region U in the

(x, y)-plane (see the theorem in analysis on the change of variables in a double
n

intaora
iliwvgiazg.

Thus, we have:
o) = _”ll | du dv,
v

where J is the Jacobian of the change of variables x = x(u, v), y = y(u, v)
J = x.x,.

A question arises: How shall we calculate the area of a region on the surface
r=r(u, v), r=(x,y, z) in a space if we know the Riemannian metric on the surface
itself:

(dI)2 = g,-jtixidzj, xt = U, 2=v.
Let us consider the determinant of the matrix:

det (g;) = & = 811822~ 832 = EG -F% > 0.
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DEFINITION 1. The area of a region U on the surface r = r(, v), r = (x, y, z) is the
expression:

o) = j f @)"? du av,
v

where U is the region on the surface given parametrically as the image of the region V
in the (u, v)-plane.
So as not to introduce some special notation, we shall, in some cases, write

o) = f f @"? du av
7
implying that U is the image of V.
The expression (g)/2 du dv is called the differential of area with Riemannian
metric (g)-

EXAMPLES.

1. If the metric is Euclidean, (20)? = (du)® + (dv)?,

1, i=],
= 5. o=
&y v {O. i#J,

then g =1 and (@2 = 1. Therefore @) P dudv= duadv.

2. For the metric of the sphere (21)? = R%(du)? + R? sin® u(dv)?,

2
— R 0 12 _ p2 )
8ij (O R sin?u ), @) = R* lsinul

we have

o(l) =”stinududv and 0<us<n.
U

If the sphere is given in the form x* +y2+zz=R2, thenu=0,v=4¢,

(d@D?=R? [(d6)? + sin® 0(dd)*), z = R cos O,

y = Rsin@sin¢, x = Rsin 6 cos ¢.
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Therefore, o(U) = II R%sin0 do d¢d . We can readily see that the total area of
U

the sphere is equal to 4nR2.

On what grounds do we define the area of a region in such a manner? Why is
the element of area to be taken in the form (g)'? du dv if the scalar product of
tangent vectors at the point (i, v) is given by the matrix g;{u, v)?

To gain a deeper inight into this problém, we shall consider a pair of vectors of
the Euclidean plane &, 1 and a parallelogram (AE + un), 0<A<1,0<pu <.

The area of the parallelogram is equal to ¢ = IE1n2 - Eyll = Idet Al

1 2
A= g1 & 2}
(ﬂ ny
i.e. the matrix A is formed by the components of the vectors:

£ = Elel +§2e y N = "'Ilel '”1292-

Let us now consider another example. Suppose we are given a plane with
coordinates (u, v), where any vector has the form ue; + ve, and e, e, are basis
vectors.

Suppose the scalar product of the basis vectors is given by the matrix:
e,-ej = g‘J; i=1,2; j=1,2.

Calculate the area of the parallelogram spanned by the vectors e; and e5. The
points of the parallelogram are Ae; + pe), where 0 €A <1,0<pu, A <1,

If g;; = &y, the area of the parallelogram is equal to 1 (unit square).

We assume the matrix (g) to be the matrix of positive quadratic form:

g,:,- &i &j > 0.
PROPOSITION 1. The area of a parallelogram le,, e;| spanned by the vectors e, and
ez is equal 1o (g)'" where g = det () = 21182, - 812821 = g8~ 821-

Proof. The quadratic form g;; can be reduced to a diagonal form gj; = §;; through a
linear transformation A.. More precisely this means the following: there exist
vectors e}, e5

ey = a}el +a%e2, ey = a%el +a%e2,
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such that eje = gi; = 8,-j (or le'? =1, e Le,). Then the area of a parallelogram
spanned by the vectors e, e} is equal to 1 (unit square).

Since ¢} = ale; + dle, =ale;, ¢4 = ajey + dle, = die;, it follows that:
g1 = €€ = (@) 4
212 = 8 = €1, = a\aj+ajdi,
g2 = (@) + (@)

In the matrix language, we have (g;) =A o AT

A=[a}a§l AT= [all a;}=(a}').
a, d) 4 )

2

4o 4T (gu g2 )
o = o
8 322)

What is the area of the parallelogram spanned by the vectors e; and e,.
Since the basis e,, e, is orthonormal, the area of the parallelogram leje,! is
equal to det 4, i.e. to the determinant of the matrix A.

1) The determinant of AT = the determinant of A.
2) The determinant of A o AT = (det A) - (det AT) = (det A)? = g.

We obtain ()2 = det A = the area of le,e,), and the assertion follows.

We have used the fact that in an n-dimensional Euclidean space with
orthonormal basis ey, ..., e, €;¢;= Sij, the volume of a parallelipiped spanned by
the vectors ey, ..., en, ¢;=a i¢;,i=1, ..., n,is equal to the determinant of the
matrix A = (@) (in the absolute value).

For n =2 this fact is already known, but we leave to the reader to verify that it
is valid for all n.
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If the matrix of scalar products is given in the form e;e; = g then the volume
of the parallelipiped spanned by the vectors e;, ..., €, is equal to the root of the
determinant of the matrix (g‘-j), i.e.

the volume = (g)”2 = (det (g,-j))m.

These two facts are the basic ones for some theorems from mathematical analysis and
geometry:

1) In the Euclidean plane (n = 2) after the change of coordinates (i = 1, 2)
x = (!, z%) the area of a region is calculated by the formula:

o(U) = ”dx‘di = H it e, fo I = g
v v
2) In the Riemannian mettic (g,-j) the element of area has the form:

o = [| @ .

U
axl axz
1 1
REMARK. The matrix J = azl 92 | is the Jacobian matrix,
o
0z2  3z2

The Jacobian J is equal to the determinant of the Jacobian matrix S
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1.9 The Theory of Surfaces. The Area of a Region on the Surface

Consider a region U in a plane with coordinates xl= u, 2= v, bounded by a curve
I' (T" is the boundary of the region U). We assume the curve I' to be continuous, and
furthermore, to be piecewise smooth. This means that the curve consists of several
smooth pieces 7y, ... , ¥, the end of the piece 7; coinciding with the origin of the
piece 7;,1 (the end of v, coinciding with the origin of v;). (Figure 18).

The pieces y; can be given parametrically:

{u = uft),
Y, = a; £r<£ bi R
v = vi(D),

and ugb;) = u;,1(a;.1), vikd;) = vi.1(a;41) (the origin of v;,, coincides with the end
of V). n(ay) =7 Lby-

EXAMPLE. (Figure 19).

Yy V=a, uysusu,,
Y u= f{v), asv<p,
Vi v =0, usSusu,,
Ya: u= g), a<v<b,
I'=7%%Y

f(v) and g(v) are continuous functions, f > g.

<
S

SIE
I
1
4
fg/]
"~

G

Figure 18.
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Consider small numbrs Au and Av and partition the plane into rectangles with
sides Au and Av.

We assume the umbers Ay and Av to be sufficiently small and to tend to zero.

Obviously, we have: the area of the region U is greater than or equal to the

sum of the areas of all interior rectangles. The area of U isequalto o(l) X S,
L

where §; is the area of the interior rectangles indexed by the number i.

DEFINITION 1. The area of the regioin U is the limit of the sum of the areas of all
interior rectangles as Au — 0 and Av — 0 if this limit exists.

Suppose next that we are given, in addition, a continuous function of two
variables f{u, v). We shall now recall the definition of the integral of the function
Ru, v) over the region U,

Consider all the interior (for the region) rectangles with sides Au and Av from a
rectangular net. In a rectangle S; we consider the value of {u;, v;) at the centre of the

rectangle. Consider the integral sum:

SEU) = X fu,v,) Bu)d),
i
where the sum is taken over all the interior rectangles.

DEFINITION 2. The limit of the sums S(U, f) as Au — 0, Av — 0 is called the
double integral of the function f{u, v) over the region U and is denoted by

J'J'f (u, v) du dv.
u

We shall list the properties of the double integral (without justification).

1. If the boundary of a region is a continnons curve I' without
self-intersections, the region U is bounded and the function fu, v) is continuous,
then the limit of the integral sumes exists and coincides also with the limit over all the
rectangles intersecting the region U (“existence of the integral”).

2. If Au, v) = 1 with (4, v) being Cartesian Euclidean coordinates, then the

integral J]' l-dudv coincides with the area of the region U. recall that in Euclidean
U

coordinates the square of the element (the differential) of the arc length has the form:
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1, i=j,
dn? = (duf +dv?, g; = & =
B=%7 o, inj

In this case, the area of a rectangle with sides Au and Av is equal to (Au) (Av).
the curves u= const. and v = const. intersect at an angle which, in this case, is

- e - ala

autuﬁﬂy rignt
3. Ifinthe plane u=x',v = x? we are given a Riemannian metric:

@ = Dgzdddd = gyy(du) +2gy, du dv + gy (@v),

then the area of the region U is equal to the integral:

o(U) =H @)'dudv  (definition!).
U

Why is this definition natural?
If Au and Ay are sufficiently small, the area of a small parallelogram centred at
the point (u,, v,) with sides Au and Av is equal, approximately, to S; = (Au) (Av)

(e)"? where ()2 = (gy1822 - 83,)"% = (EG - F)2, the numbers g;; being
calculated at the point (i, ve).
For small Au, Av we have;

(theareaof U) = o(U) = 2. S, = 2. (g0 v,))l? (Au) (Av).
a a

The limit of these sums (as (Au) — 0, (Av) — 0) is called the integral

12
bU @) Pdudy .

As in the case of the curve length, the expression‘U (g)mdu dv istaken, in effect,
v

as the definition of the area of a region.
In the notation gy, = E, g, =F, g5, = G we have:
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4. Under a one-to-one change of variables:

2= u=ud P,

2 =v =P
such that

J = uzlvzz-uzzvzl z 0,

J = J@, 3,
to the region U in the coordinates (u, v) there corresponds the region V in the
coordinates (z!, 72) and we have the equality:

_U Ru,vydudv = _” Ru(z!, gz), vz!, 22)) J (2}, 2%) dzldz?

[7] v

(“the change of variables in the integral’).

If the point z1, 22 belongs to the region V, then the point 4 = x(z!, 22),
v =2%(z!, %) belongs to the region U.
EXAMPLE 1. The Euclidean plane.

u=rcosd, v =rsind,

@D? = (du)? +(@dv)? = (dn?+ oy,

J = uvy—ugv, =r.

Conclusion. J]. dudv = J]. rdr do.
U v

LetUbe aring (0 <r<R, ¢ isarbitrary). We have:

R 2 R
o) = Hrdrd¢ = Ja!r (er¢) = J' onr dr = TR’
0<r<R 0 0 0

0<o<2n
Conclusion. The area of the ring is equal to TR,
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EXAMPLE 2. A sphere of radius ry;
(dn? = g ((du) +sin u(@v)®), 0<us<m,

@V = rAsinu =0, v=9).

A ring of radius R, where R € nry, is a region, where
[0<ugR/r,
UR = .
¢ — arbitrary.
The area

U, =o(U) = ‘U rf,sinududv =

O<uskirg
0<v<2n
Rirg 2w Rirg
2 . 2 .
=7, J. du (J-smudv) = J- ro2nsinudu =
0 0 0

2nrf)(1-cosf;0), R<mr, (0=u, p=v).

When R = nry, we have that Uy coincides with the whole of the sphere (Figure 20).

@y

Figure 20.

Conclusion. The area of a sphere is equal to 4nrZ (since cos R/ry = cos 1t = -1).
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EXAMPLE 3. The Lobachevskian plane.

((du)? + sh? in (dv)®),

,\

2
"

Sh

@'? = rhshu
(v = ¢, where ¢ is the angle).
A ring of radius R is a region
[ 0 SugR/r,
Up =
0<v<2m

For the area we have:

o) = ‘Urgshududv = J.J' (dudv)f(z)_shu =
U

OSERI"O
O<v<2rn
R/"O n RI’O
= Jf..4 (Jr(z) shz...,) = 215"02 Jrsh..'du =
0 0 0

Since ch (x) = (" + €™)/2, it follows that for large x we have ch x = ¢/2, and
therefore, for large R

. . Rir,
(the area of aring of radius R ) = nrge .

Now we shall calculate the circomference of the ring, respectively, on a sphere
and in a Lobachevskian plane.

1. The metric on the sphere: (dI)2 = rf) [(du)2 + sin? u(dv)z].

Let the curve be given as follows: u =R/ry = const., v is arbitrary, v = ¢
(circumference). Then the circumferénce is equal to:
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2
J"'o sin udt = 2nry sin rysinu = 2nrg sin (R/ry).

0
We see that when R = nry/2 the circumference is maximal (equator), while
when R = mry the circumnference is equal to 2nrp - sin T = 0.

1. The metric of the Lobachevskian sphere: (d!)2 = r%)[(du)2 + sh 2 u(dv)z].
Let the curve be given as follows: u =R/ry = const.,, v — arbitrary, v =1
(circumnference). Then the circumference is equal to

I [ —i
J'roshudt = 2nryshu = 2nry £ =€

0
R/r0

For large u — e the circumference is approximately equal to nrye” = nrge

Conversely, for small u — 0 we have

R R . R R
She= = — andsin— = —,
nh 7o h %

and therefore for small u = R/ry we have for the circumferences and areas of rings

approximately the same formulae as in Euclidean geometry:

the circumference of a ring is approximately equal to

2nR = 21tr0 sh -& = 21tr0' sin —,
r, r,

the area of a ring is approximately equal to

R
The parameter r; of the dimension of length is sometimes called “the radius of
curvature” of the sphere and of the Lobachevskian plane, and the number rg?

coincides with the Gaussian curvature of the sphere.
For Riemannian metrics of the sphere and of the Lobachevskian plane (a

pseudo-sphere or a “sphere of imaginary radius’) we have the natural scale for

R R
? 2 :rr.rg (ch’_—0 - 1) = nrz(l -cosr—o).
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measuring he length — this scale is the number rg. Choosing it as the unit length, we
assume rg = 1.
We obtain the dimnsionless metric of the unit sphere:

(@0? = (dw)’ +sin*u (@) =6, v=9¢),
and of the (Lobachevskian) pseudo-sphere:
d0)? = (du)* + sh? u (dv)>.

From school mathematics we remember the concept of a “solid angle™.
The solid angle is, by definition, the area of a region on a sphere in
dimnesionless metric:

(du)? + sin®u (dv)?, u=0, v=0.

The solid angle is equal to JJ sinddudv and correspondingly is equal to the solid
17}

angle of a bundle of rays coming from the origin in the direction of all points of the
region U on the unit sphere.
The total solid angle is equal to

2n

3
J sinududv = J'du (J'sinudv) = 4.
over all o 0
the sphere
(0<us<r)

What prescriptions for calculating a double integral are naturally used? First, if a
rectangle is given relative to the coordinates (u, v) (Figure 21)

raSqu,
ic5v5¢

then we have the formula:

Hﬁu,v)dudv = J'au (Jj(u,v)dv) = Jdv (Jf(u,v)du).
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d
The expression j Ru, v) dvis a function of u only:

c

d
o) = J. fu, v)dv.

c

The value of the function ¢(14y) is the integral of the function f(ug, v) over the vaniable
V.
For example, we had

Hrdrdq: =2fd¢(frdr) = T%z-dq: = 7R
g;gkn 0 0 0

or
&sg: dr d =jd- (j:rdq)) = nR%

Let us express this in a more general form. Suppose we are given a region U,
relative to coordinates (i, v), between two curves u =f(v) and u = g(v), wheref > g
over the distance between a and b (Figure 22).

Figure 21. a bz
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J.J.Q’(u- vidudv = J\;I(v)dv.
4 a

)
Here y(v) = J ¢ (u, v) du is the integral over the variable u, where the function ¢ itself
{0 .
and the limits of integration depend on the parameter v.
If ¢(u, v) =1 then the area of the region U is equal to

o) = H dudy = Jl:dv (jf[ )du) J(f(v) — g)) dv.
a g

We have given exact definitions of all the ‘concepts referring to the double
integral and have listed all its basic properties (the existnece for continuous functions,
connection with the area in Eunclidean and general Riemannian geometry of surfaces
and the formula for the change of variables, the prescription for reduction to single

integrals).
Wa ha alen mainsad 1 tha nvrang ~f mince in tha clenmnlaces caneateiag
LA A llﬂ ' \; GIDU PUllllU\.l Ut v arvao vl LIIED 18l U1V DdlllIpPIvOoL ECUI“DLI pi=h ]

(Euclidean, on the sphjere, on the Lobachevskian plane).
There holds:

THEOREM 1. Lerin Euclidean 3-space a surface be given in the form F(x, y, z) =
C,where F #0.

I on the surface we are given a region U which is projected in a one-to-one
fashion into a region V of the plane (x, y), then the area of the region U on the
surface F(x, y, z) = C is calculated by the formula

o) = J‘ J‘ Igrad FI

(we assume F, #Q at all points of the region).

COROLLARY 1. If the surface is given in the form z =f(x,y) or F(x, y,2) =
z - fix,y) =0 (where F(x,y,z)=1z—fxY)), then the area of the region on the
surface is calculated by the formula
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12
o) = ”(1 +jf+jf) dx dy.
14

THEOREM 2. If the surface in a three-dimensional space is parametrized by the
coordinates r=r@u,v), r=(x,y,2),where r,=(0x,¥,2,), I, =X,¥,2,)and
the vectors r, and r, are linearly independent, then the area of the region on the
surface is calculated by the formula

o) = jj I[ru, rv]ldu dv,
U
where [r,, r,] is the vector product.

We shall give a proof of Theorems 1 and 2. Both theorems are proved in a
simple way. We should recall the general definition of area of a region in the case
where we are given a Riemannian metric:

dh? = gyax'sd; x'=u, x*=v.
By definition:

o) = .” @ dudv, g = 8,8, -85 -
v

To prove Theorems 1 and 2 it is necessary to calculate (g)12.

Proof of Theorem 1. Recall that for the surface F(x,y,z) = C we have

gu=1+FYFZ, g1, =F,,FJ/F2,, 822 =F§/’F§ +1. fF,# 0, thenu=x'=x,
v=x’=yand E=g;;,F = g1, G = gy, by definition. From this we have:

PP PR PP
g = gugn-£i =(1+;§') (1+F—§')-‘-?fl = 1+-;;-+-;§-,

z

and therefore

. 172
07 = (1454 5)"

z Z

which concludes the proof of Theorem 1.
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Proof of Theorem 2. If r=r(u, v), u=x', v=2x2, then 8ij=rgr,. Note that:
[ru. rv] = (xuyv _xvyu)eS + (zuxv - zvxu)e2+ O"uzv _yvzu)el'

Hence I{r,, r‘,]l2 = £11822 — gzlz and (g)12 = I[r,, rv]I2. For the area we have, by
definition:

o(U) = (J; j Itr,, 7)1 du dv,

as required.

Thus, we have investigated area in the Riemannian geometry of surfaces and,
in particular, made sure that the concept of area is defined, as is the concept of length,
by giving the scalar product (g;;) of the tangent vectors at each point.
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1.10 The Theory of Surfaces. The Theory of Curvature and the
Second Quadratic Form

In Section 1.9 we defined the double integral:
.”j(u,v) flu, v) du dv
U

over the region U in the (u, v)-plane and formulated the properties of the integral:
a) The existence theorem;
b) the change of variables u = u(x, y), v = v(x, y),

J- fu, vydudv = ”ﬂu, (6 ¥, vx, ¥y J(x, y) dx dy,
U v
where J(x, y) = uvy — uyv, > 0;
c) theareal = _”du dv if (d[)2 = (du)2 + (dv)z;
U
c) theareaU = (g)“2 du dv,
I

if (dn?= g“(du)2 +2g,,dudv+ gn(dv)z;

g = gn8n—8% = EG-F%

d b(u)
“,,, du dv f¢ (fﬁ‘u,v\_dy\
.H‘ ) b
U c a(u)

where U is shown in Figure 23.

o v=J @)

V=g (1)

. L d
Figure 23. c z

R
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As an example of calculation of the areas of the simplest figures, we have
considered circles of radius R in the Euclidean plane, on the sphere and on the
Lobachevskian plane.

1. The Euclidean metric:

@)? = (du)® +(@v)* = @n?+ 2 dp),

e ff . -2
G(UR) = ‘” rarap = K.
O<<r<«<R
O<<p<2n

2. The metric of the sphere:

@d? = g (du)® + sin? u(d$)®),

oW, = ” Asinudpdp = 2n7; (1-cos ).
O<u<R/r 0

o<g<2n®
2
B e tmon T R_R . L 2/ Ry _ .2
As R — 0 we have 1 —cos — = —- and, therefore, 2nr, (1 -cos—) = nR".
o r To
’ R
We obtain the area of the entire sphere by setting cos —=- 1,0r R =mry,

0
Then 2nrX(1 — cos ) = 41tr%. If ry = 1, then we have the total area of the
sphere, equal to 4n (as has already been mentioned, this is the total solid angle).

3. The Lobachevskian metric:

@)? = 12 ((dw)® + sh? u(dp)?,

R
xU) = .” rf)sh ududd = ang(chr—o—l).

OSMSR/rO
0<o<2r

X -X
If R— 0, then 2nr (chf;- 1) = 7R since ch x = £55—
0
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We have proved the following assertions for the calculation of the areas on
surfaces situated in a three-dimensional space.

a) If we are given a surface in the form z = f(x, y) and on this surface a region
U which is projected into a region V of a plane (x, y), then there holds the equality:

rer ., ” o~ 12
o) =J (1+f;+j;) dx dy,
v

where f, = dffox, f, = df/dy.

b) If a surface is given in the form F(x v, z) = C and a region U on this surface
is projected in a one-to-one manner into a region V in a plane parametrized by
coordinates (x, y), then there holds the formula:

lgrad F
7]

o) = | dx dy,
%
where \F | = |0F/dzl # 0 for (x, y, 2) lying in the region U.

c) If a surface is given parametrically in the form r = r(u, v) or x = x(u, v),
y =y(u, v), z = z(u, v), then we have:

o) = .” I[ru, rv]ldu dv,
u
where U is the region in the (u, v)-plane, [r,, r,] is the vector product.

The proof of this theorem consisted in the calculation of the quantity (g)? for
three different ways in which the surface was given.

2 2
X +y
z

EXAMPLE 4. Let a surface be given as a rotation paraboloid z = fix,y) =

We are going to calculate the area of aregion Ug = (r S R), where 2 = 2 +y4
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oUp = || @ axay =
Ur
= (1+ +.l.) dxdy = ”(1+5L) rdrd¢ =
U Y
R o 42 R X
r
=Jf _{ 1+—) e ) =21:Jf(1+_2) rdr=
0 0 a 0 a
Rla 2
jm Q1 + 4p)'2 dp, p=5.
a

2 .32
Finally, o(Up) = -—[(1 +4R ) 1].

EXAMPLE 5. An ellipse in the Euclidean plane.

[ &)

2

IH

+ 51).

Uyp = (

»
Q‘NI‘<

a

x = x/a, y' = y/b,

O'(UG'b) = “ ab dx' dy' = nab.
2 +ondet

The theory of curvature of curves on a surface. Suppose we are given a
surface in the parametric form r=r(u, v). Then[r,, r,] = (g)”2 » m, m is the normal
vector and Iml = 1, I[r,, r,)l = (g)'2.

Consider the curve r = r(u(t), v(r)). We have:
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Fergitry,
r= rmu' 2+rm,u'1'1 +rwu'\'z +rw1;2+r,,1;+rv1';.
Since r, 1 m and r, L m, we obtain:
rm = (rum)u' 24 2(rm,m)u'1" + (r‘,,,m)v'2 = b“u' 24 2b12u'\'w + bzzl; 2,
This is the quadratic form of the velocity vector (u', 1;) in local coordinates u, v,

u=x,v=x2
Let b“ =L, b12=-'M, b22=N. We have:

¢m)di = bydddy = L(du)* + 2M du dv + N(dv)*.
The form (rm ) df? is called the second quadratic form.

Let the curve line u(f), v(r) be taken with respect to the natural parameter ¢ = /.
According to the Frenet formulae, we obtain for the curve line:

r=r() = r@u@, v), r = (%2,

r . .. . .
= —— = kn, where n is the principal normal to the curve line, £ is the curvature of

the curve line.
Since rm = k(nm) = k cos 0, we obtain (0 is the angle between m and n):

kcos O (dD)? = (rm) (@? = L(du)? + 2M du dv + N(@v)?,

where
@l = gydddd = giy{du)* + 2815 du dv + gop(av)’.
Conclusion.

L(du)® + 2M du dv + N(dv)*
g, @) +2g, dudv+ g (@)

kcos9 =

Thus, we have obtained the following:
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THEOREM. The curvature of a curve on a surface in Euclidean 3-space, when
multiplied by the cosine of the angle berween the normal to the surface and the
principal normal of the curve is the same (up to the sign) as the ratio of the second
and first quadratic forms.

COROLLARY 1. Ifthe curve is obtained by sectioning the surface with a plane
normal to the surface, then:

cos® = %1,

b, didd
- _§

—_—— X =U, x2=v1 i=1,2: j=1,2.
gl..dxldxj
Ly

tk
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1.11 The Theory of Surfaces. Gaussian Curvature

In the preceding section we have defined the second quadratic form of the surface as
follows: a surface is given in the parametric form r = r(u, v); we consider a curve
r = (u(f), v()) and the normal projection of its acceleration:

m = (r,,,,m)ﬁ L i(rwm)u't" + (rwm‘)v' 2
[r,r )
where m = -lT’_"—’_v]I is the unit vector of the normal. Then the expression (rm ) is the
u!

quadratic form of the components of the velocity vector (u,v) and is called the
second quadratic form.

For curves given in terms of the natural parameter [ =¢, we have derived the
following formula:

+kcos® = k(nm) = e, x'=u ¥ =v,
where £ is the curvature of the curve, n is the vector of the principal normal to the
curve:

AP = kn, L = b3, M = biy = by, n = by,
For the normal cross-section cos 6 = 1 since * n = m by definition (at a point under

investigation).
Thus, each point of the surface is associated with the pair of quadratic forms:

1) (d)? = g;drdr,
2) 'm ) di* = bydxdd,
the form (dI)® being positive definite.
What are the known algebraic invariants of a pair of quadratic forms?

Consider any pair of quadratic forms, in a plane, of which one is positive
definite. Let the matrices of the quadratic forms look like:

G_(gu 812 andQ-(b“ b12\_7.([' M)
ey 2,) “(by 5, ) "l w
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Next we write the equation det (Q —AG) = 0, which, when written out in detail,
becomes (L- Ag; )V = Agy) — (M =Ag;)* = 0. We call the roots A;, A, of these

equations the eigenvalues of the pair of quadratic forms.
Let us solve the system of linear equations:

L-Mg) B+ (M - g1 €y = 0,
M -Aigo) By + W= By =0, i =1,2,

where E. .. E.. are the unknowns,
wiiT 9L)

If the roots A;, A, are the eigenvalues, then the system of equations has
non-trivial solutions (E;;, E2;) and (€;5, E22), which are the vectors € ; = E;1, E21),

& = (€12, E22)- ) )
The directions of the vectors e ; and €, are called principal directions of the pair
of quadratic forms, that of € ; corresponding to A; and that of € to A,.
Recall that the scalar products of the basis vectors in the plane have the form:
ee; = g {i =1,2,
i=12.

(The Riemannian metric is given by the form g;).

PROPOSITION 1. If the eigenvalues of a pair of quadratic forms are distinct, then
the principal directions are orthogonal.

We have two principal directions e 5, €5:

e, = &6 +Eyey, €3 = Eppe; +Epe,.
By definition, their orthogonality implies that

eies = 11812811 + G2 + EaiB12)812 + E2182a822 = 0.

Proof. Choose a pair of plane vectors d;, d,, such that
= = J1, i=j,
dd; = §; = { J
0, i#j.

This can be done by virtue of positive definiteness of the quadratic form with the
matrix g;; since it can be brought through a linear transformation into the sum of
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squares. The second quadratic form will now be considered in a new basis d;, d,,
where:

€

ay1d; + a;yd,, (a
Gy1d; + axpdy,

€2

- 1 0
For matrices of quadratic forms we have did; = §;0r G = ( 0 1 J'

where G = A o AT in the basis d,, dp, where O is the matrix of the second quadratic

form in the new basis dj, d,.
Since G=A0AT,Q=A0(J oAJ, itfollows that:

0-AG = AO(Q—K-E')OAT

]
=
.

det (Q-AG )= (detA)det (Q —A - E) - (det AT) =

_ 1 0
= (detA)?det(J - A - E), E=[o J

inasmuch as the determinant of the product of matrices is equal to the product of the
determinants of the matrices. .

" It should be noted that (set AT) =det A = (g)2 = (det G)'”? and g # 0, and so
the two equations for the eigenvalues:

(D det (Q—lG) = O,
an det(Q -A-E) =0

are equivalent. The solution of either of these two equations yields the eigenvalues
A, and A, to which there correspond the principal directions ¢, and € 5.

In the basis (d;, d,) the scalar product is Euclidean —it is given byau'nit
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quadratic form , when rotated, can be brought into the diagonal form, and its
eigenvectors ¢, € are orthogonal in the usnal Euclidean sense. Next, we choose €,
eyin such a way thatl eyl =legl=1;thene ; €; = §;;

Thus, our algebraic assertion is proved: it is a somewhat more extended
version of the theorem which states that the quadratic form in the Euclidean plane can

be brought to the diagonal form by rotation.
Now we shall turn again to the first and second quadratic forms on the surface

in a three-dimensional space:
(D )} = gydrdr,
@  byadx'dy.

The ratio of these quadratic forms gives the curvature of the normal

cross-section (up to the sign).

The eigenvalues of this pair of quadratic forms are called the principal
curvatures of the surface at the point under investigation.

The product of the principal curvatures is called the Gaussian curvature of the
surface, and their sum the mean curvature of the surface.

EXAMPLE. Let the surface be given in the form z = f{x y), and at the point (X, o)
that we are studying, we have f,=f, =0, letx=u,y=v, z=1u, v). For the first
and second guadratic forms we obtain (at the point xg, y, under study):

@ g1=L 812=8n1 =0 gn=1 (g = 5,
@M L =by = rum = fo
M = by = rym = fou g
N = byy = r,,m =fyyk0‘y0.
Here the vector m coincides with the unit vector along the z-axis.

So, at the point under consideration, the second quadratic form is represented
by:

byde'dy = f;;dx'dd = 2d%.

The Gaussian curvature coincides in this case with the determinant of the matrix:
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)
f)'x fy}’

the eigenvalues can be obtained from the equation (fx =) (f,, = A) — (f,:y)2 =0

since g.. = &... The tang
g = ;. 1he tangent plane to the suri

(x, y)-plane. The principal directions at this point can be obtained from the solution
of the system of equations:

ace at thic point is narallel to the

S5 Railo poaiie 2 Paiaias ¥

{ (=M € +f58n =0, _
fy B+ =AD&y = 0, fore,
{ (fe=A) &2+ 622 = 0, _
foy B2+ (= A 822 = 0, forez.
In so faras ¢; L €5, we can take the unit vectors of the principal directions as the new

coordinate axes x', y', obtained from the old system through rotation of the
(x, y)-plane. It is only necessary that there hold the condition A, # A,.
Relative to the new coordinates (z, x', y') we have:

z = flx(x', ), y(x', ¥y,

where x=x"cos ¢ +y' sin ¢, y =—x' sin ¢ +y' cos ¢, ¢ is the angle of rotation.
Relativ_e to the new coordinates, the second quadratic form becomes (at the
point under investigation, only):

A (@) + 4, (dy)2

Relative to the coordinates (x', y"), the curvature at our point of a normal cross-
section is given by the formula:

. A, (dx)? + Ay’ |
(@) + (dy)’

The tangent vector e to this normal cross-section of the surface has, at the point in
question, the form (x ', y NY=e, where dx'=x"d:, dy = y *dt. On this account,
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w2 w2
cosza = —#—? sinza = —(—-g}i——z,
(a@x')” + (dy) (d@x")” + (dy")

where a is the angle between the x’-axis and the tangent vector e to the normal

cross-section,
We shall now derive Euler’s formula.

THEOREM 1. The curvature of the normal cross-section is given by the formula:
k = A, cos’a + A, sin’a,

where Ay, A, are the principal curvatures, o is the angle on the surface berween the
tangent vector to the normal cross-section and the principal direction corresponding 0
Ag.

Proof. We have derived Euler's formula in the case where the surface is given in the
form z =f{x, y), and at the point xg, y, under investigation we have f, =f, = 0.
However, since the result itself is independent of the choice of local coordinates, for
any neighbourhood of the point we can always choose coordinates associated with it,
such that the z-axis be normal to the surface at this point and the x- and y--axes be
tangent to the surface and mutually orthogonal (we may even choose them to be the
principal directions). Then the surface in the neighbourhood of this point is given in
the form:

z=fxy), wherefr=f,=0 (x=Xxp y=yp),

and, moreover, f;, = f,, = 0 provided that the axes are the principal directions at this
point.

In this case, A) = fi, A, =f,, at this point.

Since we have already derived Euler's formula relative to such coordinates, we
have completed the proof.

We shall now present the formulae useful in the case of the second guadratic

form.

If the surface is given in the form f{x, y) = z, then for the coefficients of the
second quadratic form we have (here x=u, y =v)

ro, = (1,00, r,=0 L1,
[rwrv] = ("f;." "fy 1),
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rllll = (O, Osfzz)’ rnv = rvu = (01 Orfxy)v rw = (O' O!fyy)r

Ir,r] (-ﬁzl —fyl’ 1) ‘

m= = ;
I[ru,rJI (1 +f:+fy2)lr2
J= S
11 (l+ff+fy2)m 1 (l+f:+fy2)m
N=b fy

22

i (1+fj+f;z)”2 .

From this, we can obtain:

"’if‘dx'dﬁ = - f2 E 17 Gy dx'dx),
(1+f, + y)
xl =X = U, 1’2 = = vy

Recall that for the coefficients g;; we had the formulae

g1 =1+4£ g12=8n =1 gn = 1+f}

and

g =8utn-gh = 1+4+f.

101

As has already been defined above, the Gaussian curvature of the surface is the
product of the principal curvatures (eigenvalues) K = A, A,. The mean curvature is

the sum H = A} +A,.

THEOREM 2. The Gaussian curvawure of a surface is equal 1o the ratio of the

determinants of the matrices of the second and first quadratic forms:

2
K = bubzz"bu

81182~ 812
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In particular, if the surface is given in the form z = fix, y), then there holds the
formula:

= Fedyy _f;

(1+f,f+fy2)2 .

Proof. The eigenvalues A and A, were determined form the equation:

K

det (Q-AG) = 0,

L M \ . .
where 0 = (M N ) is the matrix of the second quadratic form,
| &n 312\ _
G = J v 812 = 8ayo
82 822
It should be noted that:

0-2G _{bll—?"gll by, — gy, \
biy—Agyy by —Agy, )

and

det (@ -AG) = (by; —Agy) (byy —Agy)) - (byy - Agp).

The rmatrivy(T = 0.\ ic nacitive Aafinits and ic therafare nan_deaanarata Wa chall
A dhvw LEAGAWA AAWVS \bul A yvolu'v i WwLALAADW EARiNWE lo’ MiVAWwWiUAWwy BIV/AL Uv&vll\-‘ul\' Y w Yadsddd
denote the matrix inverse to this one by G1.

There holds the equallty:

det (Q -AG) = (det G) det (G'Q -A - E),

where

10 1
E= = -] .
(01) GoG"
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The eigenvalues Ay and A, can be determined from the solution of the equation:
det (G'Q-A-E) = 0,

aslong as g=detG = gy180, — 852 # 0. We remind the reader of the well-known
algebraic fact.

If there exists a matrix A and the equation det (A — A « E) = 0 determines the
eigenvalues, then for the second-order matrices the product of all the eigenvalues of
the matrix is equal to its determinant det A =2, + A,.

Assuming A =G~ lQ, we see that:

detQ

7&.1,7(.2=det(G'loQ)= m—

This implies that the Gaussian curvature is equal 1o the ratio of the determinants
of the matrices of the second and first quadratic forms.

Next, if a surface is given in the form z = f{x, y), then we have the table of
coefficients L, M, N, i written above. Calculating the determinants, we use their

ratio to deduce the formula for the Gaussian curvature.

COROLLARY 1. Ifa surface is given in the form z = f{x, y), then the sign of the
Gaussian curvature X is the same as the sign of the determinant (f fy, - fiy)
because

2

o e hy
z 2 ‘)\2.
(1+f;+jy‘)

K

EXAMPLE. Suppose that we are given a surface in the form z =f{x, y), where the
function fix, y) satisfies the Laplace equation

fix+fy = 0.

Then we have f.f,, - fry < 0 since fr = - f;,- Hence, at all points of the surface,
where at least one of the partial derivatives f., f,y. fx, is non-zero, we shall have
that the Gaussian curvature K < 0.

Conversely: if the curvature X is positive at all points of the surface, then the
surface is referred to as (strictly) convex.
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The use of this terminology is due to representations of visnal geometry.
Suppose z =f{x, y) and at a point (xo, yg) we have f, =f, = 0 (such coordinates can
always be chosen). The graphs of the function z=f{x, y) with poisitive and
negative K are shown in Figures 24 t0 26. In the case where X is positive, there may
be either A; > 0, A, > 0, and then (xg, y,) is the point of the minimum of the function
£, (Figure 24) or inversely, A; <0, A, < 0, and then (xg, yp) is the point of the
maximum of the function f, (Figure 25); in the case where X is negative, we have
A; <0, 2, >0, and the function has a saddle (pass) (Figure 26).

bz

A2

Figure 26. E/D
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1.12 The Theory of Surfaces. Invariants of a Pair of Quadratic
Forms and Euler's Theorem

We shall systematize the facts from the theory of surfaces which have been discussed
above.

I. Mathematical representation of the surface, non-singular
points, equivalence of different ways of representing a surface (local
equivalence).

a) z = fix,y), x=x1=u, y=x2=v,
b) F(x,y,2) = C, grad F = 0,
c)yr=r@wv), r=(y2, [r,n} 0

u=ux, v=xt

II. Riemannian metric on the surface (the first quadratic form)

e nemebaod L n | PN I P P T PN
Byilki atcu vy tnc CHIVCUQIILE llltU SpdLic,

(dIf? = gydddd = (dx)? + (dy)* + (d2)%,

d=u 2=y, x=xwv), y=yuv), z=120uv),
gn =E, gn=F, gy =G,

2) gn = 1+f

c) gll= g i=l,2; j=1,2.

The Riemannian metric g; serves to determine the scalar product of the velocity

vectors of curves on the surface u(?), v(s), & = (i, v) are the lengths and angles; for
example,

Iglz = g 1-12+2g12 12;1 +g22';’2

the length of the curve segment is equal to
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b

III. The area of a region on the surface. The area of a region is
calculated by the formula:

o

o) = || @ duav = [[ &6 - FYau v,
U U

g = gugn -8 = detG, G = (g

For the calculation of the quantity (g)}? for different ways of representation, see
above.

IV. The second quadratic form on tangent vectors (the normal
projection of the acceleration vector of a curve on the surface). Given a
curve u(r), v(d), u =x! sV =xz, the surface

[ru' rv]

() = r@),v(®), m= ALk

where m is the unit vector of the normal
-
L =by, M=Dby,=by, N=b,
Let the surface be given in the form:
x=xt=u 1=2x =y,
z = flu,v).

The table of quantities r,, r,, [, 1}, (&) = Ilr,, .11, g;j» by is given above. From
this, we have:
_ b
T
@®"

i



INVARIANTS OF QUADRATIC FORMS AND EULER'S THEOREM 107

V. The properties of the second quadratic form. a) if a curve is
given in the form u(z), v(z) on the surface or in the form r = r(u(s), v(1)), r = (x, y, 2)
in Euclidean 3-space, then there holds the formula:

by ax'ay b‘.ji":."'.

tkcosB = — =07
gbdxdxj g‘.jxx’

where k is the curvature of the curve, cos © = mn and n is the vector of the principal
normal to the curve.

dr
dr

For normal cross-sections cos 0= 1 (& n=m).

= kn (the definition of k and n).

b) Algebraic invariants of a pair of quadratic forms (the first and the second) at
a given point of the surface are two quadratic forms in a plane with basis vectors

Ty,=€, T, =é
e = Ele +Ee,
the first form g E'E; the second form by EE,

the first quadratic form g; E' EJ being positive.
Let us consider the matrices of the forms:

fr ar )\ fn
_ _ L M QB— _ E r
Q-(b,.,.)-tMNJ, -<g,.,.>_tp GJ.

We shall write the equation det (Q —A®) = 0 and find the roots A, A, of this
equation.
The Gaussian curvamre K = AA, . The mean curvaiure H= A, + A,.
Suppose B! = g¥ is the inverse marrix:

2 1, i=k
u. =8. = ’ ’
,Eg Bie = Ou {O, ik

2 .
We have considered the matrix A = 8! o 0 =(ay), where g = X g° bqk. Then
g=1
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detQ

K= M) =detA = det(B10Q) = =3

H

2 .
?\.14’)/2 = SpA =aptay = E gvbﬁ-

ij=1

In particular, we have

. 2 s 2
LN-M  LN-M

K = .
2
811822~ 612 EG-F

If z = f{x, y) parametrizes the surface, then

fufy =ty
(1 +fxz+f;)2

Therefore, the sign of the Gaussian curvature is the same as the sign of the
determinant.

K =

[ r s\

J= J. 2
det | & J‘)')=ff -f- .

lfyx fyy 7 ?

For example, if ., + f, =0, then X is always either less than or equal to zero.

VI. The geometrical meaning of the Gaussian curvature. Let us
choose, for a given point of the surface, an orthogonal frame (x, y, z), where the
z-axis is normal to the surface. Then locally the surface is written as z = fix, y,
where f, = f, = 0 at this point.

At our point we get:
1, i=]j,
g‘.. - 8‘.. -
! ! {0, P#].

since g1 =S5 + L, g12 =ffy 822 =15+ 1. Next, L =byy =for, M = b3 =5
N = b22 =fyy'

We shall consider the three cases depicted in Figure 27:
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minimum

Figure 27.

1) K>0,4; >0, 2, >0 (the function f(x, y) is minimal when x = xg, y = y;);
2) K>0, 1 <0, 2, <0 (the function f{x, y) is maximal when x = x5, y = y,);
3) K <0, and therefore A, >0, A, < 0 or vice versa (this is a saddle or a
“path”)_

Conclusion. When K is locally positive, the surface lies on one side of the tangent
plane in a neighbourhood of the point under study. When X is negative, the surface
necessarily intersects the tangent plane.

If the Gaussian curvature is everywhere positive, then we may say that the
surface is strictly positive, as, for instance, an ellipsoid.

Thus the property that the Gaussian curvature is positive in a neighbourhood of
a given point is sufficient for the curvature to be locally convex. It should be recalled

that a closed surface in a three-dimensional space is called globally convex if it .

bounds a convex region in R?, i.e. a region which contains, along with any two of its
points, the whole of the straight line segment joining these points. As a visual
geometrical exercise, we suggest that the reader prove the following : any region
with a locally convex boundary is globally convex.

-EXERCISE. Show that for the ellipsoid, and for the two-sheeted hyperboloid, X is
positive and for the one-sheeted hyperboloid, X is negative.
For the cylinder, K is zero (whatever the base line of the cylinder). X is also
zero for the cone.
An important class of surfaces of negative Gaussian curvature is that
parametrized by z = f{x, y), where f; +f,y = 0. Such functions f are called

harmonic (e.g. the reader can verify that f{x, y) =1In 2+ yz)m, fxtfyy=0.
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TTWVARADT D Crvamemmma 22 = ae & Jus  awp -
ANV LI, DUPPUD W=ATILy, Wil

c 1d fix,
of the polynomial P(w) = ggw” + ... + a,_\w + a,; the reade

Jxxtfyy= 0

Interesting geometric relations arise on the surface of negative curvature.
Suppose the Gaussian curvature X is strictly negative. Then in the neighbourhood of
each point on the surface we can introduce local regular coordinates p and g, such
that relative to them, the second quadratic form L dp? + 2M dp dg + N dq2 assumes
the form: 2M dp dg . ¥f in addition the Gaussian curvature is constant,e.g. K =-1,

— o e PR o~ PRSP o Jh PR

mcn l( turns oui [ﬂal wE md.y assume [ﬂC LUCIIILIC“[§ UL u1c Llr&[ qua.u.rduu lUrIIJ
E + dp*+ 2F dpdg + G dg* 1o satisfy the relations 9E/dq = 3G/9p = 0. ie.
E =E(p), G =G(gq). We shall now introduce on the surface new local

p q
coordinates u and v, putting u =IJE(;:) dp J',/G(q) dg. Then relative to these
Py 9
new coordinates, the first and second quadratic forms become du? + 2F (u, v) du dv
+ dv? and 2M(u, v) du dv. Consider on the surface the coordinate lines u = const.
and v =const. These are usually called asymprotic lines. Consider on the surface the
function w(u, v) defined as F =cos w. In other words, @ is the angle between
asymptotic lines at a given point. When K = - 1, the function ® satisfies the
following differential equation ®,, = sin ® (the reader may prove it himself),

occasionally referred to as “sine-Gordon” equation.

It should be emphasized that our definition of asymptotic lines has sense only
for surfaces of strictly negative Gaussian curvature. When X is positive, these lines
do not exist.

VIL. Invariants of a pair of quadratic forms, principal directions
and principal curvatures (eigenvalues). Eulér's formulae. Suppose that
we are given a pair of quadratic forms on the plane (n = 2) with basis vectors e; (for

a surface e, = r,) and e, (for a surface e, = r,), the vector e = Ele; + E2e,. The first
quadratic form:

g &Y = lef = ee > 0,
the second quadratic form:
biE'¥, by = L, by=by=M by=N

The matrices have the form:
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L M 811 812
0= . G = .
M N 81 8p
Let us write the linear equations:

1 2
(L - :A'gii) g + (M -:A'glz) g Dv

(M—lgl?) gl +WV "lgzz) &2 = 0.

111

The solution of these equations exists only for A = A, or A =2}, where A,, A, are the

roots of the equation det (Q - AG) =0.

Let A, # A,. Recall that A; and A, are the eigenvalues (principal curvatures).

Substitute A =, and A = 4, into the linear equations and find two non-zero

solutions of these equations:

A =L vectore,

€L &,

A = A, vectore,

We have:

m.nd.

a) L-Mg1) &'+ M -Mg )8 =0,

(M= Mgp) B + (N -Ag,) B2 = 0;
b) (L-Rpgi)n' + (Mg )W = 0,
(M =221 0 + (N =Dpg,) M° = 0.

Normalize the vectors €, = (!, E2) and €, = M}, n%); let

ey = Lgub'8 =1, 16,2 = Lggn'n/ = 1.

An important property of the vectors €, €, is that they are orthogonal provided that

A’l = ;"lv ie.

-= ¥ i _ n
€€y = ngé'ﬂ’ = U



e = fle-l+f2e-2 = xlel +1232.
Here (x!, x2)and (x!, x%) denote the components of the vector relative to the bases
(€4, €5) and (e, ey), respectively.

In the new basis e, €5, the first and second quadratic forms are:

(the first quadratic form), g ; = §;;,
2) bux‘xj = b-‘:" E'EJ = ll(x-l)z.'.kz(x'2)2,
(the second quadratic form) €15 = Ay, €22 = Ay, b33 = 0.

The directions of the vectors e, € 5 are called eigenvectors or principal
directions.

It was essential that A, = A,.

The Euler formula (algebraic): the ratio of two quadratic forms is equal to (for
the vector e = x g+ X%5)

(=]
&L,
)

i = A, cos? o+A, sin ¢,

gl
=
Ry

g

where ¢ is the angle between the vector e = X ¢+ X%, and the cigenvector e, where
Ay, A, are the eigenvalues. Note that

(ee)) -
cosp = —Le (B, = 1.
lel” - &, |
By definition:
-2
(ee,) _
sinf = —2— (&, = 1,
lel” - kI

(since €; L €,), and for any vector e by definition:
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el = g i X Xty

e = T +ite,
& ; is the Riemannian metric on the plane).

In application to geometry, we have the first quadratic form g and the second
quadratic form (by) at a given point on the surface (on tangent vectors).

We know that the ratio of these two quadratic forms:

bai't! b dddd
y - v

gix gyl

is equal (up to the sign) to the curvature of the normal cross-section with the tangent
vector (u, v)=e =xle1 +x2e2, where ! = u,Jr2 =v,dxl = x 1 dt, d* =x2dr.

Conclusion The curvature of the normal cross-section is equal to &, cos? ¢ +
ky sin® ¢, where k; = A, k = A, and ¢ is the angle between the tangent vector of
the normal cross-section and the principal direction € at a given point on the surface

(Euler's formula).
The proof has been given above. It is very simply deduced on the tangent
plane in the basis e, e, in which the matrices of the quadratic forms are diagonal:

5. and (B.) MO
= % 20y = 0 a,)

LG +7\7(>
Y + Y

since

[Iel] l2[le| "'1°°52¢+7~25i"2¢-

2 [ .
Recall thatley) = Ey) = 1, €, L&y, € = X' el+x g, 2 xle; +x7%,).
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1.13 The Language of Complex Numbers in Geometry. Conformal
Transformations. Isothermal Coordinates.

The majority of problems in geometry are most conveniently formulated in terms of
the language of complex numbers. We, therefore, present here the simple facts
which we shall need for our further purpose.

Suppose we are given an n-dimensional linear space over the field of complex
numbers and that this space has the basis ¢y, e,, ..., e,, where any vector has the
form & =E%e,, &* =x™+iy* being complex coordinates. From the point of view
of real numbcrs this is a 2n-dimensional space over the field of real numbers with

the basis {e ' 1€ ;}. In this 2n-dimensional space, the scalar product in the complex
language is given as (the real scalar square of the vector is Euclidean):

&w =L @8 = ot M
and possesses the following properties:

(AL, = AL

E&An) = ME M,

/B m\ — /m BN
AC-LILS VA N TRV

omn
N
e’

Any scalar product possessing the properties (2) is called Hermitian.
Complex linear transformations A that preserve the scalar product (1),

(AE, Am) = (€, ),

are called unirary.
From the point of view of reals, the umta.ry transformation is simpl
orthogonal iransformation of a 2n-dimensional real space, which is, at the same time,

a complex linear ransformation,
U,.l = 02,, NGL (n, ©).

We use the following notation: GL (n, €), SL (n, C) is a group of complex linear
transformations and its sub-group with the determinant equal to 1 (the determinant is
complex). Next, U,, SU, is a group of unitary transformations and its sub-group

with determinant 1.
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SIMPLE EXAMPLES. In a one-dimensional space, the group GL (1, C) consists of
multiplications by a complex number a, and the sub-group U is multiplication by
numbers a =€, In the two-dimensional case n = 2, the group U, consists of the

matrices:

(22)

in which lai + 1612 = 1, IcP? + Idi? = 1 and there holds the orthogonality condition for
the rows: ac + bd = 0. Its sub-group SU, is specified by the condition ad—-bc = 1.

Thus, the group SU, is described by matrices of the form:

(5 3)

where IaP + 1b/> = 1. The reader may check this, as well as the fact that the group of
motions of a real plane along the dilatations has, in the complex notation, the form of
affine transformation of a complex one-dimensional space:

z=—az+b

(the sub-group of motions without dilatations is specified by the condition lal=1 or a

= eia). The element of length in a complex Euclidean space (zl, ., 2") is written in
the form:

2= 3 dOF = 3 d*d7°,

a=1 a=1

dl

where dz* = dx™ + idy™, dz * = dx™ — idy™. Here z* =x>+ iy*, and the set (x!, y!,
-, X", ¥") represents real Euclidean coordinates in this space (considered here as a
2n-dimensional real space). The length of any curve xX*(f), y*(1) (or z* = z(r)) is
written in the form:

b b
n . le Il. . 1,2
1=J'(zlz°‘|"’) dt=J.(Ez"Ea) dr.
z o=1 2 oa=1

It appears convenient, if we pass over, purely formally, from the real vaniables
(x™, y) to the complex variables:
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oL - R
A TIY ,

z

I
v

]
<

> = 120 +2%), y* = 1/2i(" -z%). 3

Let us introduce differential operators:

3 _ (2 _; 8 9 _1p(2-4; 2

Py llz(ax“ —zaya), a—E—a-l/Z(axu +laya) 4
Note that there hold the identites

d _ J -

5;—(,(20') = 0, F(za) = 0,

9% =1 o =1 5
AR ©

The following assertion can be verified, immediately.

LEMMA 1 The differential of an arbitrary complex-valued function fct, y*, ...
., X'y") has the form:

df = i{-dzl o+ gy a—{dEl 4.+ E—dE".
0z oz" 9z oz
We can verify this by calculaton.

We now turn to considering an arbitrary polynomial of a certain degree with
complex coefficients P(x}, y!, ... , X", ") of the variables (x!,y!, ..., x" .

After the change of variables (3) we obtain from the polynomial P Y, .,
x", ¥"), the polynomial:

oz, ... 2 7 =Pel Y, L Y.
The following assertion holds.

THEOREM 1. After the change of variables (3), any polynomial

Py, . XY™,
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depends on the variables 2%, ..., 2* only and does not depend on 71,22, ..., Z"if
and only if there hold the identities:

oP/z* =0, a=1,..,n

(these are referred to as Cauchy-Riemann conditions or the complex analyticity
conditions).

Proof. The operators 9/0z* and 9/dz * possess the following property (Leibniz
formula):

] 0 )
fg+fag (fg)=—fg+fi-

9% 3% 3 ot T o

0 -
e )

Next, by virtue of the identities (5), 3/8z* (z2*) = 0. From this we obtain, using the
Leibniz formula, that:

a/a;u (za)k = 0, a/az'u(;u)k = k(z'u)k-l_
LEMMA 2. If the polynomial Q(z\,z !, ..., z", ™ has at least one non-zero
coefficient, then the polynomial P(x,y), which corresponds to it after the change of

variables (3), is non-zero.

Lemma 2 follows from the fact that the change of variables (3) has a non-zero
determinant seeing that z , z are independent.

Conclusion of pfoof of Theorem 1. Let now the polynomial P depend on z* and let
the variable z* enter in it in the (maximal) power 2.
We shall show that 9P/9z* # 0. The polynomia! P has the form:

P = AgE™)" + A, +.. + A,

where Ag, Ay, ... , A, are polynomials of all variables 2z, ..., 2" and all z/ except
z*. Obviously, on the basis of the Leibniz formula, we have:

Az *P = AgnEH" !+ A (1= 1) @2+ + A1,
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since dA/0z™ = 0 (A; does not depend on z%). So long as Ay # 0, we have
9P/3z" # 0, which concludes the proof.

REMARK. The theorem is applicable not only to polynomials, but also to
convergent power series: independence of variables z* is equivalent to the conditinons
ofz*= 0. Such complex-valued functions fix}, ¥, ..., X ¥") for which there
hold the identities affz* =0, a = 1, ..., n, are therefore referred to as complex
analytic functions.

For functions of two real (one complex) variables, f{x, y) = fz, z), where.
z = x+ iy, z =x Iy, the analyticity condition is:

g _oF .o _
-a?—x'l-lg—-o,

or, if fix; ¥) = u(x, y) + iv(x, y), then:

U _ov du ov

é;-éy—"d;-s—é?' 6

Equations (6) are called Cauchy-Riemann equations. From (6) it obviously follows
that:

aZ aZ aZ aZ
(_2+_2)u = 0, (—2+—2)V = 0.
ox~ dy ox oy

2 2 2
The operator C 5+ 9 5 = = is called the Laplace operator.
ox” dy dz0z

DEFINITION 1. The map z — w(z) of a complex plane is called conformal if there
holds the complex analyticity or analyticity condition:

owfoz = 0 orowfdz = 0.

The simplest examples are:

1) affine transformations

z—oaz+ b = w(2);
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2) linear fractional transformations:

az+b

cz+d = w2

3) transformation given by a rational function:

n
az +..+a
: o O — + wl2);
by +..+b_

0
4) wansformations given by the exponent, trigonometrical functions, etc.:
wiz) = €, w=sinz, w=shz...

The differential of the function f(x, y) =fiz, z) satisfies the equality:

_d g . _ & d -
df = -ade+?y-dy = §z—dz+3§dz,

where

£, y) = ulx,y) + iv(x, y).

For the complex analytic function fix, y) = f{z), this formula assumes the form
df = of/dz dz since dffoz = 0.

The differential of the complex-valued function f(xl, yl, y2 xz) = f(zl, zz,
21, 2%) of two complex variables is equal to

df Eidz“+zid5a.

a aza [+ a;a

Provided that there holds the condition 3/0z %2 =0, & = 1, 2, we have:

2 ¥
df 3 Z_dz% wheref = u+iv.
o=10z%

A two-dimensional surface can be given by the equation (one complex equation):
fiel,2%) = 0

(these are two real equations u =0 and v = 0, where f = u + iv).
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We can obviously introduce a complex gradient for complex analytic functions,
Ci
V cf = (_a;l- s —2— )-
dz oz

We shall later make use of a complex analogue of the implicit function theorem. This
complex analogue of the implicit function theorem is as follows:

foffoz*=0, a=1,2,and Vf2 0 (let 3fAdz’ = 0)

at a given point (z}, z3) of the surface f = 0, then in a sufficiently small

neighbourhood of this point the equation fiz!,z22)=0hasa unique solution which is,
at the same time, complex analytic:

2t = (2%, o@D, %) = 0,

where 2§ = ¢(23), 39/0z, = 0. Such points are called “non-singular”.

Let f(zl, 22) be the polynomial P(zl, z2). Then the totality of the solutions of
the equation P(z!, 2%) = 0 of the form z! = ¢(22) is called a multiple-valued algebraic
function, and the surface P(zl, 22) =( is called the graph or the Riemann surface of
this multiple-valued algebraic function.

If P, %) = (1) - P,(z%), where Pn(zi) is a polynomial of degree n, we
obtain:

q
zl = 1/Pn(zz), z1 = w, 22 = z.

Let us consider a complex gradient:

V.P(w,2) = (g% ; %) = \qwq_l, aa};"

).

What are the zeros of this gradient? To answer this question for the case ¢ 2 2, it is
necessary and sufficient to solve the equation

w=0, dPfoz = 0.

q [ '
The zeros of the gradient get onto the surface w = f P (z ) provided that
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the equations w = 0 and 8P,,/dz = 0 have a common solution with the equation P,(z) ~
w? =0. Obviously, this is possible if and only if the polynomial P,(z) has at least
one multiple root. This completes the proof of the therocm which follows.

THEOREM 2. The set of all l solutions of the equation 0 =w? - P,(2), g2
CONSISIS of it ingular points f nly if the polynomial P,(z) has no multip i
roots.

The complex implicit function theorem allows us now to introduce in a
neighbourhood of the non-singular point (wy, z,) on the surface P(w, z) = 0 the local

coordinate a) z in the case ap/awl(zo_wo, # 0. Then in the neighbourhood of this
point, we have:

w = w@), Pw2),z) =0, dawd z = (;

or else, we may introduce the local coordinate b) w in the case aP_/E)z!(,G,.,.,.G) # 0.
Then we have

z = z2(w), Pw,zw)) = 0, dz/ow = 0
In the space (z, w) we are given the Hermitian metric:
di* = a2 + ldwi® = dz d7 +dw dw. @)

The surface P(z, w) = 0 (where VP # 0 in a neighbourhood of the non-singular -
point) is given parametrically in the form:

z=2(0, w=w(), t = +iv),

where ¢ is the complex parameter and 92/ =0, dw/of = 0. On the surface we
obtain:

di = dzdz +dwdw = (Idzl +Idwlz) dt dr.
In case a) we have 1 =z, and therefore

drdf +dwdw = dP = (1 +!%“-!
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on the surface given by the equation

w = w(z), dwfdz = (.

Returning again to the real coordinates x, y, where z = x + iy, we obtain, from
formula (7), in the region of local coordinates the following formula for the square of

the length:
d? = f(x,y) (dx dy?). ®)
Now let us go back to surfaces in R

DEFINITION 2. Local coordinates x, y in a neighbourhood of a certain point on the
surface are called conformal if the Riemannian metric of the surface induced by
embedding the surface into [R° has, in these coordinates, the form analagous to (8):

812 =81 =0,
g1 = 81 = P& ¥

di? = £x, y) (dx+ dy?). ¢)]

The form of the metric (9) is called conformal Euciidean and the coordinates are
called isothermal. Consider other conformal coordinates u, v, in the neighbourhood
of the same point (Figure 28). Letr=u+ iv.
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THEOREM 3. The transformation from one set of conformal coordinates 1o another
set of conformal coordinates is called conformal transformation x = x(u, v). This
means that either 92/0t = 0 or 9z/0t =0, where z = z(t, 1).

Proof. Let us write the formula for the transformation of the metric g;; under the
change of coordinates, where g, denotes the new metric in the coordinates u, v. Let
xl =x,xz=y, ul =u,u2 =1y, Then:

ASsuming z=x+ iy, t=u+iv, z=2(t, t) and taking into account the condition 812

=£21=0, g1; = g5 =/ and also the condition gy = g5, =0, g'; = g4, = ()2,
we obtain that dz dz is transformed into the metric:

% 9z ,.2 0z oz oz 0z
at at(d) +_I _dd+-5— —a—-dtdt+

Bz 0z T A -
_(d) (|$|+|§§-|)drdt+

a_
+ 92— Qi (df) (-r 3 (dt)z) .
dr @ t ot

This exactly implies that either 9z/0t =0 or 9z/dt = 0, as required.
Suppose that a two-dimensional surface McRis given parametrically, that
is, x=x(p, q), y =y, q), z = z(p, q), where (p, g) vary in a certain domain D
(Figure 29).
On the surface M? we consider the Riemannian metric ds® = E dp? + 2F dp dq
+G dq2 induced by the embedding M? = R® This means that E = (rps rp); F=

rq); G= (rgs rq), where r is the radius vector of the surface M2. Since ds® (Mz)

=ds* (R3] \pand ds? (B) = dx® + dy? + d7? is a positive definite form, it follows

that dsz(Mz) is also a positive definite quadratic form, that is, g = EG — F2>0,and
we can consider the real-valued function (g)}? = (EG — F°)}2. Suppose that Py is a
non-singular point on the surface.
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Figure 29.

If we change to the new coordinates & and v on Mz, then the form ds® will
undergo the corresponding transformation, and it is, therefore, quite natural to ask
the following: what is the most simple form to which we can reduce the form
ds* (MY by choosing different local systems of coordinates on the surface? The
theorem which follows answers this question.

THEOREM 4. (without proof). Let McRbea swurface given in certain parameters

(local regular coordinates) p and q. Suppose that the metric ds* = E dp® + 2F dp dg
+ G dg? is smooth, that is, the coefficients of the form E(p, q); F(p, q); G(p, q) are
C? smooth functions of p and q. Then in a certain neighbourhood U of the point P
€ M? we can introduce new isothermal coordinates u and v, such that the metric is
ds? in these coordinates assumes the Sollowing conformal Euclidean form:

= fu, v) [du? + dv?).

The existence of these coordinates is reduced to the solution of the so-called
- e T ing o d AW Ww WA A Wb Wi A Wwenkidwwelk P BMEIW WWAMMWIL Wi WMEW WY WHELAW W

Beltrami’s equations in the following way.
Let us expand the quadratic forms ds? into factors:

= (& + ——1“”— dg) - ((BY"dp + —-&- dg).
& &

We seek the new coordinates u and v as functions of p, ¢: u = u(p, q), v=v(p, q).
We wish to represent ds? in the form (du + idv) (du— idv) =du® + dv®. This can
be achieved if we succeed in choosing the integration factor, that is, such
a complex-valued function A =2A(p, q) that there hold two identities:
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A- (BYdp+ £ '(g) d7) = du+idv,

&
_ R
)'(I‘E'\lndy-g-F-l(g) rh\;__;_—rd'u
&~y 1n =t/
(E)

It should be noted that the second of these identities is obtained from the first one by
means of complex conjugation. Indeed, if such a function A(p, ¢) is found, then
multplying the two identities we arrive at:

A2 ds? = duit+dv® ds% = W2dE +dvd)

and may set flu, v) = fu(p, q), v(p, q)) = IAP2. Thus, the unknown functions are
u(p, 9); v(p, @), Mp, q). These functions must satisfy the equation:

L F +i@)"?

A (5" —dg) = du+idy =
(E)
whence
A = i F+i(g)? _w ¥
¥y ¥ .TE)W_—E ‘g

Elimination of A gives:

(F+i @) (5“—) E( )

or
ou 1nov mau av oo
F—_(g) — = F e (g) Foe = F e

From this we have:
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ou ou du ov
»_"37% a_S%Fy
P @7 A @R

2
Since -é-ﬁq— = -37%; , we obtain the following equatioas: L(u) = 0, L(v) = 0, where

the differential operator L has the form:

d d d d
—_—F Foeeu(G —
re2 |3t Ll A%

¥ @ || oA

The equation L(f) = 0 is called Beltrami's equation, and the operator L,
Beltrami’s operator. Thus, we have found that the unknown functions 1 and v must
satisfy Beltrami's equation. It is a well-known fact of the theory of differential
equations that if the functions E, F, G are smooth, then the equation L{f) = O always
has a solution. Since, in our case, the functions E, F, G are smooth by the
assumption, all the unknown functions u(p, g), v{p, q), A, g) are determined.

Note that the coordinates u, v serve, generally speaking, only for a certain
neigbourhood of the point Py,
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1.14 The Concept of a Manifold and the Simplest Examples

In cartography, there exist several ways of drawing maps of the earth's surface. All
of them are necessarily reduced to one procedure, namely, to projecting the convex
spherical surface of the globe onto a plane. It is more or less obvious that to make a
one-to-one and continuous projection of the whole sphere into a certain region of a
plane is impossible. Moreover, in attempting to project onto a flat map large enough
pieces of the earth's surface, we inevitably introduce distortions. Therefore,
cartographers resort to various contrivances to the effect that the sphere is cut into
several sufficiently small pieces, each of which is projected separately into part of a
plane. The original sphere is reconstructed from them by the reverse operation of
glueing together according to the rules usually indicated on a flat map. Thus, a rather
complicated object (sphere) is obtained from several simpler objects by glueing them
together along their common part. Precisely this idea is an underlying one in the
construction of a wide class of geometrical objects which are called manifolds.

The most clear formulation of the concept of a manifold is due to K.F. Gauss
who porposed his definition in mathematical terms in connection with his studies in
the field of geodesy and cartography of the earth's surface. In the practical mapping
of sufficiently large regions of the earth's surface, these regions are sub-divided into
smaller, partially overlapping, ones, each of which is assigned to a certain group of
cartographers. They draw a map of each separate region endowed with reference
points (landmarks, etc.) (Figure 30).

Figure 30.

In forming the total atlas, these maps are sewn or glued together. Those parts which

were overlapping are reflected in several local maps. Adjusting individua! local maps

is realized by comparison and imposition of their common reference points.’ This

procedure underlies the very important mathematical concept of a manifold. The

simplest examples of manifolds are surfaces of certain dimension in Euclidean space.
If a surface in Euclidean 3-space is given by the equation:
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fGL e X =0, fx ) =0, (1)

then in a neighbourhood of any non-singular point xj, ... , x5, such that the rank of
the matrix (df /ax) is exactly equal to n—k, we can introduce Jocal coordinates.

Indeed, suppose the minor which is not equal to zero is (df/0x™), where a = ij, ...,
I, then in the neighbourhood of the point x&, «. » X on the surface we choose, as

.. . s Jj .
local coordinates, the missing variables x*=z!, ..., x ¥ = z* and solve equations (1)

in the neighbourhood of this point by the implicit function theorem:

L L S Y @)

We obtain the parametric representation of the surface relative to the variables
2!, 2, ..., 2 in a neighbourhood of the point of interest. In a neighbourhood of
each non-singular point of the surface we can, generally speaking, set special local
coordinates. To calculate the length of any curve on the surface we can, in a domain
near each non-singular point, use the local coordinates associated with the
neighbourhood of this point; the length of any curve can be calculated by pieces
positioned in each coordinate region. In general, by definition the length of a curve
(and of any vector) does not depend on the choice of coordinates.

On this ground, we can give the general definition of a differentiable manifold.

DEFINITION 1. A differentiable (smooth) manifoldis an arbitrary set M of l;oints
endowed with the following structure called the “atlas”: the set M is covered witha

collection of its sub-sets U o called “local charts” (rather than “maps™), i.e. M =) Uq.

q
There exists a one-to-one correspondence ¢, between each set U, and a certain
open region V, of Euclidean space R" with coordinates yl, ..., y" This

correspondence introduces into the set U, a family of functions called local
coordinates:

(P) = YO, P)).

One and the same point of the set M may belong to different local charts:
Pe U,M U, In the intersection of local charts U, \J U, there are already two
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systems of local coordinates x," and xz". It is required that each of such systems of
local coordinates in all such intersections U, NU o be smoothly expressed in terms
of the other and, inversely, and that:

(¢
det (—2) = 0.

ax?
q

The general smoothness class of these coordinate changes x",;(x}], ey x';) for all
intersecting pairs of regions Uy, U, is called the smoothness class of the manifold M,
which, later on, we always assume equal to infinity.

This completes the definition of a smooth manifold endowed with an atlas of
local charts.

ax

In the following we shall specify in which case distinct atlases are equivalent,
i.e. define identical manifolds.

We shall give the simplest examples of manifolds.

1. A Euclidean space or any region of it.

2. A surface in a space fy(x}, ... , X =0, ..., fo (0}, ..., X*) = 0, where
all points are non-singular; for example, a hypersurface fx!, ... , x™ = 0, where
igrad 1 0 on the surface.

3. Group manifolds (Lie groups):

a) a group of matrices with non-zero determinant over the field R of real
numbers or over the field C of complex numbers, i.e. a region in space of dimension
n? for R or (2n)2 for C, denoted by GL (n, R) (or GL (n, ©));

b) a group of matrices with determinant 1, which is given by one equation
(hypersurface) in the space-of all matrices:

det @y =1

It is denoted by SL (n, R) (or SL (n, ©));
c) a group of orthogona! matrices O, given by the system of equations:

AAT=E;

d) a group of unitary matrices U, given in the group GL (n, C) by the system of
equations:

AAT = E,

where the bar implies complex conjugation of all the coefficients of the matrix.
(We have not listed all of the well-known even matrix Lie groups.)
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4, Projective spaces (rea! and complex): we are given a vector y =2, ..., M)
# 0, the vectors y and oty for o = 0 being assumed to define one and the same point of
the projective space denoted by RP" (or €©P").

Let us consider the region U, = (y? # 0); in this region U, we introduce local
coordinates:

xh = 3, o Ay = A,

“’+1 - Y l\ -_—
o= A, LS = R

artm
. J i) .

EXERCISE. Find the changes of local coordinates in the intersection of regions -

U, M U, for a projectve space of dimension n =1, 2. What is meant by the real and
complex projective straight lines?

The simplest example of a complex projective space is the Riemannian sphere,
i.e. a “projective straight line” which is a z-plane with an extra infinitely remote point.
The reader is no doubt familiar with the real projective plane [RP? from the course in
analytical geometry. It turns out that the three-dimensional real projective space RP®
coincides with the matrix group SO; (orthogonal matrices with determinant + 1).

In what follows, the reader will find a number of other examples of manifolds.
It should be noted that the general concept of a manifold that we have introduced is
too wide from the logical point of view, and we shall restrict it. It is required from
the very beginning that a manifold, by definition, be situated as a smooth non-
singular surface in a Euclidean space of a certain (perhaps, large) dimension.

Let us introduce an important concept of a smooth sub-manifold in Euclidean
space. Suppose that we are given an arbitrary covering of the Euclidean space [R" by
open domains Wq. A smooth sub-manifold N*, in R", of dimension k is given by a
system of local equations in the domains W,

™ 6% Y = 0, f7750N ) = 0,

where the functions f’,; of class C™ are defined only in the domain W. Itis required
that the rank of each matrix (af’;{/ay") be equal to n —k at all points of the
sub-manifold N*.

It is also required that the systems of local equations f; = 0 and f, = 0 be
equivalent in the intersections W, M W,

We shall investigate, in detail, two-dimensional surfaces in three-dimensional
Euclidean space.
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We shall now construct an atlas of local charts U o O the sub-manifold Nt
where the indices g will be in a natural one-to-one correspondence with points of the
sub-manifold N*, i.e.q=Q € NE,

Let O € N*. By the definition of a sub-manifold there exists a set of numbers
[ys e 5 ipp, Such that:

daf;
det(-%}l;—) = 0.

According to the implicit function theorem, in a certain neighbourhood of the point ,
equations (*) can be solved in the form:

¢4 Y2 = 0P O, s ¥,

where 1 £p < n -k, and the numbers jj, ... , j, make up a complementary set to
[y e s Dpge

Let us fix in the space R* a certain sufficiently small region where the
expression (**) holds. We denote this region by V5. The coordinates yjl, . yj"
in this region will be denoted by xé, -y x’é. By U, we denote the set of points on
the sub-manifold N* corresponding to points of the region V by virtue of (**).

THEOREM. The set N, along with the atlas of local charts Ug in which local
coordinates x"é are introduced as shown above, is a smooth manifold.

Proof. By definition, the totality ot the regions Uy yields the covering of the set NF
by virtue of the non-degeneracy of equations (*). Suppose P and Q are two points
of the sub-manifold N¥, such that the regions Up and Up have a non-empty
intersection. According to the implicit function theorem, the mapping (**) is
infinitely differentiable. Therefore, the expression of local coordinates x% in terms of
the set xIQ, ey x"Q is infinitely differentiable by the definition of these coordinates,
and inversely. This implies that:

oxZ
(**)  det ( Q);eo

ax
Indea if for any pair of indices P and O the Tnnn"\nnn (***\ were eqnal to zero, then
‘lluvw’ ALk AWrA ml} r‘“‘ Wi AMiNdiWwenT & =131 g lllllllll ‘1_“ Pl Sl U’ RAVWEL
the Jacobian of the inverse mapping would not exist, as rcquu-ed
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REMARK. A particular case of the argument for n = 3, k = 2 has, in fact, been
considered in the proof of equivalence of the concept of non-singular points for
different ways of defining the surface (see Section 1.7).

Hereafter, we restrict our consideration only to such differentiable manifolds
which are equivalent to smooth sub-manifolds in Euclidean space, although we shall
not prove this equivalence for particular cases.

The differentiable manifolds equivalent to sub-manifolds of Euclidean space are
called Hausdorff. Any two non-coincident points x and x' of such a manifold can be
“separated” from one another, that is, their open neighbourhoods U(x) and U(x’) can
be so constructed that they do not intersect.

We now discuss the concept of equivalence of manifolds: we have not yet said
when two manifolds are thought of as identical.

Suppose two manifolds are given:

M=UU,6N=UV
P q9 4
(coordinates x; and yg).
DEFINITION 2. An arbitrary transformation

fM—>SN

is called smooth of smoothness class k if all the functions yg(xl y ey x';,) for all pairs
(g, p), when defined, are smooth functions of smoothness class k in the regions
where they are defined.

By definition, the smoothness class of a transformation (or of a mapping) is
assumed to be not higher than the smoothness class of any of the manifolds M, N.
In the case N is a real straight line N = R or a complex straight line ¥ = Cpthe
mapping fi M — Rorf: M — C is naturally called the numerical function f{x), where
x is a point of the manifold M.

The situation is possible when a smooth map (or a numerical function) is
defined not on the entire manifold M, but only on a part of it.

Such a situation can be illustrated on an example of the local coordinates x7,
themselves which are numerical functions for any o« and are defined only in the
region U, already by their meaning.
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DEFINITION 3. Two manifolds M and N are called smoothly equivalent if there
exists a one-to-one and smooth onto map of some smoothness class:

fFMSN FLNS M

In particular, the Jacobian of the local coordinates J,, = det (ayg_/a;;) is non-zero

wherever these functionsyf;(x1 y eee s x’;,) are defined.

Later, we shall everywhere assume that the smoothness class of the manifolds
and mappings between them is precisely the one that we need for our particular
pupose (always not less than 1, and if we need second derivatives then it is not less
than two, etc.).

Suppose on a manifold M we are given a curve x = x(1), a<T<b, where x is
a poit on the manifold. Whenever the curve is coordinatized by the local system of

coordinates (x7) of the region U, it can be represented in the form:

In regions U, U,, where two coordinate systems apply, we have two
representations:

£yt and xY(©),

where X5(xy(T), ... , Xy () = X(T).

For the velocity we obtain:
: oxy .
o - —P_ xT

» ST
q
As for Euclidean space, this formula provides the basis for the following definition.

DEFINITION 4. A rangent vector to a manifold M at an arbitrary point x is a vector
represented in terms of a system of local coordinates (x}) by a set of numbers (E%);

the representations of one and the same vector in terms of distinct local coordinates
containing this point are related by the formula:
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ax

% = ax’ixﬁl

“he tangent vectors form an n-dimensional linear space. In particular, the velocity
ector of any smooth curve is a tangent vector.

YEFINITION 5. A Riemannian (pseudo-Riemannian) metric on a manifold M is a
ositive definite (indefinite) quadratic form given on tangent vectors at each point of
1e manifold and smoothly depending on all the local coordinates, pointed out in the

PRI Py o= ol - T o JEpRPEL P § S R | L S ol o

cnmuon, lll u1c ICglUll WII.CIC u1cy d.ppl.y 1 CdCﬂ LCRIVIL UP LOOIUI[IGUZEU Uy Uuic

xcal coordinates (xp, - » X'p) the metric is given by the matrix:

8up(p, ., Xp) and ER = g o E%EP
or any vector & at the point x.

A Riemannian (pseudo-Riemannian) metric determines a symmetric scalar
roduct of two vectors at one and the same point by the usual formula:

En = gop ESM) = ME.

fere En = (€, 7). In the mathematical literature both the notations are used. In this
otation, the modulus squared, IE?, does not depend on the choice of the system of
oordinates:

g EED = &I EG

ax“ ax""
(or ‘= E
& 7 $ap 315

The length of any smooth curve on a manifold is determined by the usual
ormula:

= jli'(t)ldt.

In manifolds with a pseudo-Riemannian metric the class of space-like curves
(%), such that x (1)l > 0, is naturally distinguishable.
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The concept of a manifold might, at first glance, seem excessively abstract. In
fact, however, even in Euclidean space or in its regions we often have to make
coordinate changes and, consequently, to discover and apply the transformation rule
for one quantity or another. Furthermore, it is often convenient to solve one problem
relative to distinct coordinate systems and then to see how the solutions are “sewn”
together in the region of intersection of theses distinct systems of coordinates. In
addition, not all surfaces can be coordinatized by a single system of coordinates
without singular points (e.g. the sphere has no such coordinate system).

Continuous transformation groups of a space are also manifolds.

Of particular interest is “space-time continnum”. The generally accepted
hypothesis suggests that this space-time continuum is a four-dimensional
differentiable manifold. This means that if an observer is at an arbitrary point of a
space-time continuum, then the space-time region U, which is surrounding this

space-time continuum admits an introduction of the coordmates xg, x}, xg, xg

Given this, the coordinates x, and x7 introduced by different observers positioned at

distinct points are expressed in terms of each other in a smooth invertible way in the
region where both the coordinate systems apply:

= Lpxgs -, XQ)

(in the region U, M U,p). This hypothesis is the most convenient and simple one,
although in the neighbourhood of an observer there of course exist ponts which he
cannot observe at a given instant of time.

In the special theory of relativity it is assumed, in addition, that the space is a
pseudo-Euclidean Minkowski space which admits the introduction of a unique
coordinate system, ¢t = x°, x, xz, x and possesses a pseudo-Euclidean metric:

3
@’ = -3 (@ + @&,
a=1

The underlying (Einstein's) hypothesis of the general theory of relativity
suggests that the space-time possesses a pseudo-Riemannian metric which in its
physical meaning is idenn'cal to the gravitational field. In each local system of
coordinates (xg x x x ) this metric is given by:
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this, the components g, g are small when & # B, gg is close to unity and g,,,, o # 0,

is close to minus unity. In classical mechanics, the gravitational field was descibed
by the potential ¢(x) (force is grad ¢); in comparison with mechanics, the metric

should approximately be given by:

goo = 1-20/c"+ o(1/c?), gpo = gap = o(1/c?),
Beum = — 1202+ 0(1/ch), (@=1,2,3; P=w),

where ¢ is the speed of light in a vacuum, and its value is high.

As far as positive definite (Riemannian) metrics are concerned, they have
occurred, of course, due to the geometry of three-dimensional space. At the same
time, the concept of a positive Riemannian metric is often a convenient tool for
investigating various essential manifolds, for example, group manifolds (Lie
groups). We shall give a number of useful examples of the Euclidean metric.

For example, in a linear space of skew-symmetric matrices

= (a;), a; = — q;
there exists a positive scalar product
(A,B) = —trace (A - B),

where the trace (A - A) > 0.

Another example: in an infinite-dimensional linear space consisting of all
continuous real functions (for instance, on a segment [a, b]) there also exists a
positive scalar product:

b
f.8 = Jfﬂx) g(x) dx,
2
b
W = .[ fxn® dx

Let us now sum up the resnlts. On defining the concept of a manifold, we
considered the basic examples,
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1. k-dimensional surfaces, in an n-dmensional Euclidean space, given by a
system of equations

foxl, X =0, i=1,..,n-k

the rank (9f/0x’) = n — k.

A more general case is a sub-manifold of a Euclidean space the whole of which
cannot be given by a non-degenerate system of equation, for example, a projective
plane.

2. The basic groups given by equations in an n*-dimensional space of real
matrices:

GL (n, Ry (det0), SL (n, R)detA = 1);

O, is a group of matrices whose rows make up an orthonormal basis of
vectors;
S0, is the part of the group O,,, for which

detA = 1;

Sp, is the transformation group preserving the skew-symmetric scalar product
in a 2n-dimensional space.

Analogous groups are defined over the field of complex numbers GL (n, ©),
SL (n, ©), Ond:, Sp,g:. In addition to these groups, in the complex case there appear
other transformation groups preserving the Hermitian positive scalar product:

[J- Il (where det = 1\
AY * -5

U, = 0,,(R) M GL (n, C).

There exist some other groups of linear transformations preserving the pseudo-
Euclidean real scalar product which has p positive and g negative squares O, ;; SO, 4
(where det = 1); Oy, = 0,, SOy, =SO,,.

Analogously, in the Hermitian complex case we determine the groups U, 5
SUp g Won=Up, SOg,=SU,).

3. Projective spaces (real and complex); points of these spaces are non-zero
vectors considered up to a factor

y=0%..,9" y~ay, az0.
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The coordinate regions U; are distinguished here, where y' # 0, with coodinates X3

Y, azj, a=1,..,n,
i yu'-l/)}v a<j! j=0,.. » 1

In particular, the region U,, where y° = 0 is called finite part with coordinates
B=ynla=1,.,n

4, Riemannian surfaces of multi-valued functions are defined as follows: in
the space of two complex variables (w, z) for any analytic function f{z, w) (e.g. a
polynomial) we take the surface of its zeros )

Rz,w) = 0. 3
Here the function fis complex-valued, f = u + iv, and analytic,
o g 3 g
= - 1/2(-5; Fyoo L. 1/2(—+: ) =

z=x+iy, w= h+ig,

(or, which is equivalent, in a neighbourhood of any point zy, wy it is expanded into a
series f(z, w) = Rzg, wo) + Q a2z = 20)"(w — wg)"). The set of solutions of
equation (3)

w = w(), flzwi@) =0 C))

may appear to be a multi-valued function.
For example: a) w= (P,,(z))m, where P, (2) is a polynomial;
b) w =Inz =Inlzl+iargz+2xin, fiw,z) = ¥ -2

| 2

Then the surface (3) is called the Riemannian surface of the multi-valued
function (4).

That the function w(z) is multi-valued means that the projection of the surface
(3) into the z-plane along w is not one-to-one.

Suppose the function f{z, w) is a polynomial of degree n in the set of vaniables.
We make the substitution z = y'°%, w=y?*4°. Then fiz, w) = (ll(yo)")Q,,(yo, ¥,
%), where Q,, is a homogeneous polynomial. To the projective plane CP? the
equation f{z, w) = 0 is continued in the form

2.0°% 5,9 = 0. (5)
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Those points of the surface (5), where yo = (), are called infinitely remote points of
the Riemannian surface (3).

What is meant by two-dimensional manifolds? To which of the surfaces
known to us are they equivalent as manifolds?

The reader is already acquainted with the following surfaces in two-

dimensional and three-dimensional spaces

AV MMV LAV RGO e

A. Regions in a plane with k holes (Figure 31).

Figure 31,

B. A surface in a three-dimensional space with g handles (Figure 32).

Figure 32. —/

C. Arbitrary regions on surfaces with g handles.
Now consider the following examples.

EXAMPLE 0. Let
fw,y=wi-z, 0,6°¥.5) = A*-yy’ = 0.

Consider points (z = =) and (z = 0) and join them with a straight line a
(Figure 33).

———

Figure 33. z27 a co
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On the sphere 52 equivalent to CP, this line lIooks as shown in Figure 34.

Figure 34.

Outside this line, the graph of the Riemannian surface f{z, w) = 0 falls into two
disjoint parts (two “branches™) each of which is equivalent (can be projected in a
one-to-one manner) to the appearance of the line a in a z-plane (Figure 35).

-~
Figure 35. 7 T

At the points 0 and o the values of these two branches of the function
w(z) =(z)u 2 merge.

To obtain a surface, it is necessary that the piece of a boundary o, of region /
be identified with the piece of boundary [3, of region /I and that the piece of boundary

R. of recion I be identified with the niece nf'hnnnr‘nnl ('2 of rpg:r\n 1T

Fl A avalv A Wi Aubwd Avvv WA WA Wi AW
It can be readily seen that after glueing we again obtain a surface equivalent to
the sphere s? (this can be done with scissors).

EXAMPLE L. fiz,w)= w2 — Py(2), where P,(2) is a polynomial of degree 2 with
simple (allquant) roots z = zy, z = 2y, 5 # 2;.
Join the roots z; and z; with a segment a. Outside the segment a, the graph

f(z, w) =0 falls into two parts which are disjoint. Over the sphere CP? this set looks
exactly as the one in Example 0 (Figure 36).
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52
Z,
3’4 )
(4
/
22
I,
Figure 36. = I

The only difference is that here z; # . By analogy with example 0,
identifying the curves

o ~ By

By ~ o,
we shall obtain the sphere S2.

EXAMPLE II. fiz, w)= w? — P4(z), where the roots z, 2,2 ; of the polynomial
P3(z) are not pairwise equal. Let us make cutsa, and a, (Figure 37).

aya
./

Figure 37. *° zy

Outside these cuts the surface falls into two disjoint parts (Figure 38).

Figure 38.
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Identifying the curves

o ~ B m o~ 8

o~ B, B~
we shall obtain a torus (g = 1) (Figure 39).

EXAMPLE IIl. fz,w) = - P4(2), where the roots of the polynomial P,(z) are
not pairwise equal. Let zy, 2,25, 23 be the roots of the polynomial P,(z). Using

argumenis similar o those of Example II, we also arrive at a iorus here.

For the Riemannian surfaces of muliple-valued functions of the form

w = (Po(2)) 2 or w = (P5,1(2)) 2 (the polynomials P(z) have aliquant roots) we
obtain, as the Riemannian surface, a surface with (n — 1) handles (Figure 40).

N2

)
N T T NO*)
ps P I/

Figure 39. Figure 40.

We can see that quite different definitions of the surface lead to equivalent

results.

Let us discuss some more examples.

1. A special role is played by the torus which can be obtained as follows.

Let (x, y) be points in a plane. We shall assume the points (x, y) and
(x + mxy, y + nyp), where m,n are atbitrary integers, xg# 0, yg, # 0, to be

equivalent.

g
A

1

&

Figure 41. (,%0)
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Within the rectangle in Figure 41 there are no equivalent points, while the
segments @; and a, on the boundary are equivalent, and so are the segments b; and
b,. Glueing them, respectively, together we obtain a torus. From this it is obvious

that the doubly periodic functions in the plane are functions on the torus. Figure 42
illustrates several two-dimensional manifolds.

52

ll”/-
’III

franée 7
sphere (’c‘;’ém?éz) ”&";L;;‘
P

Lol

ekl

sphene with hoandles
o {wisted

a s’aanl‘ﬁ wil — handl:
tyo Mebias £ lms -

B
’I-'-'n
\ (“
S

]
/]

Aone
é% - w‘:‘,LJ/; "f.u’tsétdi
g% hondie"

Figure 42. faijaehw plane RP?
2. We shall point out that even functions on the sphere are functions in the
projective plane (similarly for the #-dimensional sphere 3, + 121 +..+x2=1). An

even function on the sphere is a function f(xo, s X7), Where Z(x")2 = 1, such that

Rx) =f(=23).
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Among group manifolds, the simplest are the following:

1) the rotation group of a plane as a manifold is equivalent to the circumference
U, =50,=S5

2) the group of motions of a plane is described by three coordinates:

b xy), & ~ o+2nn,

x nd y assuming any values; this manifold is equivalent to a region in the space R
from which one straight line is removed (this straight line may be, say, the z-axis);

3) the group SL (2, R) as a manifold is equivalent to the preceding manifold
(as the group SL (2, R)/ —E is equivalent to the group of motions of a Lobachevskian
piane or to the group Qg'l). Here SL (2, R)/ -E is the factor group with respect to

the sub-group (E, -E);
4) the group SO, as a manifold is equivalent to the real projective space RP>;
5) the group SU, as a manifold is equivalent to the three-dimensional
sphere 53

2+ @2+ (22 + 032 = 1

and consists of matrices of the form (

Q-ln
Rl o

))i where la i b
complex numbers.
Note that as a group, SU 5/ —E is isomorphic to the rotation group SO;.
The notation SU,/ ~E or SL (2, R)/ —E implies the factor-group with respect to

the sub-group which consists of matrices E = ((l) (1)) and - E = ("1 0).
0-1

If ¢(z) = w is a multiple-valued function given Hy the equation f{z, w) = 0, then

f‘nn aranh Af thic curfane io thae Diamannion onrfana ~af tha fnneimn o = A\
Hiv B yll L ullD oullﬂ:\-\r ID Uiy indvillilalilliall Dmla‘f\l (/% ulc l.uu\.ouull. w - ‘*’\LI

The function f{z, w) is analytic, i.. near any point (zg, wy) it is expanded into
a power series

Az, w) = f(zo, wo) +) amn(z - zo)" (w- wo)m .
mn

For example, this is the case if f{z, w) is a polynomial (the variables z and w
are complex numbers).
What can be said about the multiple-valued function w = ¢(z)?
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First, at each point z (except at the discrete set z,) this set has a certain number
of values (“branches™) w; = ¢z) which are not equal to each other and are
continuous in a neighbourhood of the point z.

For example, wy = ¢4(2) = £ (z)m, z# 0, oo,

Second, at the points z = z,, the number of values of the function is smaller
( are the “branching points™).

For example, + (z)m’ = — (z)”'2 when z = 0, e=. Two or more branches are
said to merge at branching points.

Third, if we move continuously along one branch and pass round the

branching point z,,, then we can go over from one branch to another.

theaca
AW w

For example, from the value + (z)/ we shall go over, by passing round the
point z = 0, to the value - (2)!2.

How can we imagine the geometrical structure of the Riemannian surface?

If branching points are removed, the local coordinates on the surface can be
given as follows: suppose U is an arbitrary region in the branching plane. It is
necesssary for us that the region U contain no closed paths moving along which we
could, on returing to the same point z, go over to another value of the function
w = 0(z). If the region U is such, then over it the graph of the function w = ¢(z)
falls into disjoint parts (branches) which can be somehow indexed by the subscript i:
w; = ¢,(z) in the region U.

On each branch we can introduce the same coordinates as in the region U.
Therefore, we obtain charts (or “maps”) of the coordinate atlas (U, {). Such regions
may, in principle, cover the entire Riemannian surface except the branching points.

We have already discussed above the example w = (P,,(z))m, where P,(z) is a
polynomial with aliquant roots z = z, ... , z, of degree n. Let us represent the result-

ne o el amma .

4as a uicorcm.

THEOREM 1. The Riemannian surface of the function w = (P(z))'2 is equivalent
to the surface of the sphere with g handles, where n =2g + 1orn = 2, +2.

We shall explain this once again. Suppose # is even. Let us divide the roots of
the polynomial P,(z) into pairs and then join each pair with a curve a;, ..., a,p
which is disjoint with the other curves,
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Now cut the z-plane along the segments a, We have made sure that the
Riemannian surface falls into two disjoint parts U; and U, (going round two roots at

a time does not change the branch).
The edges of the cuts we denote by o and P;; they lie, respectively, on the

pieces U; and U, of the Riemannian surface.
After this, we glue the edges together by the rule

Upa) ~ UuB) W,B) ~ (U 0).

This glueing reflects the fact that when approaching the edge a; we must go over
from the piece U; onto the piece U, (the edge B).

We can make sure (as in the case w = 21/2) that near any root z = z, the
function has the form:

w= (z — zq)”2 . ((z —z) .. — zn))m = ((z — zq))”'2 . .(Qn_l(z))m

where Q,,_l(zq) #0.

From this, we can see that going round the point z = z, along the small path
changes the values of two branches as in the case w = (z)m'.

If the closed path is large, it can be continuously deformed to the one
consisting of small paths that cover the branching points (Figure 43). For odd n the
construction is much the same, but we take z,,,; = < for one of the branching points
and, after this, repeat the whole procedure.

Figure 43. w (3/{

The crucial point which we have left without rigorous proof is that after we
remove an appropriately chosen collection of paths, the Riemannian surface falls into
two disjoint pieces.

This can also be represented as follows: choose a point P in a z-plane aside
from the branching points.
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Consider all possible closed directed paths which start and end at the point P
and leave aside the branching points (Figure 44).

Suppose 7 is such a path. By ¥! we denote the same path in the opposite
direction.

If there exist paths 7; and 75, then we can first move along the path y; and then
Y». Then we shall cover the path ¥ =¥, » ¥; (the “product” of paths).
It is obvious that generally 7; - Y2 # ¥, = 7y; (the order of taking paths is different).

Moving along the path v, we shall return to the same point. The values of the
multi-valued function at the point P will be somehow permuted (if the function has »
branches):

(1 2 .. n
Y = oY) = e

Ul iy e

here o(y) is the permutation of the values of the function induced by the motion along

D o) = o,

2) oy ") = o) oY)

A surface w= (P,,(z))”2 always has two branches; for a path v; (Figure 45) which
embraces one point, we obtain:
1 2)

oY) = tz J
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We can easily reconstruct the Riemannian surface if we know the permutations
o(y) for all closed paths 7y which start and end at one point P. It suffices to know
only o(y;) for paths 7; embracing one branching point.

As an example, investigate the Riemannian surface of the function

w= (Pm(z))”".

The specific feature of the Riemannian surface is the complexity of these
two-dimensional manifolds:

1) each coordinate region U is a region in a plane with coordinate z(c),

2) in the intersection of regions U, () Up the change of coordinates

zP) = w = fz2(o), z(o) = z = x(a) + iy(cr),

is analytic (or conformal),
(L )=
oz () ox (o)  dy()

2B = x(B)+ y(P) = u+iv,
z(a) = x(o) + iy(a) = u+iy.

The Jacobian matrix

with account taken of the identities:

Ug-vy =0, uy+v, =0,

u
has the formJ = (_:‘ y ) , and its determinant is positive: detJ =12+ u% > 0.

u
x Ty

The transformations w = f{(z), where 9f/0z = 0 (or the complex conjugate ones) are

called conformal.

N ¥ . F i FpP 2. 2
By definition, 5 - 1/2(3?—15). Obviously, |§-| =U V.

It would be of interest to pay attention to the following circumstance. In this
sub-section we have imposed the requirement that all the manifolds we are dealing
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with should be smoothly equivalent to sub-manifolds in a Euclidean space of some
dimension or in its regions. We call such manifolds Hausdorff. Among the simplest
examples of manifolds considered above, all except projective spaces are, by
definition, as follows. For projective spaces this fact does hold, but requires a
special proof which we do not give here. The general smooth manifolds that we have
introduced need not necessarily be Hausdorff. The simplest example: consider two

raniac nfa ranl ctraioht 13no wry th ~rnnrdinatac  and v recnestivale Tdantifu the nainte
VWPIvO Ul d lvdl pUalglit 1V WL VUULULIIAILO A diid y ivope vy, AWuviilly Uiv pPuilie

x=yforx<0,y<0. Whenx=0,y= 0, we assume the points to be distinct.
Obviously, we obtain a smooth one-dimensiona! manifold. Prove that it is not
realized as a smooth sub-manifold in a Euclidean space. (The pointsx=0andy =0
are not identified!)

The requirement that manifolds be Hausdorff may also be formulated in some
other equivalent ways (without proof).

1. On the manifold there exists a Riemannian metric, such that there exists not
a single pair of infinitely close points. A pair of points P and Q is called infinitely
close if, for any € > 0, these points are joined in this manifold by a piecewise smooth
curve ¥, such that its length is less then €.

2. There exists a “sufficiently small” partition of unity, so-called, i.c. an atlas

of a finite or countable number of maps (charts) M™ kq) U 7 where each point belongs

only to a finite number of regions. Given this, each region is homeomorphic to a
region of Euclidean space and endowed with local coordinates x%, and there exist

smooth real functions ¢,2 0 on the manifold M", such that 2 o, = Lo = 0 outside
q

the region U,.

3. For any pair of points P and Q of the manifold M there exist continuous
functions ¢p and ¢, on the manifold M, such that $p(Q) =0, ¢p(P) =1 and
bo(P) =1, ¢o(P) =0.

(The last definition extends to all topological spaces.)

For instance, with the partition of unity in mind, we construct the Riemannian
metric as follows. We introduce the tensor relative to the coordinates x, of the point

@ )
Pe Ug & (xp = 5,-1- * {g(xz), where g.}.@ = 0 outside the region U,.  This tensor is

@ ).

defined on the entire manifold and is non-negative. We assume g;(P) = ) g
q°§

EXERCISE. Prove that the tensor g;,(P) determines a positive definite Riemannian
metric on M. Prove that there exist no infinitely close points.
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As has been mentioned above, that the manifold M”" is Hausdorff is a
consequence of a rather small-sized partition of unity. Non-negative functions ¢,

form partition of unity if at each point of the manifold the identity 2 ¢4(x) = 1 holds.
q

For a sufficiently small-sized partition of unity, the support I¢ ! of the functions ¢,
(i.e. the closure of the set of points Int I, | at which the function §,is positive) is

obviously embedded into the Euclidean space R*. Suppose that the points P and O
are inseparable (i.e. assume the manifold not to be Hausdorff). Let U; and Uj

be contracting sequences of neighbourhoods of these points. Choose points

xj€ UM Uy, Choose a function ¢, such that §,(P) >0. ThenP e Int 9l
Since the support I¢,| is embedded into the Euclidean space R", it follows that
$,(Q)=0. Hence O & Int I,l. But continuity of the function ¢, implies that the

condition ¢,(0) lj:m &40x)) = §,(P) # 0 must hold. The contradiction obtained shows

that hte manifold M cannot contain inseparable points.

It should be emphasized that the existence on a manifold of an indefinite
non-degenerate metric does not necessasrily require that the manifold be Hausdorff.
Therefore, the requirement that a manifold should necessarily be Hausdorff is
unnatural from the point of view of the general theory of relativity.

For real analytic manifolds, the existence of an analytic embedding into
Euclidean space is an exceedingly sophisticated and not at all elementary theorem.

The requirement that the manifold be Hausdorff is not natural in a number of
other fields of mathematics, namely, in algebraic geometry, in the theory of invariants
and others. It is precisely for this reason that we think it most fundamental only to
determine a manifold as an atlas of local coordinate regions with certain requirements
imposed upon the class of functions of the change from one local coordinate to
others.

In the definition of the basic concepts of analysis on manifolds, the requirement
that these manifolds be Hausdorff in the sense of items 2 and 3 (see above) is
important for the manifold as the domain of definition of functions and is not so
important for the manifold as the domain of values of functions.
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1.15 Geodesics

Suppose we are given a certain Riemannian manifold M with a positive definite
metric g;. It is natural to define an important class of curves on a manifold, which
are called geodesics and posses the property that they are locally minimal . i.e. they
minimize the length between any of its two sufficiently close points. In Euclidean
space such curves coincide with straight lines. If points on a Riemannian manifold
are situated far from each other, then the geodesic joining them may turn out to be not
a minimal trajectory. In other words, there may exist another curve of smaller length
between these points.

Thus, geodesic lines are (at least locally) the shortest trajectories, i.e. their
length does not exceed that of any other curve joining the same two points
sufficiently close to one another. Let us consider this question in more detail.

It is instructive to approach this question from a more general point of view.
Suppose L(z, E) is a function of the point z = (z!, 22, 2%) and of the tangent vector
& = (E) at this point. Consider a fixed pair of points P = (i, 23, z%)
and Q = (23, 22, 23), as well as varions smooth curves y: z* = 7(r) joining these two
points

Z(a) = zi, Z(b) = 2§, asi<h.
Consider the quantity

0
sop = [ L@, separ.
P

On which curve ¥ will the quantity S be minimal? The quantity S(y) will be called the
action.

EXAMPLE 1. Let L(z, £) = g;; E' &/, then

0 o 0
Sy = jL(z, Z)dt = J.gb.z"z"’dt = J'&th.
P P P

On which curve y = {2(r)) will the function S(}) be minimal?

EXAMPLE 2 Let L(z, £) = (g; E'&)'2, then
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g i 12
S = J‘(g‘.jz 7)) dr = (the length of the curve ).
P
On which curve v is the length minimal?

EXAMPLE 3. Let the metric be Enclidean and let L = % § g ~U(z). Then

c fo l'\2 1/_\1
J <) U4} ] W

1b4h
V|3

£aA
\1

o
fr
JYE
P
The curves 'y along which S(y) is minimal are the trajectories of motion of the point of
mass m in the field of forces f; = — dU/RZ.

Then a simple theorem holds.

THEOREM 1. If the quantity S(y) = J. L(z, z)dt reaches its minimum on a certain

curvey: (£ =21} among all the smooth curves going from P into Q, then along the
curve there hold the equations

(—-)_—-, i=1,2,3

oz'
where
-a-L—= (zz) (—)— z+az_L,ij
& 3t aEdE  ad

(it is assumed that L = L(z", 2%, 2%, £, £2, E®), where z and & are independent
variables, but then E' = d2¥/dt is substitured along a given curvey : 7 = 2'(9)).

Proof. Letn’=n) be any smooth function, such that ni(a) =0 and n'() = 0,
a<t<bh. Lete be a small number. Consider the equation

. S(y+em)-S4) _ d
lim = S5+ *’“)Im

-0 €

Here v + en is the curve (2 =z + en(n) close to the curve (1) ase = 0.
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LEMMA 1. If S(y) is minimal, then for any smooth vector function T\ (t) which

vanishes at the ends of the time interval (the cwrve Y + €N also going from P into Q) we
have

. Sy+em)-S(Y) _ 4
lim = Lsy+en) =
Jim - =St enl

The proof of this lemma is obvious.

We now proceed to the theorem. For the expression d/de S(y + &n)|c=0, we

have

d/deS(v+€n)L_4, J‘{—vn(t)+£n}dt = (1)

where the integral, by definition, is calculated along the curve vy :

This equality holds for any smooth vector function 1(f) which becomes zero at
the ends of the time interval.
Note that there holds the identity

aj% - i),ﬁ-(%n‘)m-[n"(%

(integration by parts).
Since n'(a) = n'(b) = 0, we obtain
b b
ol i J'
=1'd ) v dr.
Jgtta=-]

Substituting this expression into formula (1) we see that for any smooth vector
function n'(z) which vanishes at the ends of the time interval, there holds the equality

-y

b
{rol sdl \"1: ., _
J[E-E) Ina=o
5 dz d

Jre
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if v: 7 = (1) gives the minimum of the function § = S(y) among all the smooth
curves joining the points P and Q, whence

v = ia%-(%)' =0, i=1,2,3.

Indeed, if W(¢) # O for some i and r = 1, between a and b, then we can easily choose a
function T'(r) such that the integral is not equal to zero (e.g. for ni = w‘ » (1) we have

a e ma R

in the integrand a positive number if {7) is greater than or equal to zero and if it
vanishes at the ends). This completes the proof.

REMARK. The solutions of the equations (i ) = & are called extremals.

ot' oz

Now, we shall give some definitions.
1. The energy is the expression:

E=E@zi)=Ext =t%_o

=z —-L.
]

3’ 3:

2. The momentum is described by the expression:
i& =p, = i (covector).

oz ot'

3. The Lagrangian is an original integrand:

L=LzE =Liz).

4. The force is given by the expression:

aL
f. = -
0z
5. The Euler-Lagrange equations are those of Theorem 1 (equations for
extremals)

@y g
0z 0z
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EXAMPLE 1. If L= 1/2g;E &, then p; = g; &,

9g, L%
ff = 1/2817.

dap, Eee 2 3
We obtain the equations for the extremals T" = 1/2 # +2 »2” where
k

ap z’ ' agﬂc u ]
Loy, 4 2 = 1p 2
a * o7’ ozt
Since g¥"g; 5= 0"}, we obtain:

.m km(a_;k 1/2 lzj_o

Z

Now we shall point to the identity:

0g.. .. dg, 0g.
i s (S
¢ oF § (az‘ a7

Substituting it into the preceding equation we obtain

4Tz = 0, )
dg, 9g, 098

I = 126" ( Ao —E_—1).
0z o7 9z

Equations (2) are called equations for geodesics (relative to a given Riemannian
metric). The functions I"" are called Christoffel coefficients (or Christoffel symbols)
for a symmetric connection compatible with the metric g;;. We shall again deal with

these equations in Part IT, where they are derived in another way.
Thus we have obtained

TOTADTAL A ke of AP - ma e Lows mmrdme doas - ]
LILEVUNLIVL 4. 16C nuwr-l_uglungc cquuuum JoOI extrcinui

minima) coincide with the equations for geodesics provided that
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Q
L=g 7' =12 Sy = Ilz'lzdt.
P
a2 g ,
EXAMPLE 2. IfL=(gl.J.z 7) =1z, thenthe expressionS=(length)=Ilzldr
P

does not depend on the introduction of the parameter r. The Euler-Lagrange
equations have the form:

(T = ?
or

lj .

[(g,,g:j)‘”] - (G )26

a - L] { L] 1 l
If we associate a curve with the natural parameter [ = ¢, where ( 8 27’ ) 2 = 1, we

g, .;

obtain (319' e ) = _‘!E_z 7. Thisis the same equation as in Example 1, but only

for the curves associated with the natural parameter.
We have arrived at the following:

THEOREM 3. The Euler-Lagrange equations for extremals (in particular, for

minimal curves) in the sense of length (L = (g,-j giE ) “2) coincide for the natural
parameter with the equations for geodesics. Therefore, any smooth curve which is
the shortest berween two points P and Q satisfies the equation for geodesics if it is
run through with the natural parameter of time (proportional to the length).

Note some general properties of energy and momentum, for any Lagrangian
L=L(zz).

Property 1. The total derivative of the energy along an extremal is always equal to
zero (it is assumed that L = L(z, &) and does not depend explicitly on #):
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(This can be checked by direct calculation!)

inarac (71 -2 73 are so chosen that
-1 Sy h y o & OV wiiOwis sisiaw

Pranertv 2 If conr
A WwALIWIA WAARA

AiVpwity & &

the equality

(#a% ) ) = p' 1 = O (along the an’emal)-
oz

Indeed, p = (EL_]) s
-
Properties 1 and 2 are the laws of conservation of energy and momentum.
EXAMPLES.

L IfL = g; 27’ ,then E = L = |zI%. From the energy conservation law we have

dE/dt = 0 along the extremal of this functional S = IL dr. Thus, extremals are

always geodesics, and the velocity of their motion is constant (the natural parameter).

2. If a surface in three-dimensional Euclidean space is given relative to cylindrical
coordinates z, r, ¢ by the equation f{z, r) = 0 (the surface of rotation), then one of the
coordinates on the surface may be an angle, and the other will be r or z (locally).

Tham tha Ameemananto of tha flone Artndenti s freeer do e Joemamd e

L yi=1] LIIG CULLPURIVELLD UL i riTst Huauiauv 1011 40 not UCPGIIU Uil \P

dg/0¢ = 0; i,j=1,2;

for coordinates z! and z? on the surface, we shall take z! = ¢ and 22 =(rorz). This
implies momentum conservation:

0=0LRY =py =0, py = aL/2Y,

L

'2 N L] .2
112 (g, 07+ 28 10 +2,7" ).

= + ‘ =
p¢ gwq) g’¢r const
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(along the geodesic curve). However, for surfaces of rotation we always have:

86 =0, gy =1 py =10.
Thus, there holds

THEOREM 4. For surfaces of rotation f(r, z) =0 in Euclidean space with cylindrical
coordinates (z, r, ¢) and Euclidean metric dP? = dz* + dr* + *(d¢)?, the quantity ¢

ic rnmetant alamo v oondocin rmnuo
D LU LUy iy FLUBCIL Ll re.

(Recall that the parameter is natural!)
Indeed, if (r, ¢) are coordinates on the surface, we always have gy, = 0,

84y = r?. Therefore p 6= 4. Since Py =0L/o¢ =0, the theorem is proved.
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TENSORS. RIEMANNIAN GEOMETRY

2.1 Rank-One and Rank-Two Tensors

We have already got used to the fact that many quantities are given as numerical
functions of a point in space. For example, the distance from a point to a certain
fixed centre, etc. If we have several such quantities at our disposal, we already have
several functions of a point (or, so to say, the vector function of this point). In
three-dimensional space, for a complete characteristic of the poisition of a point in
space it is ncecessary, as is well-known, to know the values of at least three
numerical functions called coordinates of the point (xl, xz, x3): each of the
coordinates x' is a function of the point, and the set (xi, xz, x3) completely
determines the point. The reader has already met with different types of coordinates,
for example, in a plane there exist Cartesian coordinates x', x* and polar coordinates
r, ¢, where xl=rcos o, x*=rsin ¢; in space there exist Cartesian, cylindrical r, z, ¢
or spherical r, 6, ¢ coordinates.

Thus, coordinates make up the set of numerical functions of a point which
determine completely the position of this point in space. In precisely the same way,
the coordinates of any physical system make up such a set of numerical functions of
the state ot this system which completely determines this state. The state of a system
is a point in “the space of all possible states” of the system. For instance, the state of
a moving material point is determined by six numbers: three coordinates and three
components of the velocity vector; here we deal with a six-dimensional state space.

It turns out, however, that the numerical function of a point, or the set of such
functions, is insufficient for the investigation of many problems. The point is that
many geometrical and physical quantities can be described as a set of numerical
functions only after a certain set of coordinates (xl, %, x3) in space is already given;
the numerical representation of these quantities may change significantly if we
assume some other coordinates zl, 22, z3, where

X =2d@ 2P, i =1,2, 3.

To clarify this, we shall consider the concept of a vector, for example, the velocity
vector for motion along a certain curve:
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d= 2@, j=1,2,3;
£ = 2@ = 2@'@), 20, 20), i=1,2,3.

In the coordinates 2!, 22, 2> we have the components of the velocity vector in the
form:

(.‘.ifl ffi .diB._ = ¢! & Eh
dr’ dr’ dr =g T PR

Representing the same curve in the other coordinates xl,xz, X, we obtain other
components of the same vector:

1 2 3
dx dx ax 1 2 3
(T. TR T)‘:’o =@,n.n),
where
{ i
.d_x_=a__£’ b 1’2'3
t &Z,_I dt

Thus, for the components of the vector, we have the formula of their transformation
under the change of coordinates:

X = xi(zl, 12,23);

(EL, §2, §3 ) are the components of the vector in the coordinates (2}, 22, 2y ata
given point;

(nl, 1‘12, 1‘]3) are the components of the vector in the coordinates o, 12, ) at
the same point.

Tensors are the most important class of quantities whose numerical
representation changes under the change of coordinates. The vector is the simplest
and most visual example of the tensor. A trivial example of the tensor is the scalar
which does not change under the change of coordinates.
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Before we introduce mathematically the exact concept to a tensor, we shall
consider some other examples which we have already encountered repeatedly.

1. The gradient of a numerical function. It is normal to say that the gradient of
a numerical function f(xl,xz, x3) in Cartesian coordinates xl, 12, X is a vector with
components:

V_] = gradf ( af af aaf ) (E.ul! §21 &3)

ax ax

Let us see how the gradient of the same function looks in coordinates z!, 22, 23,

where

2 =X, AP, i = 1,23
We have

grad fix!(2), 2(2), ©*(2)) = (af. v o =) = M, Ny M)

oz' az az
i=-a-r-_-£, i=1,23
o oX of
Hence
o
= &, ’
dz

where (§;, €5, £3) are the components of the gradient in the coordinates xl, 22,25,
(M1, Mo N3) are the components of the gradient in the coordinates 2,2, 2

Now compare the formlae of transformation of the numerical representation of
the velocity vector of a curve and that of the gradient of a function.

The velocity vector

gan & ®
0z

The gradient
& @)
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These formulae are distinct!
To compare these formulae, we shall introduce the matrix 4 = (a'j), where

4:= 0x’/97, and a transposed matrix AT = (&), where ¥, = af
For the vectors £ and 1} we rewrite formulae (1) and (2) in the form
x) « @
E = An (for the velocity vector),
n = AT§ (for the gradient)

(2) & ().

In case the matrix AT has the inverse (AT)'I, formula (2) can be rewritten to

become
@hH1tn = @H1aTe = &,
o

g = (AT)_ITI (Or E‘- = T]J—‘ . 2"
ox

In which case will the transformation laws for the velocity vectors and gradients of
functions coincide under the change from the coordinate system (x) to the coordinate
system (z)?

From formulae (1), (2) and (2') we obtain

@) = @
£ = An (for the velocity vector)
E = (a")yly (for the gradient)

The final conclusion is that for the transformation forrulae (1) and (2) to coincide, it
is necessary that we have equality of the matrices

A=@AN"orAeAT = E,

where
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Such matrices A for whichAT = A™ are called orthogonal. Note that the change of
coordinates Ax = x(z), such that at each point the Jacobian matrix (OxXfad)y=4Ais
orthogonal, is a linear orthogonal transformation A = const., that is, the matrix A
does not depend on the point.

Thus, the gradient of a function under the change of coordinates transforms in
a way different from that of the velocity vector. This is another form of the tensor
which is occasionally referred to as “covector” as distinct from velocity vectors.

2. Riemannian metric. As has already been said, given the coordinates
xl, 12,x3 , in three-dimensional space or in a region of space, the metric concepts
(such as lengths and angles) are determined by the set of functions (gij(x)), hi=1,
2, 3. For the length of a curve, by definition

) ,
af of 1/2
I = J- (g &) ar,

where x = dx/dt and the quadratic form Egijﬁ!'q' is positive. This is the quadratic form
determined on vectors of the “velocity vector” type at each particular point x =

!, 2% x3) and dependent on the point. We have called (g;;) the Riemannian metric.
Under the change of coordinates

X =222, i=123,

the formula for the lentth of the curve assumes the form

4 IR
l=f(g;-,.(z(t»z 7) a,

where J.j(t) =xi(z'(t), zz(t), z3(t)), the transformation law for metric components
being of the form

axt o
g @ = g (x(@) s — —. 3)
J . dz a7

Hence the quadratic forms on the vectors are transformed by the law (3). This is one

mnre fvno nf tancar frallad tanenr Af rank hwn)
AUVLE RY P UL RIOUL \balivil swiioul UL 1dlin LYvu .

Thus, we have already pointed out several types of tensors:
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a) scalar (does not transform);
b) vector (transforms by the law (1));
c) covector (transforms by the law (2));
d) Riemannian metric (transforms by the law (3)).
It should be recalled that the Riemannian metric (&) in coordinates x!, xz, x
was needed to define the concept of the length of the vector at a given popint (x).
Given the vector E = (€, &2, I’;3) at the point (!, 22, %), we have

IE? = the length squared = 8;;(0) B E,

In particular, this rule has been applied to the velocity vectors of parametrized curves
to determine the length of a curve as the integral of the length of the velocity vector.

The transformation law (3) for the components of the metric under the change
of coordinates follows unambiguously from the law (1) for the components of the
vector and from the obvious requirement that the length of the curve should not
depend on the choice of coordinates relative to which it is calculated. The lenth of a
curve is, in fact, the time integral of the lenth of the velocity vector. It is, therefore,
necessary that the square of the length of the velocity vector

B2 = gytx) E' &

should not depend on the choice of coordinates. This requirement and formula (1)
for the components of the vector imply the transformation law (3) for the components
of the metric (g).

3. If we wish to define the invariant concept of the square of the length of the
covector which transforms by the law (2) or (2'), we have to introduce the
components (g(x)) and put

€2 = g9 E; &;
E = (&, Ey E3), (at the point x).

Under the changex" =x"(z), i=1, 2, 3 we obtain the transformation law

ax
"l‘- = = (2)
5
) o7 a3/
& @ = M) — - @

ox° axt
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Then the length will not depend on the choice of coordinates:

m? = &% = g¥nm; = Y& &,

where & = €, &,, E,) is a covector in the coordinates xlx2, 2> at the point (x), N =

(M3 M2, Ma) is the same covector at the same point but relative to the coordinates 2,

22, 22,

The transformation law (4) yields one more type of tensor (of rank two).

4. Finally, we have to examine the last type of tensor of rank two, namely,
linear operators on vectors.

Suppose that at each point of a space with coordinates (x* x?, x°) we are given
a matrix (aj(x)) = A, which determines the linear transformation of vectors at each

point x = (x1'12,13). This linear transformation A(x) has the form 1 = AE, where
W =dm ¥ (5)

Here £ = (E1, E2, £%) is the vector at the point x.
The same matrix will determine the linear transformation of covectors by the
formula 1} = AE, where

N = a;.-(x) & ©

Under the change of coordinates X =x"(zl, zz, z3), from formulae (1) and (2) we can
deduce that the components of the matrix A are transformed by the law
A A =(@Y:

~ 0 kaxi

a; = ———( —

Z g
! ar* azf ’
where ¥ =x"(z), J= zi(x) and zi(x(z)) =2z and

o [ i=j,

o a7 L0 i)
For the covector, formula (2) can now become

o j
ax

&,' = T!' gv (2"
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since
oy
ox oz

Now we shall tabulate the transformation laws for the scalar, vector, covector
and all three types of rank-two tensors:

The laws of transformation.

1. The scalar (rank-0 tensor) is not transformed.
Tensors of rank one:

2. The vector € = (ﬁ"): - '§= (é-")z (of the type of velocity vector):

- ¥
gt =
ox

3. The covector & = (), —)IE = (“’;J-)z = é (of the type of the gradient of a
function):

’ ox'
& ==& =

Tensors of rank two:

4. The scalar product of vectors (g,-j) - (g’ i

a

8= 8 — — (- 0.
0z

5. The scalar product of covectors (g%) — (g' OF

i = M ¥ o

axk ax"
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6. The linear operator on vectors (Covectors) A = (z'zj'.-) - /{ = (a}):

Here x =1"(zl, 2, z3), 7= zf(xl,zz, 13), i=1,2, 3, and

(@), @), X@) = 7,
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2.2 Tensors of General Form. Examples

In the preceding section we have considered tensors of rank one (vectors and
covectors) and tensors of rank two (quadratic forms on vectors 8ip quadratic forms

01 covectors gij and linear transformations — operators or affiners — aj-). It should

be recalled that in each coordinate system x!, x2, x> ... the tensor was given by the
set of numbers at a given point x

() — vector &y
(1,’_'-’.) rank-2 tensors of all the three types.
() — covector (@)

Under the change of coordinates Py =xi(zl, 2, z3, ) i=12,3, ..,k the tensor
in the coordinates z at the same point was given by a set (a different one) of numbers

&, €. @p. €9 @b.

Given this, there hold the relations

X...

a L

E=8 =, @
o7
;37
§i=8 —, @)
ox
, ko1
oxr ox
. e, ax oY
¢ =" 5 —. 2)
azk o7 (
i i
d=at 2 )



TENSORS OF GENERAL FORM. EXAMPLES 169

By definition

¥ = x‘.(zl, zz, . z") and 2 = zf(xl, xz, vy x"),

B = (%) are mutually inverse: B =A"'. We can now define tensors of general
form.

DEFINITION 1. A tensor of type (m, n) and rank m + n is an object whicl_1 i_s given

. . 1 xz xk i 1'2 ...lm
an arbitrary system of coordinates (x, x*, ..., x") by a set of numbers (T Jjg in)

and whose numerical representation depends on the coordinate system obeying the
following law:

if xf = xi(zl, 22, .., z"), Z = zi(xl,xz, - x"),

then there holds the formula
A i A i
iyin . d rkk, ..k OX ox™ oz oz"
712 tm kb ok ; (6)
Jydy ***in = ,'1,'2 iy k ; j

k
3z! ™Al an

Here 7"',5 is the numerical representation of the tensor in the coordinates (z) and 7‘_, is
the numerical representation of the tensor in the coordinates (x). The indices (i, ... ,
Ims J1» o » jp) and (kyq, w. , kp, Iy, ..., I,) vary from 1 to 3 for tensors in a
three-dimensional space, and, in k dimensions, all these indices vary from 1 to k.

The velocity vector is a tensor of type (1, 0).

The covector is a tensor of type (0, 1).

The quadratic form on vectors is a tensor of type (0, 2).

The quadratic form on covectors is a tensor of type (2, 0).

The linear operator on vectors is a tensor of type (1, 1).

THEOREM 1. The components of the
R
7}1 -+jn DY the formula
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. . n
N L )
ox! ox™ oz} az"

a3 . at .

T Z o =2 ®)
Proof. From the fact that the transformations x = x(z) and z = z(x) are inverse to
each other, we have

2ew) = xX; Ax@) = £A.

Therefore, from the formulae for differentiation of composite functions and from the

fact that _a_xr =3,, % . 8; , we obtain formulae (8). Indeed,
ox o’
' o 3

Formulae (8) are thus derived.

Let us now prove formula (7).

By the definition of a tensor, we have the relation (6). Consider the relation (6)
as a linear equation with the right-hand sides 7‘, and with the unknowns 7"',5 Solving

this equation, we must derive (7).
By virtue of (6) there holds the formula
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. k k j ;
T. 92 1 3z ™ 35! " _
j iy Tt T =
ox ox™ oz gz"
i k
(s 48 d, ox! axm a3l a7 \ 0z
= \p‘; Jpl ...Pn 7 P J ; } ;
' 9z 1 ok ™ axt ox"  9x!
£ . .
atm ot adn
. i i [ YT i —
ox ™ oz! oz"
’ axi aZp aZk a.l} ’ k vk
q q
=T — ——— =T858 =T,
P ot ad ad o PP
where
i = (il’ ey im)s j = (il’ ""jn)" k = (kI' s ’km)’
L=, ), P =@pesly) @ = (Qrsees @)

Thus we come to the relations (7). This completes the proof.

Now we shall point out the simplest properties of tensors.
Atany armrraruy given point of space, the tensors form a linear space

a) ifT = ( Ti J:‘), S = (S"l - ”‘) are tensors of type (m, n), then their

linear combination
AT+pS= Uwuhcc)mpom’,msU1 f -M‘l +;1.S‘J1

is also a tensor of type (m, n);
b) it is important to note that a tensor is an object fixed to a point, and there
exists no rule for summation of tensors fixed to different points;

c) the dimension of the linear space of tensors of type (m, n) in a k-
Jlmn— ~mal cmnma rnladnend oo l.m+n T ¢hhn L PRy 1 Y. rN im o
uiucl bl.UllCLl debC lb Lait dlaileul ad « A1l Lue Udbl.h \'UUJ.UJIIGLC vECIOT Sin a

k-dimensional space coordinatized by a system of coordinates xl,xz, ey X 2TE
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expressed in terms of ey, ey, ..., ¢ and the basis vectors in terms of el, ez, s e",
then any tensor will be conveniently represented in the form
i

.. dt
vector § = Ee¢; (e.g. 7r = Zr &>

covector £ = £ (e.g. gradf = a—{el )

dx

quadratic forms () = g éoél (on vectors),
quadratic forms (g) = g¥¢; ¢; (on covectors),
linear operatorsA = aj- e o0é.

AnytensorT = (T;ll ;":‘) will be written as

i, i j j
T=Tj11"' Me. el .. oen.

o dn E 0o i e

It is essential to note that in this notation the order of indices is of importance — e,

and €y for example, should not, generally speaking, exchange places.

Thus, in the linear space of tensors of type (m, n) at a given point (x) of the
space, the basis has the form

J; J,
€008 of 1..oe™ (altogether K™

where 1, j independently take on values 1, 2, ... , k. Making the change of
coordinates x* =x"(zl, 2, ..., we go over to another basis in the linear space of
tensors fixed at a given point to the basis connected with the coordinate vectors of the
system 21, 22, ..., 2* at this point.

The mutual expression of these bases in terms of each other proceeds,
according to formulae (6) and (7), at a given point of space. We shall consider
several examples.

1. The stress tensor. In a continuous medium in R, at each point x = (x!' 2,
2), the pressure upon a small element of area AS orthogonal to the unit vector n is

given by (AS)P(n), where P is a linear operator P = P} Ifn= r:fej, then P, = (P e
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or {P(m))i= n"P"j, for instance, if the medium satisfies Pascal's law P}, = 8P, where
the quantity P is called the pressure at this point.

2. The strain tensor. If in a continnous medium with coordinates xl,xz,x3
each point is displaced

X o X+
then the medium is said to have undergone deformation (or strain). If originally the

distance between two close points of the medium, for example, in Euclidean
coordinates xl,xz,13 was

3 . r
@y’ = T’ = X ' -x,
=1 .
after the deformation the distance between the same points will be different:
AN = T o+ i) —x - we P
Obviously, we have
—2 2 o e, Q2
A" = (A" -2 @l AYAY + Zl Y,
Ad=d-xk,

A = u"(x)—u"(x’)s.-' @-Ax'
oY

Therefore as AX' — 0,
@ = @’ -2aiad X 4 .a-"r iaf‘-i- axtdx .
o’ ox ox

Given this, there holds the equality

2 gl o (ﬂ‘:_. + ¥y adad
oY o or

pu i . 3 pu i . I
since il ‘ax = d—u, dx'dx.
ox ox'
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DEFINITION 2. The strain tensor ; of the medium is given by the difference

dn?- @’ = nijdxidxi ~112 a—"k idx 25
ax* ar

where n; = (i + —) =N, In the case when u' are small displacements, the

ox'
quadratic terms in u; are ignored, yielding the strain tensor for small deformations
au 4
(71 )={(—+ —/ -
ox

According to Hooke's law, such small deformations induce stresses in this
medium, which depend linearly on the deformation. Therefore, the stress tensor and
the strain tensor must be relared linearly as

= Um).

This relation is a tensor of rank four. In index notation it is given by

ol — rrikd .
rr=Ui My,

where
=P M =M, U =U"*.

The tensor Uji” of rank four is described by 81 components. Hooke's law in a
continnous medium does not actually require 81 components for its specification and
can manage with a much smaller number. ,

In the case when the coordinates are Euclidean, we need not (under orthogonal
transformations) distinguish between vectors and covectors, and may generally do
without distinguishing between upper and lower indices of a tensor, since they
transform in a similar way. The general tensor U = (UJ‘:"’) in Euclidean coordinates is
specified by 81 parameters, but the medium is hypothesized to be isotropic. This
hypothesis means that the tensor U at each point should be such that its numerical
notation remains invariant in all coordinates that differ by rotation around this point,
i.e. under orthogonal transformations. We may write either U or (U*- 5) since we do

not distinguish between the types of tensors Uj"” and U“ so long as they are
equivalent under orthogonal transformations.
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We can, therefore, write Pj; = F’, = PY and n;= TIJ, =n¥.
There holds

THEOREM 2 (without proof). The class of tensors of rank four which, when
written numerically, are invariant under all rotations of Euclidean space is specified

by three parameters A, ji, V: this class consisis of the tensors

Py = A+ u(Sp Mg, +vn;;,

where

3 3,
spn=Xm, =X,
i=1 =1

(here we do not distinguish between upper and lower indices under rotations),
Py=U%ny,

In the theory of elasticity, we should take into account the symimetry
My =N Py =P

Therefore, Hooke's tensor is described by two parameters only.

It is obvious here only that the tensors U of the indicated form are actually
invariant under all rotations.

The condition that the medium be isotropic is fulfilled in many liquids. In a
solid, this hypothesis is far from being always valid. Of course, in an isotropic
substance any linear law relating two symmetric physical tensors of rank two, which
is described by a tensor of rank four, depends only on two constants at each given
point of the medium.

It should be emphasized that the condition of isotropy suggests the presence of
the Riemannian metric (we have formulated it for the Euclidean one), whereas the
concept of a tensor is not associated with a metric, and the Riemannian metric itself
is simply a special type of tensor of rank two (g).

It is natural to ask a simpler question: what form may be assumed by tensors
of rank one and rank two?

Obviously, there exist no non-zero vectors (covectors) whose numerical
notation would not change under all rotations.
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As for tensors of rank two (1), the only invariants of all the rotations are the
eigenvalues of the matrix ('q,-j), namely, the solutions of the equations det (0 5= 18,-]-)
=0.

The tensor Ady is invariant under all rotations (the eigenvalues are all the
same). If there exists a pair of distinct eigenvalues, then the tensor of rank two is
already not invariant under rotation. Therefore, A3y is the only isotropic tensor of
rank two. It can be shown that there exist no isotropic tensors of rank three.

Now we shall consider the class of tensors of rank two invariant not only
under rotations but also under all linear transformations (it is already needless here to
assume the space to be Euclidean and generally to introduce the Riemannian metric).

For rank two tensors we shall have a single invariant tensor of type (1, 1):

(a;) = A,a’l .

It can be verified that there exist no tensors of type (0, 2) and (2, 0) invariant under

all linear transformations.
For fourth rank tensors we obtain (without proof)

P = Anj+ump 8 = UF G,

P Man s oapm . rrk e
P = Mg+VT; = U5yiMuy .
We can see once again that the result is different for tensors of type (1, 1} and (0, 2).
Thus in the absence of the Riemannian metric, the properties of tensors of
different types are distinct.
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2.3 Algebraic Operations on Tensors

In the preceding section we have discussed the concept of a tensor of type (m, n)

iy i i i ) i1 ) k1
1"""m =’ 1" m X 2

T}l =t Jn (X) Tkl vea *_n(Z) —l'l . jl
oz ox

(the sum overk, I,

’
The inverse ransformation from 7 to T has been shown to have the form
. . k j
i-kl"'km _T'l""m oz 1 axl
[yer iy, =1j i .
1 n Jl '1 i
dx oz1

vy

(the sum over {, j).

We have considered several examples:

1) the stress tensor P = F,

2) the strain tensor n; = 1,

3) Hooke's law — the relation between 1} and P,

4) the isotropy principle — the restriction upon the relation between strain and
stress tensors which follows from the rotational invariance of Hooke's law. We are
now in a position to proceed to algebraic operations on tensors.

1. Permutation of indices. We shall say that two tensors of the same type

T

iyt iy . _
Tj: wjpand T j: ... jn can be obtained one from the other by means of a permutation

.
Gf the upperinagices i

Iy = q), such that for all iy, ..., i, jy, o+ Jpw 910 - » @, there holds the equality

POT P ) Qq -e-q
17"'m _ 17 m
Tll wedn T T.Il ot *

Thus, from the tensor T we have obtalned a new tensor 7. In a similar way we can
make a permutation of the lower indices and obtain a new tensor. We cannor

interchange the lower and upper indices (this operation is not preserved under the
change of coordinates).
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EXAMPLE 1. From a second-rank tensor (a;) we can obtain a tensor (bij) = (aﬁ)
using the permutation. Similarly, from a tensor (aii) we can obtain a tensor (bij) =

(@.

2. Contraction (trace). The contraction of a tensor T of type (m, n) with
respect to the indices (i, j;) is the sum

ﬁ Tl-l ...l'.'-=l.k . oren im _ f‘jl '_m—l
| "l s l=j" s 'j" "l wen ] ?

which is a tensor of type (m—1, n—1). _
For a tensor of type T} (a linear operator), the trace Sp T'= T'; is invariant (a

scalar).

£, e Oy .o OO
3. Product of tensors. Given two tensors T:: ___;:‘ and P p: p:‘ of ranks
(m, n) and (k, ) respectively, we define their product to be a tensor of type (m + &,
n + [) with components
i_l im Oy v O _ i.1 im . u.l e OL
3y i By o By = Thyjg * PBy e

k
p,"

So, we have three invariant operations on tensors, namely, permutation, contraction
(tracing) and product. Now let us consider several examples.
1. A vector (&‘) and a covector (M j). Consider their product which is a

second-rank tensor 7‘1 = (& 7)) and its trace

T; = Ein;
We obtain the scalar £f 1); from the vector and covector, which is their scalar product
A= En;. _

2. A vector (£') and a linear operator (A",-). Consider their product (Tf") =
Ak E'. This is a tensor of type (2, 1). The trace (contraction) of this product

nt=Tin' = Ay

is again a vector — the result of application to the initial vector (&Y of the operator
(A'f). To justify the definitions proposed, we have to prove the following assertion.
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‘l‘:r-‘ .

LEMMA 1. The contraction of any tensor of type (m, n) with respect to any pair of
indices (upper and lower) is again a tensor of type (m — 1, n—1). The product of
tensors respectively of type (k, [) and (m, n) is a tensor of type (k + m, [ + n) which
depends on the order of the cofactors.

The proof of the lemma involves immediate verification of the tensor
transformation law as applied to the results of contraction or product.

EXAMPLE 2. Suppose we are given two vectors (&") and (1]") and a quadratic form
(g,,p) i.c. a tensor of type (0, 2). Then we can consider the triple product

” =ty Zup and after this the double contraction

€& = T3 = EnPesp.

Thus, any tensor of type (0, 2) determines the scalar product of vectors.

EXAMPLE 3. Suppose we are given two covectors (£;) and (1;) and a sensor (g*F)
of type (2, 0). Consider the product
1 I -1
T =¢ pﬁi"lj

and then the double contraction

Tof = g*PEmp = E ).

o have nhtainad tha cralar nendnct Af hun cAvartare neino a
Wiw ld Ve Uuuuuw Ulw ODwalar lJ UUI-I LUL YYU WU YWWLULOD I.IDIIIE o

type (2, 0). One of the most important operations of tensorial calculus is the
operation of raising (Jowering) indices.
4. Lowering indices. If in our space we are given a Riemannian metric (g;)

[P
and an arbitrary tensor Tj: . }."' relative to some system of coordinates (x!, 2%, ...,
in

x%), then we may consider a new tensor; for example,

T 1 . Tﬂ-l l'm
'-’1 = 8ik i jp "

We can readily see that this is again a tensor (the composition of operations of the
product by the tensor (g; ) and contraction). The result of this operation is called

lowering the index iy using the Riemannian metric (g).



180 PARTII

Thus, all the indices can be lowered if there exists a Riemannian metric (g).

For instance, in the Euclidean metric given in Euclidean coordinates, 8= 8,-,-. Hence

Bo o d -
T; j? J."' =T_,-: J.”' . Thus, in Euclidean coordinates, we may assume all indices to
—in win
be lower if we lower them using the metric g;; = §;.

5. Raising indices. If we have the Riemannian metric (g;), then 1o raise lower
indices we should necessarily consider an inverse matrix (g%), such that

G s oL =k
gsjk-%-lo i#k
By definition,

lei.l b _ jllcT :'.1 -im
J2jn kJy -Jn

(the operation of raising an index using a Riemannian metric).

Let us now fix the following formal (generally accepted) rule for handling
tensors: the summation sign in performing the operation of contraction is omitted,
but the indices that undergo surmation (it is always one upper and one lower index)
are marked by identical symbols implying sumimation. For example:

1) € ) = g*PE*EP (vectors);

2) & M) = g*PE, my (covectors);

3) A =4 °§ Ep (operator on vectors);

4H A &)p =A ‘Enu_ (operator on covcctors);'

5 ifA=(A ‘E) (operator), then SpA = A5 ;

6) if e, ey, ... , €; are basis vectors, then any vector has the form § = E'e;.
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2.4 Symmetric and Skew-Symmetric Tensors

In Section 2.3 we introduced the basic algebraic operations on tensors:
1) permutation of indices (only among upper or only among lower indices),
2) product of tensors (non-commutative),
3) operation of tracing (contraction) one upper and one lower index.
If a space comes endowed with a Riemannian metric (g) relative to some

coordinates xl, 2, ... , X", then the trace of the tensor Tjk is given by

Sp(Tw) = Sp(e"Ty = Ty

In the right-hand side of the formula, ngT;j is, by definition, the sum over all the

values of the indices (i, j), that is, a double trace.
Obviously, the trace Sp(T ;) is a metric invariant, and its definition requires the

Riemannian metric on which its value depends. Recall, as an example, that on a
surface in space x = x(i, v), y = y(u, v), z = 2(u, v), where u = x!, v = x2, there
occurred two quadratic forms:

1) the metric gy drdd gives a tensor (g;),

2) the second quadratic form b,jdx’dr' gives a tensor (by).

By definition we assume that:

the Gaussian curvature

det (bfi)
~ det @)’

the mean curvature
H = g¥b; = Sp(b'y),

where b}, = gijbjk. This is the trace of the tensor (b;). Thus, the mean curvature is

the trace of the two-dimensional tensor (b;) provided that we have the metric (g;).
We have pointed out all the invariant algebraic operations on tensors

(permutation of indices, product, trace, sum, product by a number, raising and

lowering indices using the metric gi)-

det bl.j

detg n

EXERCISE. In the two-dimensional case n = 2, express K =
P
terms of invariant tensor operations.



182 PARTII

Undoubtediy, K is an invariant! The determinant det (T}) is generally not an
invariant. On the contrary, the determinant of a linear operator (T%) is an invariant,
for example, for n =2 we have 2 det (7‘}) =TT - TXT', (in a plane, for n =2, where
all i, j, k, [=1,2).

There exist two especially important operations on tensors of type (2, 0) or

(0, 2) associated with the operation of permutation of indices:
1) alternation by =T = 1/2(T;; —T;;). The symbol [ij] implies that

bl:f= - bjl ’
2) svmmetrization .= 1/2UT:. + T.) = T::.~. The symbol (i7) imnlies that
) Symmemazaton g;; = /&Iy + 15 =g 1he symbol () pligs th
qiy q]l

We always have Tj; = b; + ¢, and this separation is preserved under all

changes of coordinates.
Given a linear operator T ‘j, it is useless to speak of symmetry or

skew-symmetry of this tensor if we have no Riemannian metric.
Given a Riemannian metric g;;, we can omit the index Tj; = g,,CT‘Jt

DEFINITION 1. A linear operator Tﬁ in a space endowed with a Riemannian metric
(gy) is said to be symmetric (skew-symmertric) if for the tensor Ty = guT*j there
holds the symmetry T; = T; (or the skew-symmetry T;;=-T).

We can make the following simple assertion.

THEOREM 1. The linear operator in a space endowed with a Riemannian metric is
symmetric (skew-symmetric) if and only if for any vectors & = (E"), } = (W) there
holds the equality

(TE,M) = &, Tn)  (symmerry)

(T, ) = —(E.Tn) (skew-symmerry).
Proof. Since (TE)' = T'EX, it follows that always

(TE, M) = gTON =g;T' £ = TEY

where g,-,‘TS- =T}, since the summations over distinct indices are independent. If
Ty=+ Ty, then TyEn' = T,nk &L Inversely, if Tu't.f,"'r]" =T,n* & for all vectors
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E and ), then T, = T};. For the symmetric case, this completes the proof. For the
skew-symmetric case, the proof is identical, and the theorem follows.

Let us touch upon another simple fact. Given a Riemannian metric (g;), we
are given the scalar product of vectors (€, n) = &n = g g"n’, E=EHn=m),

and that of covectors (€, 1) = En = g‘.fg,-nj, E=(&), n=(n), where g‘jgjk= 8, by
definition.
There exists the operation of “raising and lowering indices™:

E) = & = (g;jéj)
€ - &) = &%)

THEOREM 2. The following equa[ity holds:
for any pair of vectors § = (& ) n= (1]‘) and a correspondmg pair of covectors

(ﬁ.) § (&%), 1 = M) = (gy™) the scalar products coincide: 51 En.
Proof. SinceEn=g; Evand ET=gVE; ﬁj. then we have

E.-ﬁ"'gijéiﬁj = gijgikE.ukgjlnl = sikgkgjln §'Tllg;1 &n

asrequired. Thus, the scalar product on covectors has been introduced proceeding
from the requirement that after lowering indices we obtain the same scalar product as
for vectors. Concluding the purely algebraic theory, of tensors, we think it is
instructive to make the fnllnwmp remark. An |mnnrtant role is nlaved hv anma]

types of tensors which possess additional symmetry properties under permutation of
one-type (upper or lower) indices.
For example, for rank-two tensors we had two classes:

Tij=-

Ty

Tﬁ (skew-symmetric),

=T:

) (symmetric).

Symmetric tensors of rank two have already been repeatedly encountered in the form
of quadratic forms on vectors. Of independent interest are any rank skew-symmetric
tensors of type (0, k) or (&, 0):

£y e d
1™k
Til g Ot T .
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g i ,
DEFINITION 1. A skew-synunetric tensor Ty ..; or T° "isatensor that

changes sign under an odd permutation of indices and preserves its value under any
even permutation of indices.

For example,

In a three-dimensional space with coordinates P

tensor of rank three is specified by one number

Tip3 = T3y =Tayy = =Ty3 = =T33 = =-Ty3;

(the other are equal to zero).
Similarly, in the two-dimensional case, a skew-symmetric tensor of rank two is

given by one number (the coordinates being x?, x%):
T3 =-Ty, Ty =Ty =0=-Ty = -Typ

Conclusion. Skew-symmetric tensors of rank equal to the dimension of the
underlying space are specified by one number, while those of higher rank, are equal
to zero (since at least one pair of indices necessarily coincides).

How will skew-symmetric tensors transform under the change of coordinates?

THEOREM 3. Skew-symmetric tensors of rank equal to the dimension of the
underlying space are transformed under the change of coordinates x = x(z), x =
o, a2 ), z= & 2 .. ) by the following law:

2. =Typ_ o, T2 = T2 g1 ,

ax .
where J = det (%) is the Jacobian of the change of coordinates, Ty, . ,T'*" is
d
the component of the tensor in coordinates (zl. 2, ... ).

Proof. (To make the notation shorter, we shall restrict ourselves to the case of three
dimensions). From the general transformation rule, we have

o ad ax*

az1 a7 323

£

123 = Tk
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However, by virtue of skew symmetry we always have i  j # k, and all the T will,
in this case, coincide with T3 up to the sign of permutation:

()

Recall that the determinant of any matrix aj- = A is algebraically defined as

p (—1)"‘a‘ll...al'l
i) g eeny "

1 2 ...n
where (— 1)™ is the sign of the permutation ( o _ }
4y 12 In

Obviously, this implies the theorem. For tensors of type (3, 0) we use the same
arguments with the same result.
Thus, the quantity fx!, x%, x3), which under the change of coordinates

x = x(z) is multiplied by the Jacobian f(zl, 22, z3) = fix(z)) - J is a skew-symmetric
tensor of type (0, 3). We arrive at the following conclusion: in fact, in the analysis

we determine the integral over the region “‘J‘ f dltdde’ of a skew-symmetric
1

tensor which in the analysis is denoted by the sign [f dx'dxdx’} since under the
change of coordinates it is multiplied by the Jacobian. In the sequel we shall return to
the theory of integration of skew-symmetric tensors of type (0, k).

Here we shall merition, in addition, the concept of the element of volume
associated with the Riemannian metric: on a surface with coordinates x!, x* and a
metric g; there is introduced the quantity (g)m' dx'dx?, and the area of the region U

is equal to “ (g)mdxldxz. The quantity g is equal to det (g ij)' We can easily see
1]
that under the change of coordinates the quantity g = det (g;) transforms as

oLt ., z=(EL 24 .2,

x=x(), x

g' = det (g,g)

J det (g;),

ar
where J is the Jacobian of the coordinate change J = det (i ).
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Conclusion. Under coordinate changes, where J > 0, the element of the volume
behaves as a skew-symmetric tensor of rank n, where n is the dimension of the
underlying space (this case is of importance for n = 2, 3). The tensor here is of type
©, n).

The volume of a region in space of arbitrary dimension n endowed with a
Riemannian metric g is defined, as in the case of two dimensions, by the formula

o) = .” (g)w'd:r1 ... dx"-. The element of a volume will sometimes be written as-
U

(g)”2 dxl A ... A dx", where dxi A dx’ + dx’ A dx' = 0. For more details see

Section 2.10.
For convenience in our further calculations it is instructive to scrutinize the

tensor &;, defined as follows: the component. Bi) i is other than zero if and
n

only if there are no repeated indices among iy, ... , i,,; given this, we have

i, .i =

+1, sgn(iy, .., i) = +1 (even permutation)
-1, sgn(,..,i,) = —1 (odd permutation)

(Of course, € .i is a tensor only under coordinate transformations with Jacobian
o by

J=1)
Clearly, for any skew-symmetric tensor T,-l _; in a space of dimension n the
n

equalityT,-l g = Ty L€ holds.

T
- L3 n - »

Suppose in a region of space R" we are given a metric gz. Then we may

define the essential operation * which permits identification of skew-symmetric

tensors of type (0, k) with those of type (0, n — k), that is, tensors of complementary

SRISVIS VR Y PEAVy AL VL Y 2t 1o, TLRloU o UL LA AR AALE

ranks.

DEFINITION 2. If T‘l iy
skew-symmetric tensor of a complementary rank n — k given by the formula

is a skew-symmetric tensor, then by *T we denote a

N R R L

ll eur ln

(*T)

ik+l in
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iy ol
Given this, T! ™ ¥ is a tensor obtained form the tensor T iy iy through raising
Tk
le "'jk'
is a tensor already under all regular coordinate

indices, i.e. T' *=g"! g
The expression gl"2 € i,
changes (with a positive Jacobian). Thus, the expression *T is a skew-symmetric
tensor.
We can easily verify the formula:

*(*T) = (- DR T,
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2.

in
=4

Most of the physical laws are represented as differential relations between physical
quantities. Many of these quantitites are tensor fields (in particular, vector fields) in a
space or in a region of space. It is, therefore, of interest to us which differential
operations on tensors generally exist that, in a certain sense (specified below), do not
depend on the system of coordinates. For example, the simplest of the operations is

as follows: if a function f{x, &) or a tensor field T;,: ,:: (x, o) depends on a point

of space x = (xl,xz, 13) and on a certain parameter ¢ not associated with the space,
then we can take the partal derivative with respect to the parameter

of ATy & ®a)

- (x,0) or
Jo da

at each given point. In classical mechanics, this parameter is time ¢ = o. This
operation is not connected with the geometry of space (x!, x2, x°) and is performed
separately at each point. Another well-known differential operation not connected
with the Riemannian metric is the gradient of a function (scalar field):

v = (

-, - - r
g 49 0o
1 o2 3) = grad f.
ox ox  ox
This is a covector constructed in an invariant manner from the function fin the sense

that under coordinate changes its numerical notation changes according to the tensor
law

x=x(2), —=—-—.

ox ox oX
A frequently encountered case is a multi-dimensional extension of the gradient to
skew-symmetric tensors.

DEFINITION 1. If T,-1 iy is a tensor which is skew-symmetric with respect to all

indices in an n-dimensional space with coordinates o, ..., xY, iq =1,..,n then

its gradient (V°T Dy Je1 is a skew-symmetric rank-(k + 1) tensor of type

(0, k + 1) with the components
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19T, A
VD jy = 2 - ;{ Bl
1 ox?

(the hat over j, in the numerator jy, ..., fq, - » Juyy implies here that the index j, is
revnit el
OILiucay.

Before turning to verification of the fact that V*T is a tensor, we shall consider
some examples.

1. Ifk+1=1and T=f(x) is a function, then, by definition,

i.e. this is the usual gradient.
2. If T=(T)) is a covector, then

s ar, T, 5
VD, = — - —f = —(VT)ﬁ-
oY ox
This tensor is often defined as the cur! of the covector field, (V’T) =rot Tif T isa

covector. (The alternative term for the curl is “rotation”, which is responsible for the
notation rot 7). The curl is a skew-symmetric rank-two tensor of type (0, 2).

REMARK. If n =3, i.e. the space and the coordinates xl, xz, 2 are Euclidean, then
it is customary to associate the tensor (V’T)‘-j with the vector ('q") =rot T, where

oT. oT.
N = ax_: - a—j = (V'Dy
X
oT. oT
2 _ 3 1 _ s. _ )
n = g - 53_ = (V D31 = (V n13:
oT. T,
n - a_'.’l e = (VD
24 X

3. Given a skew-symmetric tensor T = —T}; in a Euclidean 3-space, the
third-rank skew-symmetric tensor V*T has the form
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oT. aT. oT.
VST) 12 13 23
( 123 = 3 - 2 + 1
ox ox ox

REMARK. If the coordinates (xl. xz, 13) are Euclidean and if according to the
above mentioned rule of association of the skew-symmetric tensor with a vector
= Ty, n’=- Tia, 7= Ty,, then we have

~1 .2 .3 i

an°  dn  dn an
v'n,.. = + + = —
1z ox’ aJr2 o ox

In Euclidean coordinates, the operation associating a vector field (1']") =1] with
i

anumberdivn = ﬂ is called divergence. There holds
ox'

THEOREM 1. The gradient V°T of a skew-symmetric rank-k tensor of type (0, k) is
a skew-symmetric k + 1-rank tensor of rype (0, k + 1).

Progf. Suppose we are given the coordinate change

=2, .., i=1, .., n.

By definition
oT, A ..
STV, = 1\ ) A My 39!
(VD iy, %:( Iy :
ox¥?

in any coordinate system.

Let T; L =g be components of the tensor in coordinates (x) and let 'fjl -k be
those in coordinates (z).
By definition we have
1 ‘k
Ty iy = Tiy iy i%aJC—Jk ()
a oz

Next, by the definition of the tensor gradient,
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aT A
S5 - q gt
VD gy = B D——1—,
0z9
oT 2
(V"T)‘-l iy = Z(-l)p __lp'_ -
o oxP

191

2)

To prove the theorem, it is necessary to substitute formula (2) into (1) and
make sure that the gradieniV*" is expressed in terms of V°T by the tensor law.

Since the corresponding calculations are cumbersome, we shall present a complete

proof fork=1,k+1=2,

oT. s
If T, is a covector and (V’T)ij = — — —Z  then
ox ox
# o1 & D, = ﬁ - ﬁ‘_
k Yot o a7 oz
and we have
9T, oT 3 ' 3 o
D= - =50 -56=
0z 0z dz 0z 0z oz
e @ W

azi azk : az"azk azk az" ! azk'az"

oT, az") ax 9T, af\ ax
o 97 af af of of

(only indices k, { are not summed). Let us denote p in terms of j in the first summand

and g in terms of i in the second summand. Then we obtain
o ad & 9 a af _ 9T

. ] LAY P
o o of ot ot 3t  of

This completes the proof fork=1,k+1=2.

S,

V),
Y az't az"
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In the three-dimensional case there also exists the case k=2,k+1=3. The
third-rank tensor (VT);; in a three-dimensional space has the form

aT. oT. oT.
VD). = 2 71 T3 (
12 ax3 ax2 axl D

On the basis of Theorem 3 of Section 2.4, we shall prove that under the coordinate
change

x = x(2): (V)13 = J(V’T) 5, (I
where
J = det( )

Itis uscful to considcr

LEMMA 1. Under the change of coordinates x = x(z) the components of a
skew-symmetric tensor of rank two are transformed by the law

= XiT,

L'l’

where

axt af o

= e ——— e — —

is the minor of the marrix (%).

oz
Proof. Since
k o i P4k
Tj = Ty aLai and Ty = -T; = -Ty aiai
o o7 oz o7
it follows that
~ o 0.
¥, = ETH[I ai_a_"i % ()
kd o a7 3 o/ bt 2V

as required.
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Substituting formula (III) into (I) and making use of the fact that the
determinant of a matrix is equal to the sum of the elements of the row multiplied by
the additional minors, we obtain forroula (II). We shall not present a detailed
derivation of this forroula. We have, in fact, carried out a complete proof of the
theorem for covector field gradients (k = 1, k + 1 = 2) and also pointed out the useful
formnla for transformation of ckew—wmmemc tensors of rank two.

We should like to draw the reader's attention to another useful property of the
gradient of skew-symmetric tensors, namely, to the property that the square of the

operation V¥ is equal to zero.

THEOREM 2. In an n-dimensional space (n is arbitrary), two successive
applications of the gradient operation to a skew-symmetric tensor yield identical zero:

Vi(VT) = 0.

We shall prove this identity for a plane n = 2 and for a space n = 3.
1. n =2, We should show that for any function f(xl, x%) there holds the
identity V°V*f = 0.

oT. oT,
Since (st)i = —ai- and (st)‘.j = — - —L we should substitute T, = if-
ox' axY oax ox'
and verify the identity
o,
2&y-2 i) =
o or ax

This rélation is familiar from the analysis and completes the proof for the case n = 2.

2. n=3. Here, two cases exist:
a) V*V’f =0 for the function fix!, x?, x°) or rot grad f= 0.
Indeed

af
2&)-2&)-
ox o ax
b) if (T}) is a vector field, then
VWVWT=0 (divrot(T) =0
Indeed,
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d ) 0
ox ox ox

oT, ar ar
- 22Ty - 75 + 2 =0
axl o ax ax ax ax ax ax

This proves the case n = 3.
(For all n > 3 the proof is similar

AV praVe A0 SXiaaal

We have, in fact, included in our consideration, all the differential operations
on tensors which are not in any way related to any space geometry, in particular,
metric.

We shall point out, in addition, a frequently exploiled essential fact for tensors
in R® in Euclidean coordinates of a Euchdcan spa.ce fut any tensor the upper and

lower indices are indistinguishable: lel “_jn =71 =T,

.
S’

1 e imil —Jn -
since g = §;;. There naturally exists a partial derivative

T. .. . =
o bl Ik .k

and the divergence of the tensor

E J ...j
ax 1 n

Jd i R
1 - =divT

(with respect to the index iq). Note that these operations are carried out in Euclidean

coordinates only.
For example, the divergence of the tensor T; in Euclidean coordinates has the

form
. 0
divT = — Tij (the sum over ).
ox
We shall, very soon, proceed to a more detailed investigation of the differential
operations on tensors connected with the geometry of space (in particular, with
metric).
The gradient operation upon a skew-symmetric tensor, which we have
considered above, has the following properties.
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1. The result of the operation is again a tensor.

2. This operation applies exactly the same formulae relative to any coordinate
system not related to any additional geometrical structure of space. The skew-
symmetric gradient proves to be the only operation possessing such properties in the
sense that all the rest may be derived from this and from the above-mentioned purely
algebraic operations on tensors.

As an example we shall consider a four-dimensional space-time, coordinatized
by 2L =ct,x!, 22, 22 (c is the speed of light), and endowed with a psendo-Euclidean

metric

3 . -1 00 .
2 i
—@N+ Y (@) = ds)® or g; ( 01 0/[=g"
1 0 01
It turns out that the electro-magnetic field is a skew-symmetric tensor of rank
two, type (0, 2), i.e. the field is equal to (F}), i, /=0, 1,2, 3.

F‘J = —Fﬁ.

The components Fy,; = E; are called the vector of an electric field, E = (E,, E,,
E,).

The components F,-j = (H ,-j), L, j=1, 2,3, are called the skew-symmerric
tensor (axial vector) of a magnetic field, and Hy = Hy3, Hy = H1y,, Hy = H 5,
H=(H,, H,y, Hj).

Under the coordinate changes x = x(z) with the time unchanged X’ =2%, X' =

xi(z!, 22, 2), the electrical field E and the magnetic field H = (H};) behave as a

vector and a skew-symmetric tppcnrr

WAL BHE 8 OAYY T Oy Lasiisvat i B

The first pair of Maxwell's equations has the form V°F; =0 or

V. = aFJ.k _ aF‘.k . apl.j .
ijk i j E
ox ox ox
In components we have
1) VS(HU) = 0, aH12 - aIi13 + aH23 =0
ax3 ax2 ax!

or
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oH.
— =0, divH =0,
2) ox
VE+a—I-(I)=O, rotE=—la—H.
ox c ot

We see that the first pair of Maxwell's equations has no relation to pseudo-Euclidean
geometry and always has the form V°F = 0. As for the second pair of Maxwell's
equations, it is related, uniike the first pair, to pseudo-Euclidean divergence

3 0F., OdF, . OF..
divgFy=L—t-— =g —
FlaY  ox ox

and a four-dimensional vector of electric current j = (fy, J}, J2, J2), Where jy =pc, p is
the charge density and ' = (f}, js, j3) is the electric current vector in the usnal

three-dimensional sense.
The equation has the form

o o= _ 4r.
UJV(4)I“ij = —c—_].

Expressing the operator in terms of E and H we have
3 oF,
divE = ), — = 4rn
55 A

(here div implies the usual Euclidean divergence),

1 AR A
1 Uks “Tiv

rot H + =37 = - .
Thus, the concept of the divergence of a tensor depends essentially on the metric,
whereas the concept of the gradient does not. On this account, the first pair of
Maxwell's equations is equally written in any coordinates as V°F = 0, while the
second pair requires that the space be endowed with a metric (moreover, it requires
Euclidean coordinates in order that the skew-symmetric tensor H; could be identified
with the vector H). Recall that the Lorentz force f acting upon a charge in an
electro-magnetic field Fy; = (E, H) is calculated as f=eE + e[v/c, H], where vis the

velocity and [ ] is the vector product. It is just this formula that implies that Eis a
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vector and H is a skew-symmetric tensor, which allows them to be united in a single
four-dimensional skew-symmetric tensor.

REMARK. The vector product of two vectors (covectors) of an n-dimensional space

n = m, E = (gﬁ

T j=1,2,...n,

”~

n=@) &= GE

is given by
M, &Y = & -EW = —[n, &V,
M, Ely = m €5 — Emy = -, Elj; -

This is a second-rank skew-symmetric tensor. It can be associated with a vector in
Euclidean 3-space only.

Given a skew-symmetric tensor 7j; = - T;; of rank two in Euclidean space
(relative to Euclidean coordinates), the vector product of the vector (v;) by the tensor
T;(= 7"_,-) has the form

[T.v]; = T'w; = Tyy; = -Tpw; = = [v, T);
i.e. the product [T, v] is again a vector, which is the result of an application of the
operator T to the vector v. For example, we had the Lorentz force f=eE + e/c [v, H]
understood as a vector, v = (¢, v{, v, ¥a), T = Fyc™L,
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2.6 Covariant Differentiation. Euclidean and General Connections

In Section 2.5 we have examined the gradient operation on a skew-symmetric tensor
(tensor field) leading to a skew-symmetric tensor of rank higher by unity than the
rank of the initial tensor. This operation had the form (in components)

k1 oT, .t .i
v - q 1™ k+l
q=1 ‘q
ox
In particular, for k=1 we had
v'n.. = f‘_ - j
i i
) ox

It was pointed out that V*T is again a tensor (this was derived rigorously for
k=0, 1). It was also emphasized that the operation V* is the only one not related
to any geometry. The differential operations on tensors are reduced to this one and’
the purely algebraic operations discussed above (permutation of indices, summation,
product, trace).

Conceming the usual extension of the gradient of a function of tensors

by i
Ti-l iy _ ale wdp
N

- Jn ——x
dx

in a space with Cartesian coordinates (xj), we have already said that the resultant
“tensor” is really not a tensor. Since this operation is used rather frequently, we shall
point out the class of ransformations under which its result transforms as a tensor.
These are linear transformations of coordinates.

THEOREM 1. I in a space we are given coordinates and a tensor field T = le e din

'-1 wdp

. oT. .
then the field T;ll ;;n”'k = J_lkj"_ transforms as a tensor under all linear
ax
coordinate changes
¥ = dd, a = const,

7= bif-xi, bH = §..
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Proof. For linear transformations, we have

i ] 2
a—x_ = a; = const. and a.xk = 0,
74 070z
% = b; = CONSt., a;b{c = 8;;.

By the definition of a tensor, we have

~ky K i, i ale <':)zk1 N (0, &
Tyl iy = Tjy o NN T dpb
oz ox
where
@ = Gonsim)y B = Gy, .0, k),
0 = Grendnh O = Uy, L) (1)

Since aj- = const., b’}c = const., differentiating forrnula (1), we obtain

~ (&) ® ®
T (& aT(l) = aT(n 0y & =3T(n o’ D p® o p®,0,ppk)
T 0 - 2pb "= %P "?0%°o -
o o7 o o

This is the transformation law of a tensor, which implies the theorem.

5 ;
ax

oz* 37

In the proof we have essentially used the fact that = 0. Consider, for

example, tensors of type (0, 1) or (1, 0):

M, A _
ax* * axk ¢

By virtue of the theorem just proved, T}, and T' transform as tensors under linear
coordinate changes. Under general changes of coordinates X =xi(zl, ey 2N, i=1,
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2,...,n, where = (), we obtain

~ oT, 3 ax aTBx 3y
+T

AP PV ai Tl aed

aT; a;’ axi azxi

= — — — +T,

o o of ' 8

2 i
-1 & af’ a T ax.=7}q.
7 af az' az%7

Here, as always T are components in the coordinate system (z) and T are components
in the coordinate system (x). Thus, the general transformation formula has the form

Mz o @w
M Pyt Tafed @

2 i

The summand T is not of tensor character. As deduced in Section 2.5, the

o3/
expression

o a3l
¢ ateanonr Rt the cummoatmrzad nart
A0 & vWwilowi AdWE Wiw OVALLLIWVLLIGLWAL Pmt
~ o ar g
(Ti+Ty) = T+ T = == +or,
o 3 ‘ 3%/

is already not a tensor relative to arbitrary coordinate systems
Similarly, for T% we have
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| ~ L P _ .
T ﬁ:%(ri):-a—?i-kr%(i =
0z oz ax’ a2 ox dz ox'

af af 3 3%
+T

T o o aded? ot

As we can readily see, this is not a tensor because of the second summand.

Formula (3) implies
~ ] i . aZ) q
T§_=aff=ara{a_z_+ra_z’3_

o7 o 9z ox ax'ox? o7

, . a2 q . . .9 2 j
rg.r 22 ¥ g ¥ 37
e ox ! o7 ) 07 oxox’

3

“4)

REMARK. The expression £ = T: is often called (in Euclidean coordinates) the

ox

divergence of a vector field. We can see that the expression T, is not a scalar if the

change of coordinates is non-linear.

EXAMPLE. It is customary to use this formula to calculate the divergency in terms
of Euclidean coordinates (x}, 2%, x°) only. The meaning of the divergence, as is well

known, is as follows: given small displacements of points in a space

* o d+70L 20 = 27,

the element of a Euclidean volume dx! A dx® A dx°, after the displacement of the
region, takes on an additional term T A x! Ax2 A 23, Indeed, the new volume is

equal to

{ElAdngd;:), =

5 el . A 3-72 . - 3'1'3 .
= (' + = ) A (& + Z—ad ) A (&' + — ).
( — ) A ( > YAl af )
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We shall recall here that by definition dfAdd = —dx¥ AdY, and, in particular
dx' A dx' = 0, as is natural in the formulae for the volume element. By virtue of
this,

ar

N A (2 + 20 ad) =
(ax' al}df)/\(dx+ d) A (ar aljdx’)

= dil AdPAdS +T dx' AdP Ade® + dx! A dx® A dx,

(quadratic and cubic expressions of the components T",c).
In the the case where T(x!, x?, x*) and T, are small, we have approximately

i Adia Adis = (1 +T)dxl A d2 A d,

or, more precisely, in the case x' = X + T, 2, %) =x ¢, where s a numerical
parameter, we introduce the “volume element distortion” function

& A dit A dx

3

- 2 = Ao
o' A dx’ A dx’

Then the following equality holds
d ; N
d—’: |, =T, 23 = div (T,
where

=r§1
I.d J

and (xl, 2, 13) are Euclidean coordinates. The reader is no doubt familiar with this
from the analysis. We have dwelt on this remark specially just to recall the concept
of divergence of a vector field in Euclidean geometry.

Let us now return o our subject connected with the gradient transformation law

1" m
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Let us agree, on the basis of the theorem proved above, to apply this operation only
in terms of Euclidean coordinates (¥) and any other coordinates differing from
Euclidean by the linear change

I" = G"JZJ, a':,- = const.

We have already said that applying this operation by means of the same
formulae in terms of another coordinate system which differs from (x) in a non-linear

ki ook
change, we obtain the expression T ,-: ;:"q

related to 7} through a non-tensor
transformation law.

Now let us approach this question from another point of view. How do we
know that the gradient operation should always be applied using ««« nd the same
formula? We may assume that

a) this operation is essentially related to Euclidean geometry .

b) it is applicable by this formula in terms of Euclidean coord:nates (x) only;

c) the result of this operation is a tensor.
used to apply this operation in terms of other systems of coordinates related to a
Euclidean non-linear change? To deduce corollaries from these hypotheses, we
should first calculate the result of the applicaton of this operation to a tensor field T in
Euclidean coordinates (x') and only after that transform this result, using the tensor
law, into another coordinate system: x =x;(zl, w2 i=1,2,..,n

Let us do so:

.r(l) = ﬂ (i) = (ilv wee y im)1
P D =G

By definition Tf,%p is assumed to be a tensor. Therefore,

o~ a3 o
Tiﬂq = T?lk x([) Z(D ? (5)
dz  ox’ of

where
i j ky k
a?  ax oax™ 9z az"”
_ (l) hd R .. ; i DY i .

0z 9z ! 9:™  ox! ox"
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The question is, what operation in the coordinate system z(” is used to ransform the
components T{Rq into Tg‘}q.

Consider, for the sake of simplicity, vector fields (f) and covector fields (T}).
In this case

T£= p T T

o o
. 6)

Since Ti = E , from formula (6) it follows that
P

_or o of _or 3t .
o o ' o

T

- 1

Recall that T¥ = TP dizp. Formula (7) implies the equality
°

- oT a d =~ d .0
fe = =S O-T S (& (8
o o o’ ! ox'

a—x- , we obtain the final equality

-

_ T mu I " o
T ada™ o )

Now let us introduce the notation

o a™ ¥ af A
= : (10)

p of &’ ax‘ax”' ox" 99
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Formula (9) asumes the form

THEOREM 2. If the gradien: of a vector field (T transforms as a tensor and is
applied in a natural way in terms of Euclidean coordinates (x):

;T
T, = —,
« axk

then in terms of any other coordinate system (z) the gradient is given by

‘Tk= _ai_'.l‘k;.p

q P
o7

where the coefficients I“;q are calculated by formula (10).

COROLLARY 1. The divergence of a vecior field, div (f) is defined as contraction
of its gradient, and in terms of any coordinat system is given by the formula

div(T):Tt: —aazk'l-rtq;p
Z

where
Bxi ox™ azzk
rﬁq =- q iam’
of of ox'ox

(11

Here T are components in the coordinate sysiem (z), and x'(z) are Euclidean
coordinats as functions of the coordinates (2).

The corollary follows immediately from the theorem by means of the
substitution k = q.
We can similarly transform expression (6) for a covector field:
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o af 9T o af 9T, )

Pal of of of o & o

[q=

atiad ok ade - ad 3 o
0 G2 LT 2y g2 D &y,

o ol et 3t od o 3z

aT. 'R -~ AJ Dznk 21}7
k ok (14 (o l-4 oX

= _q ) + Tk _l‘ - _q =
oz dz oxoX oz

i
- = - T,,
af of afed af Y ¢

- aT:' +"’ % ox’ azzk ) oT, k=

So we have come to

THEOREM 3. If the gradien: of a covector field (T;) transforms as a tensor and if in
oT.

the Euclidean coordinate sysiem it is calculated in the usual manner: T, = _

k
ox
then any other coordinate system (2) it is given by the formula
'
Ty = — ~T1a

azk

where the set Y, is the same as for the vectors (T') in Theorem 1 and is calculated
using formula (10).

Thus, the application of the gradient operation based on the fact that its result
behaves as a tensor under any coordinate changes x = x(z) yields distinct formulae
for vectors and covectors:

~

~ oT. ~
Ty =— + T (for a covector),

k ik” q
x
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7 = E + l’l ?q (for a vector).
k P qk

However, the set I'p; is common for them.

We shall not carry out detailed calculations for any tensors of type (i, n) but
only give the result,

THEOREM 4 (without proof). If the gradient T{}),, of any tensor field T{ of rype
(m, n) behaves as a tensor under any coordinate changes and if, in a Euclidean
coordinate system i1 is determined by the formula

i)

e - 20
g o ’
then in any other coordinate sysiem x = x(2), it is calculated by the formula
8T~(k) m ko k=pk

n _%qp L Fa m ki _ e 5
e = + 2 i iy V=2
i

o df=p win

Tijg

(12)

ky ..k
i

~R
|

where the set of functions T% is calculated by the same formula (10).

For example, for tensors or rank two

~os a?]: . ~s
) T, - g +T§T‘Pk—T;,l13k_,
2y Ty = _ax—k = Tpi T =Tip T
Y & L
3 T = ‘;T +TAT, + TP, .
24

The operation of calculation of the gradient of a tensor Tig is always denoted
by

D) i) @) = e i
4Gy = LGk
(’) = U]v sas vjm)-

gradient
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We should like to emphasize that the operation introduced is essentially related
to Euclidean geometry. The point is that we have defined this operation proceeding
from two requirements:

a) the result of the operation is a tensor,

2) in Euclidean coordinates it is calculated by the formula

0
aTED = T(D
axk Oxk -

From the point of view of this operation we can say that we call affine such
coordinates in which the gradient of any tensor is calculated by the formula

D
0 _ o7
(k k
ox

These coordinates differ from Euclidean coordinates by an affine transformation.

We should find out how the set T i(2) changes in a given coordinate system (z)
under the change = zi(y), i=123.

If there exist Euclidean coordinates (xlxz x3)

then, according to formulae (10), we assume

= _ax'. o & _ ™ o7

Mo o aw afed ™

In the coordinate system (y) we shall have

™= oo ar oY a’_v" _ "

P o add o

From formulae (10) and (11) we obtain

A A O
oty ad f & o B
P ol ol | P af o

- = + . ’
axla f aym ayn aymayn 3 xl aymayn
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since

Pt _ 8 ot afy % o . '

aynaym ayn axi aym aymayn axi aym axla f ayn )

Therefore

o Lt o
P m n + m- n = i man '
dy dy 3y oy dx dy dy

whence there follows the equality
5 q 2 k
ayk (r:q 0 oz . 0z
az aym ayn aymayn

¥ o I _ s

at o HH oy of

Finally we arrive at the transformation formula

- &' ( of & | 3%t

mn azk Pa aym ayn aymayn

(13)

The covariant differentiation which we have introduced in Euclidean space is
symmetric, that is, F",k = l'"k, This follows from the explicit formulae for the
Christoffel symbols expressing these symbols in terms of first and second partial
derivatives of the new coordinates with respect to the old coordinates. It turns out
that the concept of covariant differentiation can be introduced on an arbitrary smooth
manifold. This operation can be defined using formulae (12) and (13). It should be
noted now that the Christoffel symbols do not necessarily have the form (10) and
(11). We shall conclude this section with the following definition.

DEFINITION 1. A general operation of covarian: differentiation (taking the gradient)
of tensors of arbitrary type is said to be defined if we are given, in terms of any
system of coordinates 2, zz, 23, a family of functions T‘;q(z) which transform under
arbitrary coordinate changes z = z(y) according to formula (13).
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It should be emphasized that in going over to the definition of the general
operation of covariant differentiation, we have taken, as the basic one, only the
transformation formula (13) and renounced the requirement of the exismece of “affine
coordinates”, in terms of which the Christoffel symbols I, & are equal to zero. Such
coordinates may not exist for general connections.

For vectors and covectors, the operation of covariant differentiation of the
gradient is specified by the formulae

LR
k k Jk

ox

oT. .
T = 5 TaTp

ox

and by formula (12) for general tensors. Given this, the transformation law (13) for
components l'* is determined from the requirement that the covariant gradient of a
tensor be again a tensor. (In spite of the fact that the components T ; themselves do
not form a tensor.)

REMARK 1. Anoperation of covariant differentiation (of a gradient) is often called a

P e JP, 7. YR . P . Ny Sy P

(u_uc: ensial-geometric conneciion, or affine connection.

REMARK 2, A connection is said to be Euclidean if there exist coordinates (xj) in

> _ Ty
terms of which 1"'%}-=O, i.e. such that TED o = — Ihese coordinates are called
ox
affine since they are defined up to an affine transformation.

If an affine connection is given beforehand, it may so happen that for it there

exist no affine coordinates. This will be the case, for example, if a2 connection is

Wwhdsr 1w Raldiiie Wil veriiiatwos AARA VVass vw Liiw wiadwy aWie whadkad

non-symmetric. Indeed, if for such a connection there existed affine coordinates, we
should have, in terms of these coordinates, the equality I'; 5 = 0, and since the
difference I'; = 1‘",; =T, & always forms a tensor (and this can be verified), it follows
that the symbols T, & Will become identical zeros in any regular coordinate system,

which would mean that the connection is symmetric.
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2.7 Basic Properties of Covariant Differentiation

In the preceding section we gave (without proof) the formula for covariant
differentiation of tensors of arbitrary rank. _
In some expressions for the Euclidean case we obtain for I"J-q

r = == (=), o)

I‘qu:-——— @)

[ d
- el

ﬁ=——————— ®)

= X!, ..., z"),

7 = Jit, L xm,

where x(z(x)) = x, 2(x(2)) = z and the matrix \aaizu- ) has a non-zero determinant (the
B
Jacobian is not equal to zero).
Proof. Since _@z_ ﬁ =8 = const., we have
ax* o

D5 o 2 % o o7 o a° az "

0= — =

T M e o 3% ot az’ & 5731

which proves the lemma.
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Thus, we have two distinct expressions for Christoffel symbols I"f,-k of
Euclidean connection

I‘f’ S e—e— S - ——— —— -
B a” %o of of @

We shall recall the definition of the general concept of covariant differentiation
(already not Euclidean).

DEFINITION 1. Covariant differentiation of vector (covector) fields is an operation
which in each coordinate system (zl, z2, 23) is given by the formula

7'; = ?5;'*’1—}; T (for vectors) (%)
Tl.;q = az—; "rd,-;,T,- (for covectors), ©6)

where I“;-q are some functions in a given coordinate system. Given this, the
transformation law for the quantity (1"5.-.?) under coordinate changes = zi@l, s VY

is specified proceeding from the requirement that the result of the operation of
covariant differentiation be a tensor.

REMARK 1. Affine coordinates for the operation of covariant differentiation (if
these coordinates do exist) are (), where x’ = x}(z), such that, in terms of these
coordinates, the following formula holds

) =27; or ! = 0.

REMARK 2. The operation of covariant differentiation is often denoted by the
symbol V

VqT" = Tl:q (by definition).

The first point to be clarified is the transformation law for the symbols I,
under the change z = z(y). There holds
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THEOREM 1. Under the change of coordinates z = x(y) the quantities T, transform

by the formula

gL al ¥ azzip)_
Ip 3 nayz ayp ayzay

Proof. Since the expression
A irigari avy
R4 M 9 q

is a tensor under the change z = z(y), we have (using the equality T' =

~ ~ - !

FoL p (O, Y
P ayp JP azq mg ayp a7
a—f-all+ri y il o

a 32 ™ 3y &

!

Thus, we obtain

¥ _a_yi o4 o oz o

% 3 % Tt

and the theorem follows.

2 1 m
;ﬂ[ 0z ay+az )

)]

Fo92);

)
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COROLLARY 1. Symbois T‘;# transform as tensors only under linear or affine
2 i

tranadormations of coordinates z = 2(y), where = Qforalli,a,p.

COROLLARY 2. The alternative expression

Tip=Th = Ty

&
0
«

(13 . ']
tensor (the “torsion”).

Proof. From formulae (7) we can see that under permutation of indices / and p, the

ko 2
summand Ey_ alz remains unchanged. Therefore, the transformation law for
az ayoy

]"fp —l":,, will not contain this summand. Hence, this is a tensor (called “torsion™).
On the basis of the result of Corollary 2, we introduce

DEFINITION 2. A covariant differentiation of 1"’,5_,- is called symmetric if the torsion
tensor ['%; — I'%; is identical zero in each coordinate system or I'§; =T%; .

EXAMPLE. If there exist affine coordinates (x!, x2, ... , X, where l"",g- =0, then
relative to all coordinate systems (z), the torsion tensor is equal to zero and we have

~e
(]

~
l",g = l“]k

Indeed, in the coordinate system (z) we had, earlier, the formula

- % a® af
Ay ST T T T
. oxox¥ dz= a7

This expression is symmetric with respect to (&, J).
Next, the operation of covariant differentiation of a vector field enables the
divergence of a vector field to be defined by the formula

dv(r) =T, = ax, rr. @®
o 7

For the Euclidean covariant differentiation, where (x") are affine coordinates, we have
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ax* o

7 imt a®
Therefore,

N 4

i a7, oz g

We shall now present formulae which define covariant differentions of second-rank
tensors:

—
qu = VkT. —I--Tq;riqk -Tzqrfk ’
oz
. oT .
_ i_ J _pl
T, - v - a—;ﬂm A
F
= ka7 = I‘"l" + T'ql"’ 9
az

where l'_‘,q, the Christoffe] symbols, are the same as for vector (covariant) fields.
What is, generally, the relation of a metric tensor to the manner of covariant
differentiation defined by (T"f j)?
These two entities have been introduced for different purposes. The metric g;;
has been introduced to determine metric relations in space — first of all the lengths of

cm s e S o PRI R PRPSURHPIIITIEEP, W PR, [ S e ol

Curve segmenis and the angics between them at the poins where incy intersect. The
symbols (I i) have come as the only possible way to construct the differential
calculus of tensor fields (in particular, vector ficlds). We have seen that the formula
of covariant differentiation involving 1"" appears already for vector fields:

VT‘ -%H"‘ 7.

In fact, for functions (zero-rank tensors) we had the gradient operation

Vfi=— and the derivative with respect to direction: given the vector (E) = Eata

point P and a function ﬁzl, ... » 2", its derivative with respect to the direction & was
the expresssion
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of ;
&,‘ i = E('Vif)
0z
at the point P. Given a covariant differentiation we can determine the derivative with
respect to direction for vector fields T".

DEFINITION 3. The covariant derivative of a vector field (T (or a covector field
(T))) with respect 1o the direction of the vector (é") at a certain point P = (zl, 4
is the expression V; (T) = E* VT at the point P (or the expression ViT; = EFV,T;
at the point P for a covector field). The result of covariant differentiation of a vector
field with respect to the direction & at a certain point P is the vector at this point P.

REMARK. Similarly, for an arbitrary tensor field, the covariant directional
derivative at a point P in the direction &, is given by the expression E¥V ,‘T((S
calculated at the point P, and is again a tensor of the same type at the same point P.

When the derivative of a function with respect to a certain coordinate is
identically zero, we know that the function does not depend on this coordinate: when
moving in the direction of this coordinate in such a manner that the other coordinates
remain unchanged, we shall see that the functions remain constant. To put it more
generally, if we are in motion along some curve in space

2 = z"(t), i=12,..,n

and if the directional derivative of a function fin the direction of the velocity vector of
that curve is zero, then the functon is constant along the curve, i.e. if

af(zl(i), v 2 ok of _
=t =

0,
dt 3

Ny’
where &k = % is the velocity vector, then Az(f)) = const.

Is the situation similar with vector and, in general, with tensor fields? The
difficulty we come across, in this case, is that a vector, and generally a tensor, has
different components in different coordinate systems; it is therefore rather difficult to
compare two vectors, or two tensors, determined at distinct points of a space. The
operation at least requires some additional definition and additional geometric
structure in the space, namely, the structure of covariant differentiation.
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Suppose, in a space, we are given some coordin_ates (zl, ..., Z"), a covariant
differentiation V determined by Christoffel symbols (I',;) and an arbitrary smooth
curve zi(t), asrsh.

DEFINITION 4. We shall say that a vector (or, more generally, tensor) field T is
covariantly constant or parallel along the segment a<r< bofa curve 2 = 2/(¢) if the
RPN PIIY [P SR . Ln £2A1d T 0t cmmtmbn 8 o mrvemra 2 S mal e

uilck.uuucu covariant UCI.I.-VGI.UV'C Ul nc ucxu 4 at puULlIL> UL i€ Curve in uw uucuuuu Ul.
the velocity vector of the curve is equal to zero:

VT = VT = 0, ast<b,

g = azt
dr
For vector fields we have

v -, - gk(gwjkr) =0

It should be emphasized that the concept of parallelism depends, generally
speaking, on the curve. Only Euclidean geometry is an exception to this rule: in
Euclidean coordinates xl, xz, ..., X" we define paralle]l vector fields as fields
possessing constant components in these (Euclidean) coordinates. These fields are,
obviously, parallel along any curve. Since the result of covariant differentiation is
independent of the choice of coordinates, the same fields will be parallel in terms of
any coordinate system (z), ..., z"), although in a new coordinate system the
components of these fields will depend on the point.

Thus, we see that the concept of parallelism of vectors attached to distinct
points depends both on the way the covariant differentiation (or, to put it differently,
on the differential geometric connection) and on the path joining these two points. In
the section following this, we shall investigate this question in more detail. Here, we
shall only ask, once again, the question which was formulated earlier: what is the
relation between covariant differentiation and the Riemannian metric?

DEFINITION. 5. A covariant differentiation (1"t ) is said to be compatible with a

Riemannian metric (g;) if the covariant denvauvc of the tensor field g; at any point- -

and in any direction is identically zero:
i = Vigy = 0

(the tensor g;; is covariantly constant or parallel along any curve).
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nd in Euclidean coordinates, we had
)

_y aaln 141 haald

In the section which follows we shall show that the symmetric covariant
differentiation F’f ;= l";-‘- compatible with the metric g;; is uniquely determined by this
metric.

The next item is supplementary.

Gauge fields. The most general concept of (affine) differential geometric -
connection is defined locally as a linear operation of “covariant” differentiation of

N-component vector functions in a certain region U, coordinatized by coordinates
(2}, ..., 2%, which is given by the formula

k
v, " = % +Tinl),
4

i=12..,n Lk=12,..,N, (10)
or in vector notation
an ~
V,n=—+In an
oz

where the matrix I'; acts in an N-dimensional space of the values of the fields which,
probably, have no relation to the tensors in the z-space. With respect to coordinate
changes in the z-space, the set (T';) transforms as a covector. Given this, the basis in
the space of values is assumed to be constant.

Suppose we are given a non-degenerate linear transformation a(x) = (a";(z')),
det aﬁ #0 in an N-dimensional space. Let us change the basis of this space:

= a’,‘ 1’]’. Then the following simple lemma holds:

LEMMA 2. In the new basis, the operation (10) is given by the formula

, rq ’ A, an _
v = .a_"7+r‘;.n’(z), [ =d'Ta+a 1& (12)
0z oz
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Proof. In vector notation we have

, d ’ ~ s
Vn = Vi) = 57. (@) +Tan =
7

=a ( ﬂ_+ a-ll"la ;] +a—@—zf 1f|) = aV',-'r’]
dz' oz

and the lemma follows immediately.

DEFINITION 5. A gauge field or affine connection is a family of matrix functions I';

with the values within an N-dimensional space, which under the change of basis in
this space transforms by the formula

1 =an, 152 = @),

Il = a'Ta(z) +a™ -gzl (13)

(these are “gauge transformations™).

EXAMPLE 1. If N = n and the matrix a(z) is the Jacobi matrix of the change of
coordinates in the z-space, then formula (13) coincides with the transformation
formula for Christoffel symbols under tha change of coordinates.

EXAMPLE 2. If N = 1, then n(2) is a scalar function. Suppose that a(z) = exp
(¢(z)). Then we have

~ ~ a
oz
DEFINITION 6. The curve is the commutator of covariant derivatives

ViVa = ViV;-V;Vi= R, (¥ VIn)* = RS’

LEMMA 3. This commutator is a zero-order linear operator. Under gauge

transformations it transforms by the formuia R;; = a"lR,-j a(z). This commutator
determines the “curvature tensor” R'fj-,, where i,j=1,..,m k=12 ..,N.
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The proof is obtained by means of the obvious substitution. In the language of
differential forms we have

dI' = R +[I', T1/2,

where T =T; df, R = Z R; dZ A d7. The quantities I', R are respectively

i1<j
called “the form of connection’ and “the form of curvature”. These are differential
forms with the values in the matrices. For more details concerning the differential

forms see Section 1.10. The commutator of two 1-forms [I', I'] is the 2-form

[ILT]= [Fl,fl]dz‘/\dz’

EXAMPLE. ForN=1wehave[I, T] =0,

"~
T.

~
R =d

The form of curvature may be an arbitrary closed 2-form.
General connections which extend to the electro-magnetic field are of great
importance in the mathematical apparatus of the modern theory of elementary particles

(“gauge fields”). The case N = 1 corresponds to an electro-magnetic field where R ;

is the field strength and I" is the vector-potenrial.
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2.8 Covariant Differentiation and the Riemannian Metric.
Parallel Transport of Vectors along Curves. Geodesics

The concept of covariant differentiation of vector (covector) fields was defined in the
preceding sections, With respect to local coordinates it has the form

. 'r‘
T, = VI = — r T
’ dz
daT,
T, = VI, = —-T%T, M
0z

Under the change of coordinates z = z(y) the transformation law for I'*; ; is defined
proceeding from the requirement that 7‘;,‘ be a tensor

o~ q
,1.,* - .q az . ay'
: 45F o7
Therefore
;m=§_yiraax"az‘+azz“.
o o W H Y W 2

In this case, when T"‘;, =0 (or when z are affine), we obtain from (2) our old formula
for Euclidean connection

2
™ = 35’ 92
np
W
2 a
Inversely, under linear transformations, where : = 0, the transformation law (2)
dy*ayY

becomes tensorial.
The “torsion tensor” I'y, — 'y, = T%, always transforms as a tensor; for the
symmetric case, this tensor is equal to zero by definition: T, = 0. Covariant

differentiation of tensors of any rank (connection) is determined by the following
requirements:

a) a covan'ant differentiation should be a linear operation (where the derivative
nf tha o ial ¢ tha nf the daris 'nhhrnr\ and chanld ramrmnta with
At R T ¥ v oulu I.D \l\-l ai W oLllw oulu VA Lilw ML Y a.ll'\vol G@GIINE SlIVUINM WWVIMIMWRWY VY LWL

contraction;
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b) the covariant derivative of a zero-rank tensor (of a function) should be the
ordinary derivative

af
VF-= ( i
If azk

c) the covariant derivative of a vector (covector) field should be given by

formulae (1);
d) the covariant derivative of a product of tensors should be calculated by the

Leibniz formula for differentiation of a product:

@0 D XM . xO =i
Vo = VT o TH+T - (71 ™M

D.¢ - -~ (D) (D
where T(k) o ® T

As basic examples, we consider second-rank tensors 7% 7‘_, T There holds

is the product of tensors.

THEOREM 1. [fin a space we are given a connection (or the way of covariant
differentiation of vector (covector) fields) and if the differentiation of second-rank
scalars and tensors is determined by the requirements a), b), c) and d) (listed above),
then the differentiation in an arbitrary coordinaie sysem (2) is given by the formulae

£ 3t
i 31; i
VI, —k+l" T -T.T,,
oz
oT.. 3
_
Vle.j_-aT lkq’r"r 3
2

Proof. We shall carry out the proof for tensors of the form T; it is exactly the same
for the other cases.

LEMMA 1. Any tensor field 1'8 can be represented as a linear combination of
products of the first-rank tensors.

Proof. Let us choose a convenient basis in the space of tensors.
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Let e; be basis vector fields and let €' be basis covector fields. Here the fields
e; are unit vectors of the coordinate system (), where any vector field has the form
T'=T e; (T* are components). The covector fields ¢’ are specified by the formulae
ej= 6‘} and any covector field T = T_,e", where T; are components. Let us
consider the product
2] It

e‘-loe,-zo...oekoe 0..0€

for all sets (iy, ..., i), (s ... , jp). These are basis tensors of type (, [); any tensor
of type (&, I) has the form

- J J
T = Tl Jf eizo...oel-koelo...oel, (4)

where T = T1 vl

field is of the form

) - i i
Tf, ” e,-zc...oel-koe 0..0€,

which is a linear combination of products, as required.

kare components in the coordinate system (z). Hence, any tensor

On this account, a tensor field Tj; in a sufficiently small neighbourhood of an
arbitrary point can be represented in the form of (4), where U(z) are functions

(numerical) of the point.
It suffices, therefore, to prove the theorem only for products of the form

~ =

T‘J = oz) TiT J

By definition, according to requirement d),
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a ot Lo 2 Lad -
—(: TET_] + a(VkT I)Tj + (IT‘(V,:T j) =

0z

aa ~ = ~ o= ~ =
= g (aT;Tj)—anTJ-I'P,-k—aT,-Tpl"fj-k =

T..
= '—3 ~ T Tpj - Dy T
0z

which implies the theorem.

EXAMPLE 1. If T' is a vector field and T} is a covector field, then the scalar
field T"'T ; (the trace of the product of tensors) is determined. To meet the

requirements a) to d), there holds the formula
a - —_— . J J— H
a_" (TT;) = (ViIOT; + T(V,T) =
Z

aT' { aT; i
('a_z'k' + l';kT?)T‘- + (a_k - r‘i';ch)T‘ =

4

d . . .
a? (T‘T‘) + quTq Ti - r‘l.{kTqT .

From this formula we can see that the components Iy of covariant differentiation of

covector fields must have opposite signs (and coincide in the absolute value) with the
components of differentiation of vector fields, so that for the scalar T‘T,- the following
formula holds

ik (TiTi) = (VlcT l.)Tl- + T‘-(VkT;).

0z
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EXAMPLE. 2. Ifin a space, a Riemannian metric g;; is given, then the connection is
said to be compatible with the metric provided that the following formula holds (by
definition)

ng‘-j = 0. &)

Therefore, for any tensor field Tfs we have

Vq(gu 7{(3) = gu (VqT((}.;)' (6)

This formula follows from the requirement d) and from formula (5) since V U= 0.
Since the differentiation operation is linear, we have

COROLLARY 1. If a given connection (a way of covariant differentiation) is
compatible with the Riemannian metric g;;, then the operation of lowering any tensor

index commutes with the covariant differentiation.

Indeed, we have

Vk(gil (J)[)) = Su (vqTI (0
Finally, we are led to an important

THEOREM 2. If the metric g;; is non-degenerate (i.e. if det (gz) = g # O), then there
exists a unique symmetric connection which is compatible with the metric 8ij-
Whatever the coordinate system (z), this connection is given by the formula

=12 gq’( Sie "‘) @

oz' az

Proof. By definition

1) ”k = r?cx ’
ag;;
D Vigy = — ~Thgg~Tiigig = 0
2z

We shall attempt the solution of the equation V,g;; = 0 with respect to I'%,. By the
definition of lowering indices, we have
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Tiie = Te g
The equations have the form
ag‘:’.
rie +Tije = —
0z
Given this, rj,llc = j;ki; l",-u-,‘ = I',-.J,j. Permuting the indices i, j, k we obtain
og..

;—:— = (T + Ty [a]
z

ag,
a7

Crij + Tiyds (5]

2y
oz

(rj;ki+ l"ku-;). [c]

Obviously, by virtue of the connection symmetry, there holds the equality

[b] + [C] - [a] = 21"‘,1.,]
Hence

%ui % %y _ e
a7 o7 3t Y

Since gijg}-q = 8‘;,, we have

SRl PR G )
’ Y2 et
This completes the proof.

From the theorem there follows

COROLLARY 2. If the coordinates are so chosen that at a given point all the
first-order derivatives of g;; are equal to zero, then at this point the components r{ j
are equal to zero (for a symmetric connection compatible with the metric).
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EXAMPLE 1. Let us consider the case of a surface situated in a three-dimensional
Euclidean space with coordinates L =x,2=y, % = z (Euclidean coordinates):

xl = x‘(z‘,zz), 2 = xz(zl,zz), L= xs(z‘,zz).

At a given point of the surface, let the x-axis be orthogonal to the surface and let the
x!- and x*-axes be tangent to the surface. In a neighbourhood of this point the
surface is given by the equation

13=f(z],zz), d=u=x, 2=v=2,

where 2! =x!, 22 = x% moreover, since the x>-axis is orthogonal to the surface at

the point P = (0, 0), we obtain

,

afl

- =
3z 0.0

afl

T =0 or grad_flo_0 =0

at the point P = (0, 0).
For the metric g;; we have
8 = Su + - of af .
ar af
It should be recalled that g; d7'd? = (dx)? + (dy)? + (d2)? = dx® + dy” + (df)”. At

the point P, where 9—} =0, we have 8= Sij and
dz

T, 2 Y, Y
a/" oo 3 adat
Therefore with respect to these coordinates, at the point P all the components I'; = 0

for q, i, k= 1, 2. These coordinates at the point P were chosen in Part I; they were

convenient for different purposes. The axis z = x> is orthogonal to the surface

x'=u=zl,x2=v=zz.

EXAMPLE 2. The divergence of a vector field (T%) has been defined as

div
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For a symmetric connection compatible with some Riemannian metric we have

VI = ar +T,T%,
az
where
. 2]
. =1p "( g,q g‘ ) ”ﬁ:]ﬂgi_
q
YO o7 o?

We can verify that g = det (g;).
Question. What is the formula for the divergence in general conrdinates?

Answer.

_ ; ‘ 12
vr =, 12 L1 - 2 o, T Inlg

a7 o7 azi weh'? &

A more convenient form is

VT = £+ ¥ 129 ((l 7).
a7 Y agh'? 3

Conclusion: the divergence of a vector field V7% has the usual form

Ve - aT‘
azl
if and only if the volume element ( lgl)m dz' A dz* A dz coincides with the Euclidean
one: (lgl)m = 1, where g = det (g,-_,-).
Now we already have a definite relation between the connection (the way of
covariant differentiation) and the Riemannian metric gz, which can be interpreted as

follows: any Riemannian geomeltry gives rise to a certain symmetric way of tensor
differentiation with respect to which the Riemannian metric itself is a constant.

How can we distinguish between Euclidean and non-Eudlicean geometries?
Can we find coordinates (), where 8 =9; and I"",-}-E 0? What geometrical

properties distinguish Euclidean geometry from non-Euclidean?
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In order to link up our present geometrical ideas with the most basic concepts
from school geometry, we recall the so-called fifth postulate of Euclid: “Given a line
through a point P, and a point Q not on the line, there is exactly one line through Q
parallel to the given line”.

The reader may know from school mathematics that the appearance of
Lobachevski geometry is due to distrust of precisely this postulate, i.e. to its validity

in a real space on a large scale.
We shall formulate this postulate in a (perhaps, not quite formal) way
convenient for our further purposes: given a vector (T)p at a point P in Euclidean

geometry, at an arbitrary point Q there exists only one vector (T i)Q which is parallel
to and has the same length as the given vector.

It is relevant no to ask: what exactly do we mean by parallel vectors attached to
different points P and Q? By definition, a vector (like any tensor) is attached to a
given point.

Recall that for any tensor field (7% and any vector E* at a point P we have

Antnemmaland o Jlen el
UGG LU Ui ICU UIC LLUCA-L.IUHM UCLJ.Vd.LIVC

VT = E*V,T.

This is the vector at the point P.

o
If we are given acurve z =z (r) and %= %, then the derivative of the vector

field T along the curve takes the form

P &%
v = —_ .
i A
By definition, the vector field is parallel along the curve if and only if Vg(,)r' =0at

all points of the curve.
We shall now give the definition of the important concept of paralle! transport

of a vector (T‘) from a point P into a point Q along a curve z (t), where z‘(O) = zo(P)
and z (l) = zl(Q).

DEFINITION 1. Parallel transport of a vector T» from a point P = (, ... , z3)toa
point O = (z}, ... » 1) along a curve 2= zi(t) joining P and Q is the vector field T

given at all points of the curve and parallel to itself along this curve: = VT =
a
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forall0<r< 1. W136n t =0, the vector field (f) at the point P must coincide with
the initial vector (T¥)p. When ¢ = 1, the vector field T at the point Q is the vector

(7")Q, and is called the result of parallel transport of the vector ('.T")P along the given

curve 2 = Z(¢) from P to 0. We can see that parallel transport of a vector along a
curve depends on the connection (T'% ) and thereby on the metric g;; provided that the
connection is symmetric and compatible with the metric.

With respect to coordinates z!, ..., 2" we obtain

o . i L a . 3.0
(')=-.dLVTl Edi.pr'dz_
¢ s @ po a

m') I‘ JT =0 @®

This is the equation of parallel transpor:. The initial data (for ¢ = 0) has the form

T0) =

= ey ic 13 T Brom the ayxlctence N
l..(i'li&ﬁGﬁ \0) is linear in T'. From the existence and uulqucucoo theorem, for any
grc

smooth curve Z' = Z{(r) we obtain the followin

THEOREM 3. The result of parallel transport along any smooth fixed curve exists,
is uniquely determined by the initial vector T, and depends linearly on the initial

vector T.

For connections compatible with the metric g;;, where V,g; =0, there holds

|:"!

THEOREM 4. If ;"'(t) and ;'j(t) are parallel vector fields along a curve z' = zi(t),

their scalar product is constant. — d (gl.T (t)T"(t)) 0 providing V oS = 0.

Proof. Since V. g;=0, it follows from the definition of covariant differentiation for
the product of tensors that



GEODESICS 231

d ~i= da ~i= dza ~i=.
= (e T) = T:Tva(gth ') = — g Ve(T'P) =

.dza ~l..=, ~‘ tdza =
= gu(T V. T)T/ + 8T (T V.V.T) =0,

and this implies the theorem.

Thus, the concept of connection compatible with the metric has appeared for
the property that parallel transport preserves the scalar product of vectors, i.. is an
orthogonal transformation.

If the geometry is Euclidean or '}, = 0, we are led to

COROLLARY 3. In Euclidean geometry and in Euclidean coordinates, vectors
attached to different points and having identical components are parallel along any

curve. In any coordinates, the result of parallel transport of a vector along a curve
does not depend on the curve provided that the geometry is Euclidean.

The difference between Euclidean and non-Euclidean geometries is already
intuitively clear now: parallel ransport of one and the same vector form P to O along
different curcves (if curvature exists) yields distinct results.

In a real space the geometry is determined by the gravitational field, but this is
the geometry of a four-dimensional space-time.

How should curvature be measured numerically? This will be our concern in
the next section.

What lines are straight? They are called “geodesics” of a given connection.

) . dz e
Given a line ' = 2(7), the tangent vector field T = =7 = T along this line is defined.

DEFINITION 2. The geodesic line of a given connection, 2 = 2(r), is such a line
i

;  dz . .
that the covariant derivative of the vector field T = I along this curve is equal to

Z€ro:
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m ot
dzzl 7 (ﬁa dzi _;
—;F'F m-zt—-d—t-—K()=0-
The equation for geodesics has the form
- i o "
.dj_+r1_d;£ = 0. )
I dt dt

Parallel ransport of the velocity vector of a geodesic along the geodesic itself is again
a velocity vecor (this is an alternative definition of geodesics).

Geodesics are given by equation (9). If I' =0, these are ordinary straight lines,
as they should be when the geometry is Euclidean.

REMARK. The vector VT (T") = izé +T ‘:t jzt K" (¢) is frequently called the
dt

. . d X
vector of geodesic curvature of this line, T= TR Given the metric gi.j, the curve can

be determined in terms of the natural parameter /, where
atp_ &
a &iardr

the vector of geodesic curvature is often determined only with respect to the natural
parameter:

&a
dl = |F|dt, |

£ &® & ~
KO = =T+ T, T T = VD
a
T“=%, irt = 1.

Geodesic curvature is the length of the vector K‘;([):

k(D = KD = (giK o0 KiD)™

where [ is the natural parameter.
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In this language, we can say that geodesics are lines whose geodesic curvature
is equal to zero

K = 0.

Let us compare the equation for geodesics (9) (in a given connection) which we
derived in this section with the one obtained in Section 1.15 proceeding from the
variational principle. Recall that in Section 1.15 we defined geodesics as locally the
shortest curve segments for a given Riemannian metric. To compare these equations,
we have to consider on a manifold a connection compatible with a Riemannian

metric, i.e. a connection specified by the condition V,g;;=0. Then, we arrive at the

conclusion that equation (9) derived in this section and equation (1) of Section 1.15
coincide. In the case of general connections, their geodesics are not already obliged
to be locally the shortest in a Riemannian metric if the connection is not compatible
with this metric.
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2.9 Riemannian Curvature Tensor. Gaussian Curvature as an Intrinsic
Invariant of the Surface

In the preceding section we have explained that in a non-Euclidean space, the parallel
transport of a vector is path-dependent. At the same time, the result of parallel
transport of a vector T along a path 2(#) is given by the transport equation

dar' ;i xd?
T + Ijka i— =0
the solution of which requires some skill.

It would be much more convenient if, instead of solving this equation, we -
could find the local characteristic of the departure of the given connection T %) from
being Euclidean. What characteristic is this? What is the way to find whether or not
there exist coordinates (xl xz ., X*) in terms of which the r, ik vanish identically?
Of course, if the connection is not symmetric, then T*J,‘ = l" ik -T 5 is a non-zero
tensor, and therefore we cannot introduce coordinates with respect to which the I"*J,c
vanish identically. In this case we may understand Euclidean coordinates as such
coordiriates (x) that l‘j-,c = 1/27‘;- that is, the r, ik 1s skew-symmetric with respect to
the lower indices (the symmetric part l"‘,q + I ,, = ().

| S PN ehall wra find ~ rhathne + Tranlida menrdinatac? Wa
£10OW Snail We 1ina out wnetner or not u1c1c C)um. CucCiialan CoOrainaics: wce

shall attempt the answer in respect of symmetric connections. We are acquainted
with the important property of partial derivatives in the usual analysis:

3 F _ 2 & _ of

aw o W e
If the connection admits Euclidean coordinates x!, x%, 5, ... , ¥*, then, in terms of
these coordinates, the tensors are differentiated using ordinary formulae

ar®
v = 0
k() ox

Therefore,

T(D 79

()= S () 7

or, equivalently,
(V,9,-V YT = 0.
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This property is valid relative to any coordinates, as long as T, k¢S @ tensor. Let us
exarnine the general connections.

Let a manifold M” be endowed with local coordinates x!, ..., x" in a
neighbourhood of an arbitrary point. Consider vector fields T  on M and consider the
differential expression V,V;—V,;V,, where V is some differential-geometric

cvTNMmeatTe Tete] tinn Wa armnlv thic syvnreccinn tn the vartar fald ’Ti h-\ nbf-“n
¥

OJ Addlliwild i\ cGllllecu\lll. Ty ﬂiJPIJ HUuo VAPAUDDI WAL W iAW Y Wil LLAWwiAAL 4 LERALL
aT‘. i
V’T‘ = g + Tprpi ’
-
; T  or
V() = — r

a . i .
+T° SI—k(l';i)+V,(TP) T -VP(T‘)I':} =

T ; T :
- T, T T

ox o v

and so
(S _2p
VvV, vk)T = (_Tr;;i"‘"—; pk)"
ox ox
2y i
-y - T )§+ (r:i ok~ Tl = U T + T, T
In the case of symmetric connection I*; ik =T i We have

(V,V,- V9T =

g gt pk K

o 5 @
= (T STy T, Tl = - 1%,

where

$ ar‘.: 1 " { " :
R = ___4 -
Rq-’d 3 k o * r:r'r;k r:kr;i )
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Thus, for symmetric connections we are led to
(V,V;-VVOT = - TR e

In the case of general (non-symmetric) connections

(VkV,- - V,-Vk)T" = - TﬂRi ol — (r‘:l - r’;k) (g + qu";p) =

= _7IR{ _TP (Y TH
IRg=4k(\Yp £ ).

Here T%; =T, - I'%;, is a tensor called the forsion tensor; Ry, is a tensor
called the Riemannian curvature tensor. So, ultimately, we have

(ViVi=VVPT = TR y—T(V, TH,
and for symmetric connections
(VVi-VVPT = - TR ;.

Te evyem e ol H ~ —
i

o it s DL e o MDA ammian) ¢ Te te mallad ehn Marnoning
CLULRID VUL L1 lﬂq'kl 1> a \Nclud.llluﬂ.ll’ LCLIDUL. I 1D CAllCll WUIC INjCillaliiliall U

tensor. For symmetric connections T%; = 0, and, therefore, in the symmetric case,
there holds

THEOREM 1. For symmetric connections and for any vector field T the expression
(ViVi = V\V)T takes the form —R' ; yT?, where R’ 1 is a Riemannian tensor, and
the following formula holds

. r ' .
—lD\‘ = a’q" —aIqu+r‘ IP—IJIP
q.d k i pk- g " pigk
oz oz

If the connection is Euclidean, then the tensor Riq_,d is identically zero; at points where

I:',,q =0 we have
K, - oy ar‘?k .
K 3t oz

What are the properties of the curvature tensor?
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1) Obviously R oM = -FR o in all cases;
2) Let R, y = g;,R", 1, where g;, is a Riemannian metric.
There following theorem holds

THEOREM 2. If a connection is symmetric and compatible with a Riemannian

metric g;;, we have the symmetries

Rigut = —Rgits Rigu = Ruip
Riq‘u +Ril'.qk +R[k.lq = 0.

Given this, the Riemannian metric determines the curvature tensor by the formula

o 2 2
aqu _ 98 _ aglli

=12 ( in 1 i
az"az 0z 0z o0z 3

tq,k!
+gmp(l";; r; - r;’; ;).

The proof of Theorem 2 for symmetric connections follows from the formulae which
express I't o in terms of the metric (g;). We omit this calculation.

Theorems 1 and 2 imply

COROLL APV 1. If a Riemannian tensor does not vanish, we

N ol AWNd R Raid A A e ARNPRIIIATIT AR P iRad W v aar iry ¥¥

Euclidean coordinates with respect to whic.

REMARK. We can arrive at this conclusion in a different way. Consider the
tansformation law for components I'}; :
in the case z = z(y), the followmg formula holds

4 P o7 o i
r’:’:p = [+ r'; n + n ) )
0z " o W

Suppose the connection is symmetric l“‘=L = 1“°" We shall seek (Euclidean

coordinates) ¥, such that I'7,, = 0. We obtain the equation for 2% = 2O, ¥, ...,
¥
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1§
e o Ta = Ty@-

Are these equations soluble? If they are, we have

3 (3 3 (azz“ ) =0
» Hy H o
We can verify that this is the condition on the right-hand side of the equations. Its
validity is equivalent to

Ry = 0.

The curvature tensor is a tensor of rank four. It is naturally obtained as an operator
on vector fields which depends on the pair (k, /) in a skew-symmetric manner:

i i T
-Rq‘uTq = Rq'[k'Iq = (VkV,-—V,ka)T—Tpu 527 ’

where T%,; = I',; — T¥,, is the torsion tensor.

In the symmetric case 7%, = (. If the connection is symmetric and compatible
with the metric g;;, then the components l"‘i and R,y are expressed in terms of g;;
and their derivatives, and the symmetries hold

1) Ryu = Ry,

2) Riyu = 8imR"g 1t = —Rgips
3) Rigu = Ry

5) Ryu+ R+ Ry, = 0.
Theorem 2 also implies an important

COROLLARY 2. The curvature tensor Ry determines the symmetric bi-linear
Jorm on the vector space whose elements are skew-symmetric tensors of rank two
with upper indices.

Elements of this space are customarily called bi-vectors. Simpe bi-vectors are
those of the form
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M« T = oY
(that is, and exterior product of two vectors: T=E A T).

The scalar product of two bi-vectors T" and f' by virtue of the Riemannian
tensor, is given by the formula

(T, T)g = T¥ i"’dRij.‘u = (T .T).

A Riemannian tensor is called serictly positive (strictly negative) providing (T, T)p is
strictly positive (strictly negative) for a non-zero T.

The curvature of wo-dimensional direction generated by tangent vectors £ and
n is the quantity

(T,
RE, M) = n",
(T

where T =& A n and (T, T) is a usual scalar square.
Riemannian space is called the space of positive (negative) sectional curvature
if the curvature of all its two-dimensional directions is positive (negative).

EXERCISE. Prove that the curvatures of all two-dimensional directions in a
Euclidean space, in a sphere and in a Lobachevskian plane, are constant and are a
zero, a positive and a negative constant (number). Prove that any Riemannian metric
with this property is locally isometric to one of these three metrics.

- How many components are there in a Riemannian tensor?
Let us consider the two-dimensional and three-dimensional cases.

L. The two-dimensional case. From the symmetry condition
Rigu=—Riygn=-Ruu=Ryy

it follows that the Riemannian tensor is determined by the single non-zero component
R3 ;2. All the other components are either obtained from it by permuting the indices

or are equal to zero.

DEFINITION 1. The Ricci tensor is the expression R ; =R"q.,-,- — the trace of the
Riemannian tensor.
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DEFINITION 2. The scalar curvature is the trace of the Ricci tensor:

R= g"qqu = 8lqRiq,ii-

An important theorem holds.

THEOREM 3. For two-dimensional surfaces in a three-dimensional space, the scalar
curvature R is twice the Gaussian curvature. It follows that, unlike the mean
curvature of a surface, the Gaussian curvature is expressible in terms of the
Riemannian metric of the surface itself, i.e. is an intrinsic invariant of the surface.

Proof. Let the surface be parametrized by coordinates x = x(u, v), y = y(u, v),
z = z(u, v), where (x, y, z) are Euclidean coordinates of the space and (u, v) =

(2!, z%) are coordinates on the surface. We choose at a given point P, where the

z-axis is normal to the surface, u = z! =x,v= = y. Then in a neighbourhood of

the point P the surface is given by the equation
z = flx,¥), where gradfl, = 0, P = (0.0).
For the components of the metric on the surface, we obtain
= % ng <
oz a7

In particular, at the point P = (0, 0) all ag,-/az" = (. Hence, at this point, l""j,- = 0.
So, according to Theorem 1 of this section, we have at this point

b4 z —x,22=y.

_Riu = % —.-—.ar;'k,
e af o
2 2 2 2
R - ln(agﬁ N a_qu gy a_gqi
Al % odad  afad  odort
(Theorem 2 of this section).

From this we obtain (z1 =x, = »):

Ripiz = ln(axay *+ oxdy > - 32
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Given this, the following equalities hold

gn = 0+ gn = (P +1 g2 = £,

2 2 2
CE 2 08y, 2 98

O, - 2 TR o) =g

Finally, we are led (at the point P) to
R12.12 = (fxxfyy +]&zy —ﬁy "fgry) =

,
= fudyy —fry = det Tty } = K.

\Jyx fyy
g fo 1) . .
By definition, K = det at the point P, where ;= g;; relative to the
fu Jyy

chosen coordinates. However, the Gaussian curvature X is a scalar and Rj5 15 isa

component of the tensor. They are equal only in the particular given coordinate
system, where g; =38, det (g;) =1=g. From the definition of R, where
R= g‘?’Riq_,-,, we can readily see that

2 ER

et (@) “Riapn = g 1242 T R.
ij

R =2det @ Ryp1p=

In our coordinate system g = 1 and R, ;5 = K. Therefore, relative to this system the
amiealiem: I~ A Lot 30 ofcms Do 3 B oo bal cmaTome alle cmcemTies;: 20 mlenimare <5nlld
Cyualliy [ = L0 HOIUS, SHICC A dllu A alC DOLIL dldlald, LI Cyually 1d ddwayd vaiid,

and we have reached the desired conclusion.

REMARK. The conclusion concerning the Riemannian tensor components implies

R R
5 €182 - 812 = Rizp2 = _Tg_ K.g, g = det(gy.

Hence, the Gaussian curvature X is invariant equal to R/2, where R = gq"Ri 1.1 for
n=2.

We shall consider several examples:
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1) The metric of the Euclidean plane dP = dx® + dy?;

Riy=0, K=R2=0

2) The metric on the sphere di? = dr? + sin? rL d¢2; here
0

K =

>0

nf

1
2
To
that is, we have constant positive curvature.

3) The metric in the Lobachevskian plane di® = dr? + sh? rL d¢2,
0

and we have constant negative curvature.

4) The conformal Euclidean metric
d? = g(x,y) (dP +dy?), g>0,
gij = 8;-g(x, .

Such coordinates x, y are called conformal (see Section 1.13). In these coordinates,
the Gaussian curvature is given by the simple formula

1 1 9
K=-—A(Qng) = —— ——(ng),

7 2008 = —op 5 8
. 3 ? 3
A= —_ = + 5

azaz ax2 ay2
3 3 9y 3 _ .. /93 .9
%~ RGig) g )

We invite the reader to derive this formula. In Part I we have shown the visual
meaning of curvature when it is positive or negative.

We shall present some more fundamental facts from the theory of surfaces
which we have not proved here.
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1) If on a surface with coordinates P28 7% we ‘are given a closed curve zi(z),

i =1, 2, which bounds a region U, then the following theorem holds:

Ab = _UK (2)'%42' A dz* = the angle of rotation of the vector under paralle]
U

enclosure along the curve zi(z), i=1,2.
2) If this curve consists of three geodesic arcs, and if the curvature of the
surface is constant, then

AY = _UK @22 A de = Ko,
/)

where G is the area of U. We invite the reader to derive, from this, the following
relations:
a) The sum of the angles of a geodesic traingle is eqaul to & + K6 < &, where
G is the area of the triangle, X is the curvature, K = const. (a Lobachevskian plane).
b) For the sphere, the sum of the angles of a geodesic triangle is equal to
© + K6 > w, where 6 is the area of the triangle (sphere).

II. The three-dimensional case. Here the situation is more complicated. Let us
consider a metric g;; in a neighbourhood of a point P, and construct a tensor

R g k1= qipR% y. The Riemannian tensor
Rigu = —Rgips Rigu = Rujg

at each point may, by virtue of these symmetry relations, be regarded as a quadratic
form on tlge th_rec_a-djmensiona_l linear space of all skew-symmetric rank-two tensors.
If we denote the pair [, [] =- [/, k] by A, B, then

Riawn = Rap = Rpy-

The Riemannian tensor is thus determined by the six numbers. Consider the Ricci
tensor R‘;,‘,-, =Ry =Ry, This is a symmetric tensor of rank two which is also
determined by six numbers Ry with ¢ 2 I. The scalar curvatre R is one number
R =g?R g = g"’R"q',-,. In contrast to the two-dimensional case, the scalar R does
not determine the whole of the tensor R‘;,',d. However, in the three-dimensional case
it suffices to know the Ricci tensor since the following formula holds

Ropys = Rey8ps = RpsBoy — RpyBos + RI2(8us8 py — 8oy ps)
(prove this!).
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The scalar curvature is the trace of the Ricci tensor Sp(R ;) = g"’Rq,. There also

exist invariants A, A,, A3 which are the eigenvalues of the Ricci tensor. These
invariants are given by the equation

det (Rq’ - lgq[) = 0,

and we have A, + A, + A3 = R.

When we say “a space of positive or negative curvature”, we mean that the
Riemannian tensor R,p is a positive definite quadratic form on skew-symmetric
rank-two tensors.

I. The four-dimensional case. The Riemann tensor is not determined here by
the Ricci tensor which, nonetheless, remains to be of great importance. For example,
in four-dimensional space-time the gravitational field is taken to be the metric (g;), i,
J=0,1,2, 3, and all the other properties of matter are thought of as involved in the
“energy-momentum tensor” ATj;, where A is a dimensional constant.

The Einstein equations for the metric of space-time have the form

i By
L o I PL S JUNN TR R - DU NP
1 IC dAIIl cquau 1> Ui UHIC dDSCIICE Ol LIALICT DECOINC
R;—-1/2Rg; = 0

(or Ryj =0 —check it!). The determinant of the metric g;; is not equal to zero, but
the metric is indefinitie (in the diagonal form it has three minuses and one plus).
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2.10 Skew-Symmetric Tensors and the Theory of Integration

The reader is already acquainted with the usual concept of multiple integral: given a
region U and a function fiz* 72, ..., 2" in an n-dimensional space, we have the
definition of the integral of the function over the region

If, in addition, we are given the coordinate change

Ij.b.jﬂz)dzl...dz" = “ .b.If&lA...Adz".

z = z2(y),

then the formula for the change of variables is
We have already mentioned that the integrand is, in fact, a skew-symmetric

‘“ 2 Jﬂz) di'...d" = ‘“ o jf(z(}’)) dyl ..dy'd,

i
where J = det (éz_) is the Jacobian,

ay
tensor of rank n. In the coordinate system z!, ..., z" the component T; _, of this
tensor is, by definition, z) =T, _ .
Recall that under the change of coordinates z = z(y) we have proved the
’
formulaT, ,=JT,_, where
for skew-symmetric rank-n tensors in an n-dimensional space.

. . laz \
J = det\—)
The formula for the change of variables for a multiple integral, as is

well-known from analysis, has the form
where V is the same region as U but written in the coordinates yl, s Y

H .L.,.jf(z) di'...d" = ”V .If(z(y)) dy' ...y,

We can see that 7"1 a=f2)-J =T, ,-J. Thus the integrand is a
skew-symmetric tensor.
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Y AR ST TS 1

EXAMPLE 1. Given a Riemannian metric {g, the determin
the coordinate changes z = z(y), behaves as

g_de:(g,,)_de:( ) P.g.
ay

Therefore, under coordinate changes wnh positive Jacobian, the expression (Igl)}?
behaves as a skew-symmetric tensor. Recall that the area of a region on the surface is

o) = ” gV dudv, u=2', v =24 n=2.

Suppose we are given a surface Y=2@,i=1,2,3z=(,2Yina space with -
Euclidean coordinates(x!, x?, x3) If we now wish to take the surface integral of
some scalar functions f{x(z)) whose definition is essentially related to this surface (let
it be, say, its Gaussian curvature), this integral will be defined as follows: the
integral over a region U on the surface is equal to

j Rx(2)) (ghdz! A d,

where f &(z) 2'dz? is the usual multiple integral. The expressi

IJ
U

sometimes called the measure (the element of volurne) on the surface and denoted
by do.

EXAMPLE 2. LetK be a Gaussian curvature and letj K (gh'2dzldz? be its
v

integral over a region on a surface; the surface is given by X= x"gz). The region U
in the coordinates(z1 zz) is bounded to a closed curve T = {Z =2(1),j =1, 2,

’
2207

N

Figure 46.
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The value of the expression ”K do is given by the following theorem
(without proof).

THEOREM 1. The angle of rotation of a vector under parallel enclosure along a
closed curve I from the beginning t =0 to the end t = 1 is calculated by the formula

A = j _[ K (Igh'2dz'dz?
U

(the connection is symmetric and compatible with the metric).

So, we arrive at the following conclusions:
1) In an n-dimensional space for any bounded region U the integral

[, Jr.

is defined, where T is a skew-symmetric rank-n tensor of type (0, n), T = (T,-l in)'

2) In coordinate notation this tensor is written as
T=T ,d'A...Ad"
(or Ty, . ,dz'...dz" if we omit the sign A).

3) If Ty . . ,=f2) is a scalar function of a point, then under the change of
coordinates z = z(y) we have

(f P . .n_ ff T .. n
”.(.j.}r(z)az A...Adz -”..U.Jr(z(y)).ldy A...Ady"

4) If we wish to integrate a function ¢(z) over the space, it is necessary that we
have a given and marked skew-symmetric tensor T in the space (such a tensor is
called the volume element or the measure); then, by definition, the integral of the
function ¢(z) is the integral of the tensor ¢(z)T

H.ij.jq;(z)r - J.J‘.b.IQ)(z)TL_"'ndzlA...Adz";

5) Given a Riemannian metric (g;), such a marked skew-symmetric tensor
T=T) . .» dz' A ... A dz" (under changes with a positive Jacobian) can be
represented in the form
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T = do = (g)2dz A ... Ad

and the integral of the function ¢(z) is given by

”.b.‘[q»(z)r = H.b.jq;(z) Ugh'Pdt A ... ANd"

6) The sign A implies that dz' A d2/ = — d2/ A d2; under the changes of

variables 2’ = z'(y); if d7' = 95__. dy’, then from the equality &' A &/ =— dy/ A dy’
dy

we obtain

: : i .. i i
A dk= X I Eay AL Ady”,
j1<'"<jk Iy Ik

]
where J0 is the minor of the Jacobian matrix i)—, in particular for k =n we have

dz'A...Ad" = Jdy'A...Ady",

where J is the Jacobian;
7) In Euclidean coordinates we usually have (Ig))*?= 1, and therefore

d=dx'A...Adc"

We should distinguish between two expressions:

a) “the integral of a skew-symmetric rank-n tensor over a region”. This
integral always has sense. We call it “the integral of the second kind”;

b) “the integral (of the first kind) of a function over a region”: for this integral

a chanld Lnass hinh valia alamaant frmancrea) intagratian 1o aaemad e

V‘V'C auu'&hu KINOW U‘VCI WiiCii VUII-‘IllIC CivllIClL \xucaauu:) l.llC ull.csx auull 1o vadlliGd JulL —

we should first multiply the function by this volume element (which is a
skew-symmetric tensor) and then integrate. Obviously, this integral is reduced to the
first one. .

Now let us turn to arbitrary skew-symmetric rank-k tensors of type (0, &) in an
n-dimensional space. To begin with, we choose convenient symbols for co-vectors
(k=1) and vectors. We have already mentioned the convenient basis in the tensor
space provided we are given coordinates zl, zz, 7, .. , 2N

The basis fields for vectors are ey, ..., €, T= T e, €= 8’,"ej (the components

e; are equal to &).
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The basis fields for covectors are el, .., e" T = T,ei, el = 5‘;\9" (the
compoonents ¢’ are equal o 85-).

. j j
The basis fields for tensors of any rank are AL lo..oe!,
T —T‘l " € ©..0€ oejlo oéjl
- jl - jk ‘l e 'k aea .

Let us recall what we understood by the term *“vector™.
In each coordinate system the vector at a given point is given by a set of
numbers T', i.e. by the set of its components in the basis e':

T = 'I'E,-.

Under the change z = z(y), this set of numbers varies by the law

- S

F =T —i o =T=11 =,

0z oy
Inthccascwhercell, ...,e’,,is the basis in the system (y), we have

’ ’ . 7.’ ’ ayq
T=T)= T’ej, wheree; = e, — .
oz
Indeed

’ Bzi - a_zl_(' ayq) ’ ’_

» N4
We can see that T'¢; = T'e,, is the same vector provided that

Y
g =e, ay—l
oz
It should be noted that differentiating any function f{z), we had, under the
coordinate change z = z(y), the equation

o _ 9
o o* o

In other words, the operators —é- satisfied the relation

azq
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3 ¥ 2

o o »* ‘

Let us associate the basis field e in the system (z) with the operator-a—l, and the field
0z

’

e in the system (y) with the operator—?-_- .

We obtain two relations

¥
€. = =l
: az‘ q
8 _9 9
o7 a7 "™

This is one and the same ransformation law! Hence, the operators B/Bzi are, in fact,
the basis vector fields e;.

Recall that for any vector § the operator Vg =E® -a— (on scalar functions) is
or*

called the directional derivative of this vector.

We have the assignment 0/3z2' <> ¢;, Vi <> E*e,, =E. Vectors are often said to
be differential operators of the form Lf,“i on scalar functions.

oz*

Now we shall return to the covectors of interest: T = (T) = T. What did we

begin with when we introduced the concept of a covector? The components of the

)
gradient of a function T, = —f‘ do not form a vector, they form a covector. We know
oz
from analysis that the differential of a function is the expression
df = of dz%.
oz

o s
Given the change z% = z%(y), we have dz* = _az_ dy
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@’ 0z
df = — ( )d:/ a)/

What is the meaning of the symbols dx™ and dy"? The basis covectors ', which we
introduced before, were transformed by the law

o 2 ’7 rr
e =) re=12
3 a J
where
, o
= ?.z_’ o - za('y)

a ’/ j
€ o dz,e & dy.

So, we can say that the symbols dx® are the basis covectors e*. The covector
(T,) =T can be written in two ways

(Ty) = Tue* = T d™

The covectors e™ or dz* are determined from the identities e“ej = &}= (ax", ¢). To
say it in a different way, dz* = e are basis linear forms on vectors; any covector is a
linear form (on vectors) expanded in the basis e* = dz*. Under the change z = z(y)

7’ 7’
we simply go over to another basis e ,, and e , =dy™ at each point of the space.

REMARK The value of the linear form _BI_ dz® on the vector (AE) = (Azfe is equal,
ag a
by definition, to (i dz%, A§) = i (Az%). Asis well-known, this is called the
oz* a9z¢
t of the increment of the function f due to the shift along the vector.

u LS O G LLJ 11k
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By virtue of the correspondence between the covectors e® and the
“differentials” dz*, the covector fields (T,) = Te* = T dx™ are called “differential
forms™ of the first degree (first-rank tensors of type (0, 1)).

Why did the term “differential form™ appear? It turns out that the expression
T, dx™ can be integrated along any curve:

7 = 2@, a<t<b.

Indeed, let us consider the expression

J-b dzadt J‘Tﬁ"dt

where E* = 2% is the velocity vector.

This expression is termed the integral of a differential form along an arc (called
in analysis “the integral of the second kind™).

The differential form T = T,dz™ is given in a space, and it can be integrated
along any arc in this space.

The situation is different when we a:e given a curve (arc) Z= zi(t) and a certain

eralar functinn 2N far ayamnl ey Aty whirh 1c accantially ralatad
oWl Luuuuuu_,\ﬁ\s]}, AWSA UA(LI.LIPIU ll-a I-\J.IDIUII vu.l. Vﬂl-u-l\r’ Wlll\.dl LD vmvuua.u] Awildiwid

to this particular curve. Then we introduce the measure on the curve — the element
of its length dl = z | dt, and the integral of the function f{z(t)) along the curve is the

expression r fz(#)) d! (in analysis this is the integral of the first kind). The element
a .

of length on the curve dI =1z ldt is, in fact, the one-dimensional version of the
general “volume element” do = (Igl)”2 dz' A ... A dz" already introduced above,
since, for n =1, we have

lgl = Ig,| and (lg;0*?d = dI,

where g;; =1 zI2 (for n = 1, where tis the only coordinate on the straight line).
Concerning the integral of the second kind, that is, the integral of a covector
field (of a differential form) along any arc, it posseses the following propertes:
1) it does not depend on the choice of the curve.on which the parameter is
introduced:

jr -—-—-a'z r 94
a % gt

where ¢ = (T) and T varies from a' to b' with ¢ varying from a to b;
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2) The result of the integration does not depend on the coordinates in space; in

the casez=2(y), T;=T, a_x:f_ and z/() = Z(3(2)), the following equality holds

¥
A P N
JI —_—dr = 1 —_alr.
a a df a B dt

Indeed, T, dz* = Ty dyp, and therefore both the integrals coincide along one and the

same curve z* = z%(¢) or yp = yp(:), where z(2) = z(y(9)).

So, we already have the integration of a skew-symmetric rank-n tensor over an
n-dimensional region in an n-dimensional space and the integration of a covector field
along any curve.

It turns out that skew-symmetric rank-k tensors of type (0, k) are integrable
over k-dimensional surfaces in an n-dimensional space. Suppose a k-dimensional
surface is given parametrically as

¥ =xE, ., 2, i=1,..,n.

Suppose, also, that we are given a region U in a k-dimensional space with
coordinates z, ... , 2%,
How should we introduce the integral of a skew-symmetric tensor T =

(T,-l...,-k) in n-space with coordinates x!, ... ,x* overa region U in k-space with

coordinates 2!, ... , z¥, if we are given an embedding (a surface) =x @, ..., 25?7

To begin with, for the sake of convenience, we shall use the language of
differential forms for skew-symmetric tensors. We have already introduced the
symbols dx’, ..., dx” and dz', ..., dz* which are basis covectors in corresponding
coordinates. Covector fields (7;) are written in terms of T; ax’,

We shall associate with a skew-symmetric tensor (T,-l...,-k) in any coordinates

(!, ..., x) the formal expression

i i i
i€ ook )Y Tiedx' A A dxh
l1<...<l,c
and assume, by definition, that dx’ A dx’ = —dx' A dx’. We shall define the
operation of restriction of a tensor of type (0, k) to the surface. For a surface

x‘=x‘(zl, ey z") consider the expression (on the surface)
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X T,..;dx'A...Adck
i<y 1 Tk

where T"l""'k (x(2)) is expressed in terms of 2. Fat points of the surface and

& = ?-l-{- dz by definition. At points of the surface x = x(z) we have

"
.-<E<.- Tipwipdx A ... Adx® =
(i
= <E<‘_ f1le Ty di'A LA d2,
150 " 12k

. .
By w8

J
J 11 kk being the minor of the matrix (_a_x_) This expression is called the restriction

of the skew-symmetric tensor T,-l...,-k to the surface x = x(z). This is already a tensor
of rank k in a k-dimensional space.

DEFINITION 1. The usual multiple integral of the restriction

l'l..i k

of the tensor T- i, OVEr a region U on the surface is called the integral of the
skew-symmetric tensor field T iy in an n-dimensional space, over the region U on
any surface

x = xi(zi, . z"), i=1,..,n.

REMARK The expression

i i
X T . dx'A...Adx!
i1<...<|'k Bl

itself is called the differential form of degree k; we are already familiar with one of the
forms of writing skew-symmetric tensors of type(0, k).
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The integral of the form (of the tensor) over a region on the surface possesses,
as before, two properties:
1. The integral does not change under the change of variables on the surface

= z"(z’ ).q=1, ..,k Indeed, the restriction

- A S §
(2 T J,,)dzA...Adz

l'l<...<1'k bk

1

is a tensor of rank k in a k-dimensional space 2!, ..., z% under the change of

variables z7= z"(z, L z ¥y we have the usual change of variables in the multiple
integral over a region U in a k-dimensional space. '
2. The integral does not change under the change of coordinates

x'= x'-(xll, - x"') in the n-dimensional space itself, where x! =x'.(zl, - z")
and x"(zl, .y z") = x"(xll(z), - x' ™(z)). This result is immediate, as it is also for

k = 1, from the fact that under the change x =x(:£) there holds the identity

Y T...dclA...Adt = ¥ T

rj iy
1 k
] o Tijee, _ _ 11"'fkdx A...Adx ",
ll<...<lk t1<...<lk

. J - ’
where dx' = Ec_ dx’ , and the components T jy, e obtained form T,—l...,-,c by the
W
usual tensor law.

In a space of any dimension n, the differential form of degree O is simply the
scalar function 7(z). By a zero-ineasure otiented region U we understand a tuple of
points {p, ) with the assigned signs 6(p,) =% 1.

By definition, “the integral of a zero-form T over a zero-dimensional region U™
is the quantity

T=2XTp)op)
U (@ o o
In a two-dimensional space we can integrate covector fields along curves I'and

also skew-symmetric tensors of rank two over regions U on the plane.
In the three-dimensional case, we can integrate

a) covector fields (forms of degree 1) T,, dx* along curves,
b) tensor fields of type (0, 2) (forms of degree 2) over surfaces,
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c) tensor fields of type (0, 3) (forms of degree 3 or an expression of the form
fx) dx' A dx® A dx’, where fix) is a function) over regions. Forms of degree 2 in a
three-dimensional space with coordinates x', x2, x° are given by

fi2dx' A d® + fi3dxt A dx® + fos dXP A dX°,

where f;; are the components of the skew-symmetric tensor (f;) = 2 fij dx' A dx.
l<j

AAAAA . L, Y o L s el oLl

The ien bOl'],J in Euclidean coordinaies is ofien associaied wiih the “vecior” T_ -J’B,

T?=- N3 T3 =f12- As a concluding remark, we shall explain the assignment of the

symbols dx A...Adz" to the tensor basis ey o . . . oeupoeplo...ep’. We

know that the symbols e’ correspond to dz'. What does the symbol dz’ A dz/
correspond to? We have two basis tensors e'e and efe’. The expression
dz A d7' = - dJ A d7'is skew-symmetric with respect to (i, /). There exists a
skew-symmetric expression (e'¢’ - ) composed of basis tensors. It is only to this
expression that we assign the symbol dZ A d?:

dZ Add o (e - &é).
We shall verify this. The skew-symmetric tensor can be written in two ways:

= () = Erdz/\dz' Zre'e’ Te'T’ (all pairs i, j).

l<j
For example: Ty, dz' A d? = Tuele2 + T21e2e1, where T3 = —To;, whence

Tiadz! Ad? =Tpe'é - leee = Tiole'e? — e%eh).

This is valid for any pair (i, j), where i #j.
Thus, we obtain that dz' A dZ = é'é —€l¢’. Similarly, for tensors of any rank,
we have

a'zll ALA dz‘q - E (- l)ﬂ-(il....Jq) ejl o e e.lq,
Jyendy
where (j}, ... . jg)) is permutation of the set of indices (ij, ... , i;) and &(jy, ..., FARY

the sign of the permutation. For example
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dAd2AdE = ele?e® + el +e%ee! - el - el - el

We have introduced, above, the following symbolism for writing skew-
symmetric tensors of type (0, k):

i i

T T Yes T T e W\ A dr

i = \1'1 ""k’ A d L 1'1 ___.kwl. iy « o YGRS,
iRy

where dx*A dx/ = - dx/ A dx'
We have also introduced the operation of restriction of a skew-symmetric
tensor (of a differential form) to a g-dimensional surface:

= X T,-l___,-k(x(z))dzil/\ .. Adzk,

- i . - .
where dx' = % d2 and dZ Ad?’ = —dz’ A d?. This operation was defined
o

and needed, only for g = k in the theory of integration where the tensor T is the k-th
rank tensor in a k-dimensional space with coordinates ... F (however, the
restriction operation itself is also meaningful for g # k).

DEFINITION 2. The integral (of the second kind) of a skew-symmetric rank-k
tensor T of type (0, k) over any k-dimensional surface x = x(z, ..., Z¥) or over
aregion U on this surface is a usual multiple integral in the k-dimensional space

(z_l, z") of the restriction T of this tensor T to the surface with the coordinates
x=x(!, .., 2.

The basic invariance properties of this integral are as follows:

1) the integral is independent of the coordinates on the surface: its value

14
remains invariant under the change z = z(z);
2) the integral is independent of the coordinates in space: its value is invariant

under the change x =x(J;).
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This is the integral of a tensor (of a differential form), given in the entire
space, over a region on any surface which depends neither on the coordinates in the
space nor on the coordinates on this surface.

In Euclidean space on a surface x'= xi(zl, ey zk), i=1,..,n, the
Riemannian metric is defined as follows: if (', ..., x) are Euclidean coordinates,

PR n 2 . . . . -
then g dzd? = gl (@, g;; being equal to g and dZ7d? =dZdz,

The volume element on the surface is given, as always, by
do = (gh'2d' A...AdP", g = det (gp).

Let an arbitrary function f{z, ... , 2) be given on a surface.

DEFINITION 3. The integral (of the first kind) of a function iz, ..., Z") over a
surface is the integral of the function over the element do of volume on the surface

the integral of the first kind = j - j A2 o, Y Ugh P d A ... Ad,
(on the surface).

It is important to note that the integral of the second kind is not related to the
Riemannian geometry in space or on the surface, whereas the integral of the first kind
is related to it through the volume element (Igl)l{2 dz' A ...A dz", whichisa
skew-symmetric rank-k tensor (under changes with a positive Jacobian) defined only
on the given surface by the Riemannian metric. The Riemannian metric itself is
determined by the Euclidean metric in the entire space.

EXAMPLEO. A trivial example of the “integral” of a zero-rank tensor (a scalar f(x))
over a surface of dimension O (over a point P) is, by definition, the value of the
function f{x) at this point P: “the integral” is equal to {P). We have made this trivial
remark intentionally — it will be useful when we come to discuss the general Stokes
formula.
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EXAMPLE 1. We have already discussed the integral of a covector field or of a
differential form of degree 1 (T,) =T, dx* alonga curve x' =x(r),a<t<b. The

o

integral along a curve (of the first kind) = J T éx_ dr.

EXAMPLE 2. The integral of a tensor field (T;)= X T;dd'Adr (ie. of a
<)

differential form of degree 2) over a surface X =f'(zl, zz), i=1,..,n,is givenby

the integral over the surface -jJET dx’ Adr’

i<y
i

Y ) S . ) .
where Ty =T (@) and &' = — dol, di' A dsf = —de/ A d7'

In a three-dimensional space (n = 3) with Euclidean coordinates xl,x2x3,

where (d[)2 =2 (dx")z, these integrals are usually written as follows:

1. The integral of a covector field along a curve (“circulation™) is given by

o

(;) (T.Eydr = J‘T —dt (ﬁPTﬁdt,

where & = z, T =T, = T* (relative to Euclidean coordinates the concepts of a vector
and a covector coincide, and this is also the case under rotations),

= (@, Z@), P@)),
0 = (Z\®), &pb), 2M)), a<t<h,
TE =(T, E) is a scalar product.

2. The integral of a skew-symmetric tensor field of type (0, 2) (i.e. of the form
of degree 2) over a surface (sometimes referred to as “flux”) is given by
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JjTl.jdxiAdri = HT (x(Z))( dzq)/\(ax ) =

(on the
surface)
JJ[ET (ax a.l" _ax; ax )}d Adz
3 3z
(on the
surface)
Note that 2JF— y——?—%}— — = .l"2 is the minor of a (3 ># 2) Jacobian mamx?;x-,
1 2
2 3t o of oz

i=1,2,3, qg=1,2. Therefore, we finally obtain
- ij
= H[E_T,J LA PN
U

In a three-dimensional Euclidean space, with Euclidean coordinates A ona
surface X =x{(z!, 2, ), the vectors

; al’ i
=)= (&)= .
0z 0z
ai i
n=ah =)= .,
0z z

form a basis for the tangent plane at each point of the given surface. In this Euclidean
context the vector product [E, 1] of these vectors is normal to the surface.

The vector product is essentially the tensor J¥ = (&Y - Ein’), to which the
“vector” is assigned

jl = J?J’ J2 = _113' J3 = le, J = (JI’JZ, J3)

It is obvious that J¥ = Jii,
The vector (f) =J is normal to the sm'face Its lcngr.h is cqual to (Igl)”2 where

g =det (g;) (on the surface) and gy dZ'd7 = El( 2 = —z'dz' (see Part I).
= a
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Therefore, the integral over a region U on the surface * =x\(z!, %) in a Euclidean
space relative to Euclidean coordinates (xl, %2, 13) reduces to the form

i Y

H%dx"f\dt" = [J(ZT.. B )ds' Adit =

= ” (T.[E, ) dz' Ad* = H (T, n) (g)'? dz* A d2%,
U U

Enl _ [

where n is the unit vector of the normal, n = TR
HE,nll (gl

REMARK. In a four-dimensional space n = 4, the integrals of forms of degree 2
over surfaces (k = 2) cannot be reduced to operations on vectors only, even if the
space is Euclidean.

For the three-dimensional case, we have proved

THEOREM 2. In Euclidean 3-space the integral of a form of degree 2 over a surface
coincides with the integral of the second kind:

J; T,dd AdY = J; J' (T, ny (gh'? di' A %,

{mn sln

\On uic

surface)

where n is the unit normal to the surface, T is the vector, in Euclidean coordinates
(', x2, x3) associated with the tensor (T9),

- 3 , . i
g;did! =% @i o = (O d?), (T, n)
=1 az’
is the scalar product, the surface is given by

£ =4G22, i=1,2,3.
This formula has been derived above.
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Since, in the three-dimensional case in Euclidean coordinates (xl,xz, x3),

skew-symmetric tensors (forms) of type (0, 2) are associated with vectors and
vectors are associated with covectors, we usually consider the integral of a vector

field T, = T™:
a) along a curve ¢ T dx®,

op

b) over a surface J (T, n) (Igl)m a’zi A dzi, where n is the unit normal.
Let us recall the definition from analysis.

A. If a curve T is closed (i.e. T has the form 2'(z), where v!(a) = X(b), i = 1,
2, 3, a £t <b), then the integral of a covector field

¢1" Tu. E"u s

is called field circulation along the curve I.

B If a surface U = (fx!, x2, ) = const. } is closed in the sense that it is the
ary © of the ;cgian ﬂ.n.l, Iz, .A.3) =< r" which is bounded in space, then the

integral j J. T; dx A d is called the total flux through the surface of the tensor field

T ,-j) =- ( J-,-) or, in the Euclidean case, the flux of the vector field T = (Tl, Tz, T3)
through this surface: T' =Ty, T2=-T};, T = T), provided that the coordinates

xl,x2,13 are Euclidean.

It is possible that a surface as a whole cannot be given parametrically in the
form x' = X(z!, 22) if it is given by the equation F(x', x%, ) = C. However, this
can be done in a i‘lexgnuﬁ"ufuﬁﬁu of each non-singular pOLi‘u The integral does not
depend on the choice of coordinates on the surface. Therefore, in calculating the
integral over the entire surface, we should divide this surface into pieces in such a
way that each piece, separately, is represented parametrically; then we should take the
sum of the integrals by pieces. A sphere, for example, can be divided into two
pieces, namely, the upper and lower hemispheres. Now we shall turn to the

operation of skew-symmetric gradient which we introduced above.

af
Bx

For functions st =
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oT; BT
For covectors (V" T) = ee——1

o ol
For any skew-symmetric tensors of type (0, k)

T, A
(VST).' i = E (_' ]-Y _1'._j_k_1
1"k 1 ;

ox’

A
where ij implies that this index is omitted.

The skew-symmetric gradient was not related to the metric, and therefore this
operation is simpler than the covariant differentiation of any tensors (see Part I).
How do we write this operation in the symbolism of “differential forms™?

Ifflx) is a function, then its differential has the form df = -2~ & In
ox®
analysis (for functions) the gradient operation in the differential symbolism was
denoted by the letter d. We shall follow this notation in the symbolism of differential
forms of all degrees.

If we are given a form of degree 1 (a covector field) T, dx™, we can apply to it
the operation d (by definition) by the rules

o .
a) = —-‘Ld,{'
* o

b) ddx™ =
Applying these formulae and differentiating the form T, dx™, we obtain

orf .
d(T, dx™) = dT, A dx™ = —j_’-dx)/\dx".
)

Next, we require the following:
c) alLeibniz type formula should hold in differentiating a product,

d(f)T) = df AT +fdT,
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T'= Y T, .dc'A...Adx"  isan arbimary differental form.

. . dqees §
'1<"‘<'k 1™k
Indeed, we have

d(T, dx®) = dT, A dx™ + T, d(dx™) =

oT oT  oT
= (—=dP)Ad® = T (—2-—B)ax*Aarb,
oxP ap P Rn®

This is the skew-symmetric gradient, or the curl, as already introduced, represented
as a differential form.
We now impose the last requirement:

i i
d) forallk: dx'A...AdxhH = 0.

Proceeding from the requirements a), b), ¢) and d) we can calculate dT, where
T is a form of arbitrary degree.

EXAMPLE 1. Let n=3, k=2, How shall we calculate 4T, where
T=@T)=XT;dAad?
By definition

a(g Tyadhad) = T a(ryadindd) -
g i

S g, AddAadd =3 (L dEAdEAdY ) =
5 i o @ )

T T
= —lsld?/\dxll\dx2+ 3 a2 Ad'AdS +

ox sz
+ B_T_Z“_ dx A d®A de =
Bxl
oT oT,, oT. d
= (- i Byadaddadd = (it)dxl/\dle\d?.
o o o ox'
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Here Tl = T23, TQ = - T13, T3 = le.

In the Euclidean case 9T/0x' is called the divergence of the vector field ('.T").
Instead of the term “curl” we sometimes say “vortex”.

EXAMPLE 2. (a simpler one). On a plane (x', x%) we have
=(—1_-2
d(T_di) = = 1)atx
X

We recommend the reader to verify, directly, the important property of the operation
d (which coincides with the operation of the skew-symmetric gradient of tensors of
type (0, b)):

ddTl) = 0 forall k,

where

- Ay ~ 1. . s
I = & 1'. ‘.dx N...NdAx .
il<...<ik 1"k

Thus, the operation d is our skew-symmetric gradient which is written using
the differential symbolism.

We now introduce the most general concept of the integral of the second kind
over k-dimensional surfaces in an n-dimensional space (in a manifold) proceeding
from the requirements of integral invariance under coordinate changes both in space
and on the surface (see above).

DEFINITION. The general non-linear k-form is a smooth fuction w(x, Ny, ... s N>
such that

a) O, M) = 0EMA...ATY,
b) @, An;A...ANY = Aox,MmA...ANY
for A 2 0.

Here x is a point in an n-dimensional manifold and 7, ... , Nis a tuple of £
tangent vectors at the point x.
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A particular (linear) case of the non-linear k-forms are the differential k-forms,
i.e. skew-symmetric tensors of rank k. The operation of restriction of the general
non-linear &£-form to an arbitrary sub-manifold is defined similarly to the restriction of
the differential form.

Under the coordinate changes with positive Jacobian, the general n-forms in an
n-dimensional space behave as ordinary differential n-forms. Thus, they are the
ordinary n-forms on orientable manifolds.

The restriction of a general non-linear k-form to a k-dimensional orientable
surface determines an ordinary differential k-form on this surface, which can be
integrated over any region on this surface.

Hence, we have defined the integral of the general non-linear k-form over .
k-dimensional orientable surfaces. This integral is 1. wriant under coordinate
changes (preserving orientation) in space and on the surfin .«

EXAMPLE 1. Let g;(x) be any Riemannian (pseudo-Rimannian) metric on a
manifold. The metric gives rise to the element of k-dimensional area

0@ NLA. .. AnY = (detyy)!”2

where ¥;; = (n; ;) is the scalar product of vectors 1; and 7); in this Riemannian
metric g; For &= 1, we obtain the element of length, for k= n we obtain the
volume element. The integral of this quantity over any k-dimensional surface is its
k-dimensional volume.

EXAMPLE 2. Let k=1 and let the function o(x, ) be strictly positive for any
n=0:

o, An) = Aok, n) fordA>0,
oi,n) >0 forn = 0.

In such a case we say that on a manifold we are given a Finsler metric.
The Finsler length of any smooth curve Y =x(r) is given by the formula

la@) = J'Ym(x. x)d.

Obviously, /4(y) > 0, and the quantity [4(Y) does not change under a
monotonic change of parameter: ¢ = 1(T), dt/dt > 0.
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EXAMPLE 3. Let k=1, as in Example 2, and let a Riemannian metric 8ij and a
differential 1-form A = A; dx be given on a manifold. For any smooth curve Y= x(z)
we put

lo(Y) = j‘{ ((g,:,-.l-f'-.i'j)lfz + Mux'“-) dr,

where A in constant number (“‘a charge”).

EXERCISE. Prove that on a compact manifold this formula determines a Finsler
metric for all sufficiently small A.

Functionals of this type play an important role in the description of motion of
charged particles in electro-magnetic fields.

Consider (locally) a manifold of dimension n + 1 with the following metric
which does not depend on the coordinate x™*1:

M.
).

]
S,

3w = (L]
ab M}I

Prove that after being projected onto the space x7, ... , X%, the “horizontal” geodesics
of the metric coincide with the extremals of the functional /4 () from Example 3 (the

Kaluza theorem). See Appendix 5 which contains elements of variational calculus.

Thus the class of objects which can, in an invariant manner, without a
Riemannian metric, be integrated over surfaces is appreciably wider than the class of
differential forms. However, no analogue of the operator d on general non-linear
k-forms can be determined. '

EXERCISE. We shall call a general non-linear k-form closed if its surface integral
has an identically zero variation, i.e. does not change upon a small variation of the
surface. Prove that any closed smooth general k-form is linear, i.e. is an ordinary
closed differential form. Stokes type formulae which we discuss in the following
section also have sense only for ordinary linear differential forms.

REMARK. There exists an important modem generalization of geometry, essential
for quantum theory. This is the so-called “super-geometry” in which most natural
analogues of differential forms, including closed ones, are already not tensors and are
non-linear.
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2.11 The General Stokes Formula and Examples

As noticed in Section 2.10, the definition of the integral of a form of degree kover a
k-dimensional surface in an n-dimensional space does not necessarily require
parametrization of this surface as a whole in the form £ =xi(zl, ey zk) Since the
integral over the sum of regions is equal to the sum of the integrals, we can
sub-divide the surface into several pieces and then coordinatize each piece separately.
After this, and having integrated over each piece, we should sum up the results and
obtain the integral over the surface.

A nnthar ramarl ic that An 2 enirfara wa ~Aan trndnra rnardinatac -vl
Fg ViR S L O awii-Iy. N I.D WIGL Vil @ amlavv o wall luuuuuvv VAL UUIALWD &y ees g &

(always) which have singular points (see Part I) on a set of smaller dimension,
making no contribution to the integral of the form of degree k. Such coordinates are
often employed in the theory of integration. For example, such are polar coordinates
r, ¢ on a plane (the singular point is r = 0), cylindrical and spherical coordinates in a
space:

r, ¢, z are cylindrical coordinates; singular points are r =0:

r, 8, ¢ are spherical coordinates; singular points are r =0 and 0 =0, xr, r is
arbitrary.

On a sphere there are coordinates (8, ¢) where singular points are 6 =0, &.
The sphere is the simplest surface on which we cannot, in principle, introduce
coordinates (a unique system) without singular points. In all of these examples the
set of singular points of coordinate systems was small, making no contribution to the
integration, so we could ignore it.

In any case, we can determine the integral of a form of degree & (a tensor of
type (0, k)) over a region on a surface of dimension & in an n-dimensional space.

From the course in analysis, the reader recalls the relation between the integral
over a surface and the integral over the boundary of the surface. We mean Green's
formula for n= 2, Gauss-Ostrogradskii formula for n = 3, k=3 and Stokes' forrnula
for n = 3, k =2. We shall now treat these formulae from the point of view of the
theory of skew-symmetric tensors (differential forms).

In view of the additive character of the integral, it suffices to know the basic
deﬁnitions of pieces of surfaces. Suppose we are given a region U in k-dimensional
space 2z}, ..., Zin the form of the inequality f(z y ey z") <C, and suppose I' is the
boundary of this region specified by the equation f{z’, ..., H=C.

Suppose that we are also given an embedding of this region together with the
boundary into an n-dimensional space @, .., XY,

x = xi(zl, . z"), i=12,..,n.
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We obtain the parametrically given surface, the region U on the surface, and the
boundary I" of this region which is a surface of dimension (k- 1).

What is the relation between the integral over the region U and the integral over
the boundary I" of this region of the various forms of degree k in an n-dimensional
space ..., X7

A particularly simple case is k = 1, where r‘ XN =tisa curve, Uisa

2410000 Las kel b ' P2l

segment a <t < b, its boundary I' is a pair of points (z = a) and (¢ = b), the point a
being taken with the minus sign and the point b with the plus sign.

Specifically mentioned is the trivial case of the “integral” of a scalar (i.e. of a
form of degree 0) over a zero-dimensional surface consisting, by definition, of
several points with signs.

“The surface of dimension 0” is a formal sum of point< P P;, where P; are
points of the space. The “integral” of a function f{x) over “a surface of dimension 0"
is, by definition, the sum of the values of the function at these points with
corresponding signs:

If in a space we are given a curve xi(r) and a sement of the curve U (@ <1< b) with
boundary I" = Q — P, then, as is known from analysis, the following formula holds

[1=r0-f0)= & o= aa—x:—dz

1q tha cirmlacs 40l rnat .

Thig [P [ | ~
11118 15 Ui SLIIPICOL  OLUALD 1Ululu1a y Lnuuum umu e

integral over the boundary to the integral over the region.

The multi-dimensional Stokes type formulae are, in a sense, its direct
generlization and, moreover, can be formally reduced to it.

We shall now return 1o the general case of a region U in coordinates 2!, ..., ¥
on a surface ¥ =x'(z}, ..., %, i = 1, ... , n, with boundary I given by the equation
A2, ..., 2 = C (the region U is specified by the inequality iz) < C).

If in a space x!, ..., x" we are given a form of degree (k - 1), i.e. a
skew-symmetric tensor of type (0, k — 1), written as

Ty ) = X T;
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it can be integrated over the (k — 1)-dimensional surface I', which is the boundary of

the region on a surface f'(zl, - z"), i=1,...,n
The general theorem holds.

THEOREM 1. For any differential form

> T .dc'A...Adc*=T

. . ll... lk
ll<-..<lk_1

with smooth coefficients T;1 ip @Ry smooth surface X'(z°, ...

region U (on this swface) with a sooth boundary I consisting of one piece, there
holds the formula * _[r T= _[U dT.

The trivial version of this formula for k=1, k- 1 = 0 has been given above.

Here dT is a form of degree k (the skew-symmetric gradient of the tensor (T,-l___ ,-k-_l)
or the differential of the form of degree k — 1).

The various two- and three-dimensional cases of this formula are named after
Green, Gauss-Ostrogradskii, and Stokes, and are usually given separate proofs in
analysis courses. We shall now examine these cases. The reduction of the general
formula to these cases is just the proof of the theorem forn=2and n=3.

1. The planar case (n = 2). Here I" is a closed curve on a plane X =X,
where x'(a) =x'(b). Suppose this curve is bounding a region of the plane (Figure
47).

D)

\\ /

!
.

Figure 47 <oz’

For any (co)vector field T, dx* ( form of degree 1) the integral around I is defined.
If the form T, dx™ is defined and has no singularities inside the region U, then either
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or

r(de+Tdy) _r(
"r ! 2 JU ax’ ox'

This is Green's formula which is a particular case of the general Stokes formula.

EXAMPLE. Consider the supplement referring to the complex variable. Suppose
i2=_1 (i is imaginary unity), z = x +{y, dz =dx + idy and fiz) = fix, y) = u(x, y)

+iv(x, y) is a pair of functions « and v, or one complex-valued function.

Consider the integral

éﬂz)dz = ‘# (u+iv) (dx+idy) =
T T

= (}f) (u dx-vdy)+i¢ (v dx + u dy).
r T

Applying Green's formula
ou o . & cu
gf)ﬂz) dz = _g 3+.&.) d.xAdy+zIJ(—aT--&-) dx A dy.

we arrive at the conclusion that the identity ¢ (2) dz =0 holds provided that every-
T
where inside the region U the function f{z) is smooth, and the identitites

i _ ov o _ du
¥ x Fy &
are satisfied. In this case f{z) is called a complex analytic function.
Note that for the functions f{z) = " for any integer n the following identities

hold

n [0 ifn=-1,
Cbz dz =
. {2ni if n = — 1 and the contour of I" embraces 0.
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(Verify this by choosing I' in the form of a circumference Izl = 1). This underlies the
important residue formula,

II. The three-dimensional space with coordinates x, xz, x3. Here we
distinguish between two cases: k=2 and k=3.

1. Suppose k=3, U is a region and I' is the boudary of this region. In this

case
. ; oT oT. oT
(g1 aaad = [[{(C2e 22 T8y 4t aalaad
A U7 9 ox  ox

If the coordinates x!, xz, x> are Euclidean, if T is 2 vector where T = T,,,

T?= =Ty, T> =Tj5 and n is a unit vector of the normal £ to the surface I" then,
according to the theorem of Section 2.10 and to the general Stokes formula, we
obtain

I I TT;d Aetx' = H (T, n) (g2 dz' A d’,
v'Y 5

where 21, 22 are coordinates on the surface, do = (lgl)”2 dz! A d* is the element of

arme o ella o Lo
dita OI11 Ul >lliace.

Next,
oT oaT oT. '
2 ——m T
ox ox ox ox
We finally come to
H (T, n) (gh 2 dz A d? = _U (T, n)do = J‘H (divD) dx* A d® A dr.
T T T

This is the Gauss-Ostrogradskii formula in Euclidean 3-space.

2. Suppose now k = 2, U is a region on a surface x* =X, ?,i=1,2,3,T
is a (curve) boundary of this region. We have
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a’ &
oT, aT oT., oT,
s (D) a' Add + (—2-—2) a2 A 2],
o o o’ 4

In the Euclidean case, where we need not distinguish between vectors and
covectors, and where we can assign to a skew-symmetric vector (T}), a vector

T= (f), we obtain (the Stokes formula)

@Tu = H (ot T, ) (g2 dz* A d2?,
U

where rot T is the vector assigned to the skew-symmetric tensor

of oT
T = (Ty); (otT)yy = —e__B
oF i

In all these cases the general Stokes formula has transformed into different
integral formulae from the course in analysis, which means that it is proved for the
three-dimensional space.

As a concluding remark we note that in the formulation of the general *“Stokes
Theorem” it is not necessary to assume that the boundary I'consists of one piece. If
the boundary I" consists of several pieces, then the iritcgrals over the different pieces
will enter with either plus or minus sign which should be chosen appropriately. This
has already been mentioned for the trivial case k= 1, where the boundary I' of a
segment of a curve consists of two points -— one (terminal) with a plus sign and the
other (initial) with a minus sign. It is relevant to note here that the choice of the sign

in the expression _[ _[ (T, n) (Igh"2 dz* A d? (or, altematively, the “orientation” of
T

the boundary I') is determined by the direction of the unit normal n.

We shall now examine another important application of the general Stokes
formula.

Let us consider a four-dimensional space 1= ct, xl,xz,x3 with the metric
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g = 1 , where ¢ is the speed of light and ¢ is the time.

0 1

Suppose F; = — F; is the tensor of an electro-magnetic field, {, k=0, 1, 2, 3.
Now we shall only consider the behaviour and the property of this tensor for a
constant time x° = ct, where we can transform only spatial coordinates:

’a
0 =20 1!, % ).

In this case, the tensor F; in a four-dimensional space is determined by the covector
of the electric field E, = Fy,, @ =1, 2, 3, and by the tensor of the magnetic field
Hyg=—Hp,, @, B=1,2,3. If the coordinates x!, x%, x> are Euclidean, then the

magnetic field is determined by the axial vector of the magnetic field

H' = Hy, H* = —-Hy;, H® = Hy,
In the notation of differential forms, we have

d(F; df Add) = 0 (the first pair of Maxwell's equations)
or in the three-dimensional Euclidean form
L

a) divH = —
ox

0,

[»} | p—t
[+3)
9:1 T
]
o

b) rotE+

From equation a) and from the Gauss-Ostrogradskii formula, we have (I" is the
boundary of the region U)

H divHdd' AdPAde = H (4,n)ydc = 0
U U

(“the magnetic field flux through a closed surface is always equal to zero™).
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From equation b) and from the Stokes formula we have

J;J. (rotE,n)do = érEudx“,

(on the
surface)
_” ;-a—,'")dc= 4’1_ E, dx*,
(the boundary
of the region on
the surface)

(“the time derivative of the magnetic field flux through a surface is equal to the
electric field circulation along the boundary of the region on the surface”).
The second pair of Maxwell's equations has the form

[ n ATy
s, or, 1 of, Ag L.
3 L, N _,(4)‘ s wherej(4) (c Psdys Iy dy )

(the four-dimensional divergence of the tensor F;; in the metric
-1 0
Gy = 1 1 is equal to the four-dimensional vector of the electric current,
0 1
p is the charge density and j = (fy, j,, f3) i$ the usual vector of current density).
In the three-dimensional form this yields

a) divE = 4mp,

1 oE 41t.

Equation a) together with the Gauss-Ostrogradskii formula imply

H dnpdd Adl Add® = _U (E, n)do

(rhn electric field flux
€ I¢

v WA L F 23

total charge in the
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Equation b) and the Stokes formulae imply

_% ‘[;[ %E;ndc+_[lj -tljndo= é_ H, dx",

(ona (ona (the curve
surface) surface) is a boundary)

(“the total current through the surface * the derivative of the electric field flux through
this surface is equal to the magnetic field circulation around the boundary I of the
surface ). '

We can see that the geometric content of the first and the second pairs of the
Maxwell equations is different here,

The first pair of the Maxwell equations is not related to the space metric, the
second pair of equations cannot be written without a metric. The natural form of
these equations is closely related to Euclidean coordinates x!, x2, x>. Further on, in
the course in the mechanics of a continuous medium and in many other places, the
reader will encounter various applications of integral formulae from analysis, whose
geometric and tensorial content we have already discussed.

We have shown above that the classical integral Green and
Gauss-Ostrogradskii formulae are particular cases of the general Stokes formula.
Now we are in a position to prove the general Stokes formula for the case where the
inegration region is a k-dimensional cube.

A singular cube o of a space [R” is defined as a smooth mapping o: I* - R”,
n > k, where I* is a Cartesian cube of dimension k, i.e. I*= {(x!, ..., X10<x* <
1}. The equations x* =0 and x* = 1 specify two (k — 1)-dimensional faces /5 and

1%. We denote the boundary of the cube I*by o/, i.e. oI = \J ULV, Let
¢*! be a (k - 1)-form in R" and let d ¢*! be its exterior differendal. Next, let
0: I* - R" be a singular cube.

THEOREM 2. The following equality holds _[ ¢! = j do*'.  The
0@’ o

orientation on the cube boundary oI* is taken to be that induced by the standard

orientation of the cube IF by means of the exterior normal.
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By the integral J‘ ¢ we mean the sum of integrals over all the faces of the
o@l)

cube.

Proof. Consider the form ® = o*(¢), where 6*(¢) denotes the form obtained
through the change of variables in the form ¢ by means of the map 6. From
the fact that the operation 6* and 4 are permutable, we have dw = do*(¢) = 6*(d9),

and, therefore, it suffices to prove our assertion in the form J. W= J. dw. We
3 F

/

have made use of the fact that, by definition of the form ©

J‘ de = J. c*d¢) and J‘ ¢ = J‘ o*(0).
o * o6 o
Suppose that © = a,(x', ..., Hd'A. .. Ad XA ... dx where au(xl, A

.., x¥) are smooth functions and the differential dx™ is omitted. We are led to

Ba A
do =T —2dx®Ade' A. .. Adx®A ... Adx" =

o ox*
da
a1
= (- —=d,
o ox*
where d*x = dx' A... AdxF . For the sake of simplification in the following, we

assume that the functions a,(x', ..., x*) are represented in the form of products
ka4

a (!, .., xH = Hbu(x ). Here the functions b:’z are assumed to be smooth
q=1

functions of one variable x7. Recall that in the course in analysis there exists a
theorem to the effect that any smooth function can be uniformly approximated by

linear combinations of products of smooth functions of one variable. We shall not,
of course, prove this here.

We shall calculate, in an explicit form, the expression J‘ dw,;
s
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- [ @ ™2 JTT0an)) b
koo i

- %uxu
= ECen™bah... L b eYH) dx =
k a « an® a

1

- -l 1 “s
%:J;xl)...jcﬂ...]'(xk)c ™" o)
a1, a- 1

b )b:“(x““)...b:(x") %

o

%ax“ ~
X [(—I)GFIJ.—"-E-—)dx“]dxlA...Adx“A...Adxk =
ox®

=EI _[ j GLaY .. B . . bR x
R S ’ ’

x [b20) -b%O)]) d' A .. AN Ad =

Pal
- bl(xl)...bZ(O)...b:(xk))dxlA...Adx“/\.../\dxk =
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B %J.(xl)‘ h J.(:':‘"). . I k (a“(xl' 'xk)lx%l -

&)
ca G, AL AdeA L AnE = | o
x%=0 'af'i

With this we have completed the proof of the theorem. As is seen from the
computation, this theorem is a simple consequence of the one-dimensional
Newton-Leibniz formula.
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BASIC ELEMENTS OF TOPOLOGY

3.1 Examples of Differential Forms
We shall first examine several especially interesting examples of differential forms.

EXAMPLE 1. A skew-symmetric scalar product of vectors in an even (2n)-
dimensional space with coordinates x!, ... , x** is given by the 2-form

Q= guﬂdxul\dxﬂ’ ap = — 8pu-

Non-degeneracy implies that the matrix g, g has the inverse *B where
of g

£ gp, = 8.

THEOREM 1. A skew-symmetric scalar product is non-degenerate if and only if the
2n-form

Q"= QA...AQ = plfix}, .., PV adX' AL .. AdX”

n-times
is non-zero, i.e. f(x‘, ,xl") #0andf= (g)m.

Proof. We wish to verify directly that f 2 = det (8wp) = 8. (The expression f =
(det g(,,.ﬂ)“2 itself for skew-symmetric matrices is called ‘Pfaffian’.) Indeed, by the
definition of multiplication we have

Q" = A AQ = (guad® Adt) A ... A (gopdr™ A dxP),

By virtue of the fact that our expression does not depend on the derivatives, we
can, without loss of generality, assume the matrix 8up tO be constant. Both the forms

Q" and (g)“2 d"x = do are well defined (in an invariant manner) under the changes.
We shall verify the equality Q" = n!(g)'”? d"x in a special coordinate system.
Namely, we shall find coordinates (x!, y!, ... , x", y"), where Q = 2 dxf A dy’.

For a constant skew-symmetric matrix g, g such coordinates can be chosen using a
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linear change. In this coordinate systemn the theorem is trivial: for example, for n =2
we have

2dx' Ady! Ad2 A dy? = (dx! Ady' +d2 A dy?)?,
because (dxj A dy")2 = (. The verification of the theorem is similar for all n> 2, and
the resuii follows.

Especially important are closed 2-forms determining scalar products where

dQ = 0. For example, in a 2n-dimensional space x!, ... x2" we can choose

coordinates ¢, ..., ¢, p', ... , p", such that the 2-form Q is given by

n
Q = ¥ dp® Adg™

o=1

Such a scalar product is called Hamiltonian (or symplectic) and a space with such a
scalar product is called the phase space.

EXAMPLE 2. Given a complex space with coordinates 2!, ..., 2%, z !, ..., " where
Z=x +iy, 2% = x* - iy*, all the differential forms can be written as

T = XL TP9, p+q =k,

where the summands

i i o -
TCD =T, ;. . dz'A...AdzP &'A...ANdT?
l--.Pll...jq
are called “forms of type (p, ¢)’.

For example, we are given a form Q=T dz* A dzP, where Tup=- Tpu.
Then the matrix (t"fo,_p) has the form iT ,p = T p and is the marrix of the

Hermitian quadratic form 2 Tup dz*dzP. Thus, in the complex casg the Hermitian
metric is given by a form of type (1, 1). Of particular importance here is the case of
Kdhlerian metrics, where dQ2=0.

EXAMPLE 3. Let n =1 and let the coordinates of a one-dimensional complex space
have the form z, z. Let there be given a 1-form

® = fiz, ) dz.
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Obviously, the éondition do =0 is equivalent to the condition Bf/az- = 0 or to the
complex analyticity condition. From the general Stokes formula (in this case, from
Green's formula) we have

Q o
J. flz,2)dz = J. Rz, 2) dz,
P P
along path 1 along path 2

provided that in the region between paths 1 and 2 the 9f/9z is everywhere identically
zero (Figure 48).

7

;7

Figure 48. ¢

Or, the integral along a closed path is equal to zero provided that inside the path the
function flz, z) is analytic, i.e. dffdz =0. It can be directly verified that for the
powers f{z) = (z —a)", where n are integers, the integrals are given by

2ni, n = -1,
¢ﬂz) dz = {

0, n % =l

wherez=a+ pe"'0 (Figure 49). Indeed, let us consider a differential 1-form w = f{z)
dz and a contour Yy embracing several singular points a, ... , ay of the function f{z).

We may consider another contour ¥, sketched in Figure 50, which embraces the
same singular points.

Figure 49.
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Clearly the Stokes formula implies the equality L R dz= J'Y_ f(z) dz. The latter

integral falls into the sum of N summands each of which is calculated along the
circumference of small radius, which embraces one singular point. Each of these
integrals is calculated as follows

N — 'y

28 k
ffj - 7 i 7 AN
J( ckz)dz=2,,cckjo(re ) dire’) =

/4
=, ckr’”lr ¢ ®® e = 2mic "
k 0 -

Therefore, for uniformly convergent series f{z) = Y, (z- a)"c, the formula holds

(the contour Y embraces the point a and lies inside the region of uniform convergence
of the series)

J'Y Rz) dz = 2mic_y ; IY (z-ay*dz = 2wicy ;.

For the analytic function f{z), these formulae allow us to determine the coefficients of
its Taylor series (if all powers n 2 0) or of its Laurent series (if — e < n < e=) through
the integrals.

Let f: MP — N9 be a smooth map of one smooth manifold into another
and let T =(T; } be a tensor field of rank n on the manifold N?. Then we can

Yy
define a new tensor field f*T on the manifold MP, Let us introduce local coordinates
x', ..., x” on the manifold M? and local coordinates ¥, ..., »? on the manifold N?
Then f*¥T = (Sjl__ _J-n(x)}, where

i 4
S @) = dy (_x) ___By (_x)
J17p ! In

ox ox

Here y = fix), i.e. ¥ =f(x!, ..., #P), 1 €i<q.

T:'l...x' &)

Let, on the manifold N?, there be given a differential form

- - . 4 . . r 'n
T= 2, dy A...Ady".
il<...<in
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EXAMPLE 4. Suppose we are given a hyper-surface M™" !in an n-dimensional
Euclidean space

Fix!, .., =0, VF =0,

or, locally, x* =x* (¥!, ..., ¥*!). Here x', ... , ¥* are Euclidean coordinates.
The “curvature form” is defined to be

Kdo = K(gh2ay! A...Ady™,

where K is curvature (for n =2 this is the curvature of the curve in a plane, while for
n = 3 this is the Guaussian curvature).

n
Consider a sphere §*! given by the equation Y, (x*)* = 1. We denote by
a=1
Q,,_; the (n — 1)-dimensional volume element on the sphere, invariant under rotation,
which for n = 2, 3, has the form

n=2 Qn—-l = d¢,
n=3 Q_, = Ilsin08ld6 dé.

We define the Gauss spherical map of the manifold M™! to the sphere $™:
consider at a point P of the manifold M™, the unit normal n, to the surface and
wransport this vector n, to the origin of coordinates (Figure 51). The map P — n,
defines the Gauss map

o: M™ - s™

(the point P is set to the tip of the vector n,, after the vector n, has been transported so

that its tail is at the origin of coordonates). The Gaussian curve of a hyper-surface is
defined to be the ratio det @/det G, where Q and G are the matrices of the first and
second quadratic forms, respectively.
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.”.{PJ ”@
h VS
( ? { — [\ )

\\OJ‘?H

THEOREM 2. The following formula holds

Figure 51.

Kdoc = f¥(d¢), n=2,

Kdo = ¢*Q; {
KR dy! Ady? = fdQ), n=3,

wheredoc = (Ig)”2 dyl A...A dy’"1 is the element of an (n — 1)-dimensional
volume in local coordinates yl, . y""l on the surface.

Proof. The proof is similar for all n =2 2. We give the proof for n =13 only. We
choose Euclidean coordinates in [R>, where the axis x° = z is orthogonal to the
surface at a point P, and x =x’ and y =x2 are tangent to the surface. Then y' =x,
y?>=y and in the neighbourhood of the point P the surface is specified by the
equation z =flx, y), where dfl, = 0. In this case, we have

Ife 7., |

K = det = |; g'.l = 8!’
f._ f

¥yx “yy ¢!

at the point P(f; =f, =0). On the sphere §™1 = §2, we choose the same coordinates
at the point ¢(P) = Q, where z 1 S2. The form Q at the point P is given
by Qlp = dx A dy. In the neighbourhood of the point Q the sphere is given by the
equation z = (1-x2-352)2, where x =0,y = 0 at the point Q, and the metric of the
sphere at this point has the form g;; = §;.

The coordinates of the normal vector at the point P’ near the point P are

1
np = (fofyp—1) ('{T———”—g)

(fz=f, =0 at the point P).
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Therefore, in a neighbourhood of the point P the Gauss map is written as

; 4
A+ 4/ A +£ +H" '

(here P'with coordinates x, y goes over to Q'with coordinates x, ¥ ).
By the definition of ¢*(£2,,_;) we have

Xx=

R H R Py
Q) = (= = - = = ) dxdy = JaxAdy,

where J is the Jacobian of the map ¢ at the point P. Obviously, since f,=f,=0at
the point P, it follows that
= fnfyy -f.xyfyx =K

(the Gaussian curvature). Since Ig! at the point P is equal to unity, we have, finally,
that in the chosen system of coordinates the following formula holds (at the point P)

K (g PdxAdy = ¢%(Q, 1), n=3
which implies the theorem for n = 3. For all other n the proof is similar.

REMARK. When n =2, we have Q,,_; =d¢, and for a curve x_1 =x4y), x* = xX()

we can see that K (lgl)l"2 dy becomes K dl, where dl is the element of length (the
natural parameter).
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3.2 The Degree of Mapping. Homotopy

In the preceding section, we gave several examples of differential forms. In
particular we proved two theorems.

1. For hyper-surfaces M™! in Euclidean space R" the following formula holds
K@WPdylA...Ady" = fHQ),

where f: M™ — §™is the Gauss map Q is the volume element on the sphere (for
n=3,Q =Isin 81d¢ dO) and K is the Gaussian curvature (far n = 2 this is the
curvature of the curve M? and Q = d ¢ on the circumference S

2. For skew-symmetric scalar products g,p =—gp., : det Igep! # 0, the
following formula holds

QA...AQ =2n @WRdlA... A,
B = 1,2 s, 2 Q = gupd™A dif,

In connection with Theorem 1 of Section 3.1 and with the fact that
F*Q =K ()2 du dv for surfaces M? c [R® we have mentioned the specifics of the
important case where the surface M? is closed.

DEFINITION 1. A manifold M" is called closed if it is compact (i.e. any infinite
sequence of points has a limiting point) and has no boundary.

For example, a sphere S”, a torus T”, projective spaces RP", CP” of the group
SO,, U,, surfaces with k handles in a three-dimensional space etc. (Figure 52).

Figure 52.

Recall that a manifold M" is thought of as oriented if it is sub-divided into

regions of action of local coordinates, M"=_ U,; xL, .. » X'y, Where in the
oL
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intersections of the regions U, M Up functions xg(xL, w X% g=1,..,n,are
such that the Jacobian J > 0, where J = det (dx‘I’{dxu’:).

Suppose there exist two manifolds MT and M3 (for example, both are spheres
S™). Suppose we are given a smooth map

fi M7 - M3.

e 2 P

DEFINITION 2. A point P e MT is called a regular point for the map f if the
Jacobian matrix J of the map at the point P has rank .

DEFINITION 3. A point P'e M3 is called a regular value if all points P € f~ P
of the complete pre-image are regular,

The following important lemma holds.

LEMMA 1. (Sard's lemma). If the mapping f is smooth, then almost all points
Q e M7 are regular values. The words ‘almost all’ should be understood in the

sense of measure: this means that arbitrarily close to each point Q € M} there exist
regular values.

We do not give the proof of Sard's lemma here but refer the reader to the book
(11

EXAMPLES.

1. If m <n, then only points Q € M3 are regular values, where the complete
pre-image f~ 1(Q) is empty (i.e. there is not a single 'point P such that f{iP) = Q).

2. If m =n, then the complete pre-image of a regular value f~ o =Pyu..
. . U Py consists of a certain number of points P,. At each point P, there is a sign:
sign (P,), where

sgn P, = sgn (det?-l;-),
dy

Here x” are local coordinates at the point Q and y? are local coordinates at the point P.
We shall list several essential properties of regular values.



THE DEGREE OF MAPPING. HOMOTOPY 289

THEOREM 1. If f: M™ — M" is a smooth map and if Q € M" is a regular
value, then the complete pre-image f (Q) € M™ is a smooth manifold of dimension
m — n. Furthermore, at any point P e f~ Y(Q) the differential of the map f (the linear

map of tangent spaces J: [R? — R" given by the Jacobian matrix of the map f) has

rankn.

Proof. Suppose x', ..., x™ are local coordinates in a neighbourhood of the point @
on the manifold M® and y, ..., Y™ are local coordinates in a neighbourhood of the
point P € £1(Q) on the manifold M™. In the region served by the coordinates yl, ..
, Y™, the map fis specified by the formulae

™ = o .M,
o=1,..,n,

provided that the image of the point y!, ..., y™ comes under the action of the
coordinates x1, ... , X" (this is, of course, the case within a certain neighbourhood of
the point P).

In a neighbourhood of the point P the complete pre-image is given by the
equation X*(y', ...,y = x§* (x}, ... , xJ are coordinates of the point 0), and by the
condition that Q is a regular value and P is regular point we have

o
rk?f_ = pn,

ayB
. . ox* ) .
where J is the matrix (——E-) at points from f~ (Q). Therefore, the vectors

(Bx“ ox* (@)
— =) =N o=1..,n,
ay! dy

are linearly independent at points from f7(Q). Such a set of equations X*(, ...,
Y™ =0; (a=1,..., n) determines in a non-degenerate way a manifold of dimension
M — n (by the implicit function theorem). Hence, in a neighbourhood of any of its
points P e £(Q) a complete pre-image is given in a non-degenerate way and is a
manifold. With this, we have completed the proof.
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COROLLARY 1. If m=n and if a manifold M} is compact (where f: M = M3),
then the complete pre-image of a regular value Q € M5 consists of a finite number of
points P;(j=1, ..., N); when the point Q is moved little, Q — (', the new value
Q' € M2Zis also regular, its pre- image also being moved little in the manifold Mj.

COROLLARY 2. If m = n and if both manifolds M}, M’ are oriented and M} is

compact, then at each point of the complete pre-image P € Q) the sign is well
defined:

sgng (P) = sgn det (gyi;),,-

DEFINITION 4. The degree of mapping of oriented manifolds M’; L M; at a

regular value Q € M3, where the complete pre-image f(Q) consists of a finite
number of points P, is the sum

ngQf = Z_ sgn (Pa)
Pl @

REMARK. For non-compact manifolds M,} the class of proper maps M? LM; ,

such that the complete pre-image of a compact set N (in particular, a single point
Q = N) is compact itself, is defined; f' (V) is compact provided that N is compact.
We recall that compact is a set of points, such that any infinite sequence P, of

its points P, € N, has in this set, a limiting point P € N.

For proper maps of oriented manifolds M’l' i) Afz (possibly non-compact, €.g.

M} = ") the degree degy (f) is defined, where Q € Mj" is a regular value (i.e. a
regular point in the image)

degyf = B sm, O
refl@

For example, suppose we are given a map of a straight line R! i) R! where y = f{x).
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Suppose y — * e in the case when x — & e, then this map is proper (for instance,
if y = f{x) is a polynomial).

EXERCISE. For proper maps of a straight line R! —» R! the degree of a map can
be equal to zero or unity.

EXAMPLE 1. Suppose we are given a map of circumference into circumference
f: 810 - S'0).

This map is described by the function y = f{x), where the numbers x, as well as
x+2xn and y = 2min for integer n and m, define identical points of both
circumferences. .

The functon y = f{x) satisfies the condition

fix +2xn) = fix) + 2kn,

where k is an integer since the points x and x + 2x coincide; therefore, the points
¥1 =fx) and y, = f{x + 2x) must also coincide. The number £ is constant since the
map is continuous. A simple equality holds:

k = deg ()

(in this case the degree of a mapping is frequently referred to as the rorational
number). We can verify that the rotational number
25
a

k= Lgarm-roy = L La
2n 2x Jg dx

coincides with the degree of mapping at any regular point Q on the circumference.
The simplest maps of degree k are linear:

x) = kx
(the points x and f{x) lie on the circumference).

Obviously, fix + 2x) = k(x + 2n) = kx + 2kn and the number k must be an
integer.

EXAMPLE 2. Suppose we are given a two-dimensional sphere as a projective
complex space CP! coordinatized by complex projective coordinates (u,v) =

Alu,v), A= 0,

w = ulv = 1/z, wherez=1/w.
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Let in the z-plane there exist a polynomial of degree n

! =f(2) = gy +.. +a,

This polynomial describes a map CP’ L) CP!. The equation z' =A =f(2) for
almost all A has n roots.
Thus, the complete pre-image f~ 1(A) has the form (zy, ... , z,), and all the

Jacobians have positive signs (prove this!). Therefore, we have deg f =n. We are
now in a position to forrnulate the important theorem.

THEOREM 2. The degree of the map M; s of any closed, oriented manifold onto

a sphere 8" does not depend on the choice of a regular value Q e S". Furthermore,
the degree remains unchanged under smooth homotopies (deformations) of the
map f.

We shall give an important definition: the homotopy (or deformation) of any
mapf: X =Y,y =fx) is a continuous map y = F(x, 1) of a cylinder with base X of
length1,0<: <1,

Xx10,1) = Y, y = F(x,),

where F(x, 0) =£; all the maps f,(x) = F(x, ?) are called homoiopic to the initial map
£,0< t£1,fy=f We shall consider only maps of smooth manifolds and assume
the maps f(x), F(x, t) to be smooth (smooth homotopy).

We shall construct the proof as indicated in the following scheme.

We shall use Sard's lemma and its corollaries (Theorem 1). To begin with we
prove that at a given point Q (of the image) which is regular for two homotopic maps

i M} o S% g M7 > 5,

the degrees are the same: degp (f) =degg (2).

The steps of the proof are as follows.

Step 1. If M, is closed and if O € S" is a regular value, then all the points
sufficiently close to O are regular values and have the same degree of the map f.

Step 2, If F(x, ) is a smooth homotopy between maps f and g, such that
F(x, 0) =f(x), F(x, 1) = g(x), then there exists a point Q! arbitrarily close to the
point Q, which is a regular value for all the homotopy of the map F.
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Step 3. If we are given a point Q1 regular for the whole map F(x, ¢), then the
complete pre-image F~ 1(@") is a one-dimensional manifold which has boundary only
when ¢t =0 and ¢t = 1 (Figure 53).

Step 4. Under the conditions formulated in Lemma 3, the degrees degQI fand

an _ o ara avartly annal t arh Ath

Qo

homotopy F(x, ?).

Step 5. Since using a smooth homotopy we can (by rotating the sphere 57
carry any value Q' of the sphere into any other value @2, from the invariance of the
degree under homotopy at a given point Q! there follows independence of the degree
of mapping of the choice of a regular value.

Steps 1 to 5 imply Theorem 2. The motivation of Step 1 can be found in
Theorem 1 and its Corollaries 1 and 2.

Step 2 is immediate from Sard's lemma.

Step 3 follows from the definition of a regular value (Theorem 1).

Step 4 is crucial. Let us view the schematic picture (Figure 54) showing the

Armnlata n!-n;:ma oo L"’lfnl\
WALl W U Pl\r llllﬂs\rl \Z J

n o ar at th int nl
O Cavil Ouivl di s

) me
D —/—1 :‘i O 7 - Q
2] Q Z a
g -
Figure 53. Figure 54.

This pre-image is a one-dimensional compact manifold which has boundary
only when =0, 1 because the value Q' € M is regular. This pre-image falls into
the following pieces:

1) asmooth line going from t=0to =1 (type I);

2) asmooth line with both ends lying either att=0orat ¢t =1 (type I);

3) aclosed line without ends (type III).

Obviously, for type I the ends are points of the complete pre-images,
Pe Q" and P,e g Q). These points are of the same sign. For type II
the ends of the segment are pairs of points
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(P, P3) € f1(@") or (P3P e g@)

which have opposite signs
(sgnp, f = —(sgnp,f).

The pre-image F-(Q™') of type ITI does not intersect £ = 0 and z = 1. Hence, the
sums are equal

deg .f =deg g = X sgn, (N = X sgng (g
e Aeh ' leh !
which implies the assertion of Step 4.
Step 5. Suppose A(r) is a rotation of the sphere S”. where A(0) = 1 and
A(1)Q; =04, 01 and Q4 being two regular values of the map f; M — S™.
Obviously, the homotopy (deformation) of the map f is defined to be

F(x,)) = A(OAx); 0<st<,

where F(x, 0) = fx). Under the map f; = F(x, 1) = A(1) Ax) we have

2) fi@) = /'@ ='@) (o=,
b) therefore, deg 2, hH = deng Jor

¢) by virtue of Theorem 2 we have deg 2, hH= dcg,;!1 Jo» whence
deg o, hH= dengfb = deg szl.
Thus, the degree does not depend on the choice of a regular point, as required.

COROLLARY 3. If 2! =£,(2) is a polynomial of degree n, then for all 2! = A the
equation f,(2) = A is soluble (Gauss theorem).

Proof. Suppose, by contradiction, the complete pre-image is empty. Then the value

f,
2! is regular, and the degree of the map CP’ 25 CP" specified by the polynomial
= fn(2) must be equal to zero. There exists, however, at least a single point A,

such that the pre-image is non-empty and the roots are aliquant. By virtue of the
complexity of the map, all the signs are positive, and therefore deg f,, #0. Thisis a

contradiction,
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REMARXKS on Theorem 2.

1. Theorem 2 on the degree of a mapping can also be applied to smooth maps
between non-compact manifolds M7 — M7 provided that both the map f itself and all
the homotopy F(x, #) (0 < ¢ < 1) are proper maps (in the case where the maps are not
proper, Theorem 2 is invalid). Indeed, let f: R! — R! be the map of a straight line,
where y = arctan (x); we can see that the complete pre-image f~ 1(yo) is empty when
lygl 2 /2; on the contrary, the complete pre-image f! (yo) consists of one point if
lyol < ®/2; this map is, however, not proper since the pre-image of the closed segment
N - =/2; + 7/2]) is non-compact, it is the whole straight line: (= oo, + co).

2. If the manifold M7 is closed (and, therefore, compact), and the manifold M3
is non-compact (e.g. M3 is a Euclidean space [R”), then the degree of any map
f: M1 = M%is equal to zero (prove this!).

3. If one of the manifolds M, M7 is non-orientable (e.g. a projective plane
[RP?), then the degree can be defined only as the residue modulo 2 since the signs of
the points from the complete pre-image cannot be well defined.

4. A very important case of the degree of a mapping is its adaptation to
manifolds with boundary.

DEFINITION 5. A manifold N" with boundary oN is a region in a closed manifold
M" described by the equation

fx) =0,

where flx) is a’ smooth function on the manifold M", such that its gradient Vfis
non-zero wherever fix) = 0.

The boundary of the manifold N is a hyper-surface f{x) = 0; the boundary is
denoted by oN". Suppose we are given manifolds with boundaries N7 and N3 and
their smooth map fi N7 — N7 such that the image of the boundary f{oN7) always
goes onto the boundary N3. Then for any point Q € N3 which does not belong to
the boundary, the complete pre-image ;! (Q) € N7 consists of interior points (which
do not belong to the boundary) of N]. The degree of the map is the sum

de = sign
%f B -fz_lln\ g Pa(f)

£ &)

23

where both the manifolds are oriented.
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THEOREM 3. If the homotopy F(x, 1) of the maps f, = F(x, f): N{" = N3 is such
that the image of the boundary F(ONT; t) for all t <1 goes onto the boundary N7,
then the degree of the mapping f;: N} = N3 remains unchanged under homotopy and
does not depend on the choice of a regular value. Moreover, if the map f: N} = N3
is one-to-one on the boundary, then ldeg A= 1.

The proof of Theorem 3 is identical to the proof of Theorem 2 except for the
last point concerning boundaries. This point follows from the lemma below.

LEMMA 2. The degree of a smooth one-to-one mapping of closed manifolds is
equal to  1; the degree of mapping of boundaries is equal to the degree of mapping
of the interior points of manifolds with boundary.

We shall not give the proofs of Lemma 2 and Theorem 3.
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3.3 Applications of the Degree of a Mapping

Suppose there exists a smooth map of closed manifolds M’l' -J; M’2l and suppose Q is

a differential form of degree n on M5. Interms of local coordinates Ol s YY)
this form is given by Q=g dy' A... A"

THEOREM 1. The following formula holds

[ r@ =] o
My My

Proof. By Sard's lemma, almost all (in the sense of measure) values O € M are

regular. Consider a regular value O, and its small regular neighbourhood U relative

to coordinates (¥', ..., y"). The complete pre-image f(U) = Viu:..uVy

consists of regular points if the neighbourhood U is small. In nelghbourhoods V,on

the manifold ] Mf" there 'lu- 0ints Du. of the l‘ﬁ!‘\’\ﬂl"e r

Siiwr axaisd

Q) = Piu...UPy;

(%))

Viu...uVy.

Let us denote the local coordinates in the neighbourhoods V,, by (x3; ... ; x;
& =1,..., N, assuming that these coordinates x,, are chosen corresponding to the
orientation of the manifold M} and the coordinates (v, ... , ¥ in the region U

corresponding to the orientation of the manifold M3. In the regions V,, the map fis

given by

Y = flg@ls i xd = 1,2,

and the degree has the form

ayq
);
(@

For each region V,, with coordinates x,, by the theorem on the change of variables in
the integral, the following formula holds
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)]jn

J, oo = sgnaes (2

a

where locally we have Q = g(y) dy A ...Ady". Summing this equality over all
a=1,.., N, we obtain either

Jre - (E sgn det (———)) jﬂ

F*) = (deg)) J. Q.
_ U
i)

If, from the manifold M), we discard the sub-set of all irregular values N « M3 of
measure zero and partition the remainder M3\N into a union of regular points

LkJUk = M} \N, we shall come to

since M;\N = U,, and the theorem follows. (Note that the form f*(€2) vanishes
k

at all irregular points of M7, and these points can be discarded from M3 without
changing the integral).

COROLLARY 1. IfM?c R? is a closed surface in a three-dimensional Euclidean
£

E fo thno flmicelne ra thane tho £ P Fnrensfa Balde
A%}

cenmnrno amd o
DT WUIs & I 8D e aussian cin vu.uu C, irecri ”‘CJU!‘UW‘IL&JU’I’HUU U

J' K dc = 4n x (an integen), do = (2)12 dy' A dy?
2

where the integer is equal to the degree of the Gauss spherical map
ENE Y

Proof. If 6, ¢ are spherical coordinates, then we know that K do = ﬂ(ﬂ), where
= Isin 8140 - d¢. Next we note that
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2T
j Q) = J' (j Isin 81d6) do = Zn_rlsineldq; = 4m.
2 0 Yo 0
By the theorem just proved we have
{ 9 f
J Kdo = j. f(Q):(degj)-J Q = @n)degf
Ve e s

which completes the proof of the corollary.

For curves in the plane M! c R? we also have the spherical Gauss map
£iM'— S, If a curve is closed x* = x*(1); o = 1, 2; 0 <7< 2, we obtain (the
curve is assumed to be regular, i.e. ldx /ddl # 0) f*(d¢) = k dl, ¢ = 2x, where k is
curvature,

=27
Jf*(d@ = JJ kdl =
M =0

= (the rotational number of the normal) - jdq; = 2%n.

In this case the degree (deg f) is equal to the rotational number of the normal along
the curve.

DEFINITION 1. We shall call a curve x*(f) on a plane R? rypical (in general
position) if:

a) all the points of self-intersection are double, and

b) the tangent vectors at these points are not parallel (the curve is thought of as
regular: ldx/dt| #0).

EXERCISE. Prove that ! + 1, where [ is the number of self-intersection points of a
typical flat curve, is equal to the rotational number of the normal (modulo 2). We can
see that for curves in a plane the degree of a Gauss map depends on the position of
the curve on the plane, and this degree remains unchanged under regular homotopies
of the curve (i.e. under such homotopies that the curve is regular at all instants of
time). If the tangent vector of the curve becomes degenerate under deformation, then
the rotational number deg f can change as shown in Figure 55. Thus it is easy to
investigate the degree of a Gauss map for curves in a plane. It is much more

£, wf +h A3 1 ara
complicated to calculate this degree for surfaces in a three-dimensional space

M?c R3,
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On the basis of Corollary 1 above, we obtain J. K do =4n (an integer) = 4n (deg ).
2

We may assume at once that this integer does not depend on the embedding of the
closed surface in [R®, The point is that K = R/2, where R is the scalar curvature of

the Riemannian metric on the surface itself, and therefore J. K do is an inner

invariant coinciding with IIZJR dc, where do is the Riemannian element of volume

(area).

REMARK. We have so far considered the expression J' R dc only for metrics of the

surface M? induced by the embedding in three-dimensional Euclidean space [R>. Asa
matter of fact, in the two-dimensional case this expression remains unchanged upon
variations of the metric, for any metrics: let M be an n-dimensional manifold and let

gq") be a metric smoothly depending on the parameter o, such that, outside a compact
region, g;; does not depend on . (for example, the entire manifold is compact and
closed). The general formula holds

d dg’
_[_[ Rdc] = J'Mn(Ry-lnRga.) _d%dc (1)

(see reference [27]). In particular, for n =2 we have Ry= 12R g; (always), and
therefore (d/do) (I R do) =0. Besides, any two Riemannian metrics can be joined

via deformation with parameter o In particular, a torus T2 has a Euclidean metric
where R = 0. Therefore, for any metric ITZR dc = 0. For a sphere we have
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IIZI 2R do = 4x in the standard metric of a unit sphere. We, therefore, always
3

have 1/2J' 2R do = 4x; for an oriented surface Mg with g handles we have
s

172 J'MZR do=4n »(1—g) (whatever the metric).
8

We shall not make use of formula (1) and for a surface in R® shall investigate the
degree of the Gauss map using another method. The idea of this method is as
follows. We consider a Gauss map f: M? - $? for the surface M? c R’ Suppose
that a pair of opposite points of the sphere (n, — n) are both regular values. We also
consider the “height” function on the surface g(P), P € M?, whose value at the point
P is equal to the orthogonal projection of the surface onto the straight line going
through the origin of coordinates in the direction of n. The critical (stationary)
points of the function g(P) are points P;, where (V,)(P;) = 0. The stationary
points P; are, obviously, such that the vector n (or — n) is orthogonal to the surface.
Thus, we have: the set of stationary points P; of the function g(P) is f~ l(.rz) uf 1
n) (which is the union of two complete pre-images). It can be readily shown that the
stationary point P; is non-degenerate (i.e. det (8%g/dy™ ayp)pl. # 0) if and only if the

point is regular for the Gauss map f: M2 §2,

Let us ascribe to the maxima and minima of the function the multiplicity,
namely, a numeral 1, and to the saddles a numeral — 1. On the surface, the sum of
stationary points with multiplicities appears to be independent of the choice of the
function and is equal to a doubled degree of the Gauss map.

We shall investigate these questions in the sections which follow.
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3.4 Vector Fields

In this section we are primarily concerned with the presentation of the simplest
concepts associated with vector fields in the plane and space. The reader is already
familiar with one example of the vector field in Euclidean space — this is grad f{x),
where fis a smooth function on the space R". It should be noted that grad fis, in
fact, not a vector, but a covector field and can be interpreted as a vector field only if
the space is endowed with a Riemannian metric; a more thorough treatment was given

in Part II. Recall that we are already acquainted with the concept of a derivative of
the function f{x) in the direction a: df/da. We also proved the formula: dfida=
(a, grad )) (a scalar product).

Suppose we are given a smooth function f{x) on R"; consider its level
hyper-surfaces (if n = 3, we shall simply speak of level surfaces and if n = 2, we
shall speak of level lines), i.e. a tuple of all points x € R", for which f (x) = ¢, where
c is a fixed constant. The level hyper-surface is descibed by n — 1 parameters (since
one constraint, namely, the equation f{x) = ¢ = const. is imposed upon n parameters

in R"), and, therefore, the dimension of the hyper-surface {f=c} is equal to n - 1.

DEFINITION 1. A point xg€ {f= c} is called non-singular if grad fixg) #0; itis
called singular if grad fixg) = 0.

EXAMPLE. Suppose on R? we are given a function z = x*—y%; consider the level
line {z=0) = [x2- Y2 = 0). The level line consists of two straight lines x==%y
intersecting at the origin of the coordinates. The point O is the only singular point of
this level line.

Letxge {f=c) be a non-singular point. The vector a applied to the point x;
is called rangent to the hyper-surface {f = c} if there exists a smooth curve y(¢), the
whole of which belongs to the hyper-surface {f= c}, such that Y(0) = xy and
dy@t)dtl_,=a.

PROPOSITION 1. Let fix) be a smooth function on R" and let xoe {f=c) be a
non-singular point. Then the vector grad f(x) is orthogonal to the hyper-surface
{f=c} at the point x, i.e. grad fixy) is orthogonal to any vector a tangent to the
hyper-surface (f=c}.

Proof. Since (a, gradf) = df/da, it suffices to calculate the derivative of f with
arye)) |
da

respect to the direction g, ie. =g+ HOwever, F(y(®)) = const. = ¢ since the
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whole of y(¢) lies on the hyper-surface {f= c}, i.e. dffda = 0, as required.

If xo € {f=c] is a singular point, then grad fixp) = 0, and therefore, we can
formally take grad f{x) to be orthogonal to the hyper-surface {f = c}at any of its
points.

Since the direction and the magnitude of the vector grad f indicate the direction
and the rate of the function increase, we have proved that the function f always
increases along the normal to an arbitrary level hyper-surface {f = c¢}. Now we are in
a position to formulate the general concept of a vector field v(x) in a space R".

DEFINITION 2. We say that in a certain region G € R" a vector field v(x) is defined
if at each point x € G we are given a vector v(x) = (vl(x), e s V(X)) with
coordinates v(x), ... , V}(x) which are functions of the point x€ G. The vector
field v(x) is called continuous (respectively, smooth) if the functions vi(x), 1€i<n,
are continuous (respectively, smooth) in the region G. The point x is called a
non-singular point of the vector field v(x) if this field v(x) is continuous (smooth) at a
cerwain neighbourhood of the point x and if, as well, v(x) # 0. Otherwise, the point x
is called a singular-point of the vector field v(x). A singular point x; of the field v(x),
such that v(xg) = 0, is called the zero of the field v(x) or the equilibrium positior.

Vector fields having discontinuity points and essentially singular points play an
important role in physics and mechanics (for instance, in hydromechanics). We shail
become acquainted with such fields later.

DEFINITION 3. Let v(x) be a smooth vector field. A trajectory (a curve) y(t) is
called the integral trajectory of this vector field if ¥(r) = v(y(r)), i.e. if tangent vectors
to the curve Y(t) are vectors of the field v.

Recall that by the term “curve y(r)” we always mean a curve with
parametrization and not simply a geometric image of a curve ¥.

Let us examine the simplest examples of integral trajectories. Suppose f{x) is a
function on a plane and v(x) = grad f{x):

a) fi0) ="+ A% grad fix) = (L, 2x%) (Figure 56). Here the integral
trajectories form a bundle of rays;

b) fx)=- (% + oD% grad fix) = (- 2x!, 2x%) (Figure 57). Here the
integral trajectories are hyperbolas;

¢) fx)=— (- (A% grad fix) = (- 2 - 20%) (Figure 58).
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All the fields a), b), c) have, at the origin of coordinaters, a singular point —
the zero of the field v(x). The function f{x) in example a) has a minimum at the point
0; in example ¢) it has a maximum at the point 0; in example b) the point O is the
saddle of the function f{x).

The vector field v(x) is often interpreted as a flow of liquid through a space or a
region of space. Then it is assumed that an arrow is attached to each particle of this
liquid, which is the velocity vector of the particle. Singular points of the vector field
are singular points of the flow of liquid. Sometimes, the flow of a liquid through a
space is called, for brevity, simply the flow. So, for instance, in example a) the

"oy

singular point O of the flow v(x) is the source, while in example c) the point 0 is the
discharge.

Integral trajectories of the field v(x) are occasionally referred to as lines of flow
of a liquid whose motion is described by this velocity field.

Of course, it is not each real (physical) flow of liquid that generates a vector
field in the above-mentioned sense. The point is that the coordinates of our velocity
field vectors do not depend on time (they depend only on the point in space); in other
words, the flows of liquid corresponding to such fields are szationary flows.
Time-dependent flows are called non-stationary flows.

Let the field v(x) be a gradient, i.e. v(x) = grad f. Consider an arbitrary
integral trajectory Y(¢) of this field and consider a function k() = AY(¢)). Then h(z) is
a strictly monotonically increasing function of all of those ¢ for which {r) is a
non-singular point of the field v(x). Indeed,

d() _ dfiYe) _ df

2
= —dr dv—(v,gradf)—lgmdfl >0

(at a non-singular point). Thus the function f{x) increases monotonically along each
integral trajectory of the field v(x) = grad f(x).



VECTOR FIELDS 305

CLAIM 1. Let v(x) = grad fix). Then among integral trajectories of the vector field
v(x) there is not a single closed integral trajectory.

Proof. If such a trajectory y(r) existed, then moving along y from the point Y(tp) in
the direction of the field v(x), we would go back to the initial point y(z;) within a
finite time, which contradicts the strictly monotonic increase of the function f{x)
along y(¢), and the result follows.

For example, the vector field v(x) = v(x!, x2) = (- x, x!) cannot be the
gradient field for the function f{x) as long as the integral trajectories of this field are
closed (Figure 59).

(®)
&7
Figure 59.
Suppose we are given a smooth field v(x). The following practical question
arises: How shall we find the explicit form of the integral trajectories (lines of flow)
of this field? The definition of an integral trajectory leads us to a system of
differential equations. Let Y(r) = (x'(2), ... , X(t)), where X(¢); 1 Si<n are the
unknown functions to be defined. Since dy(¢)/dr = v(y(z)), we arrive at the system

ad Vl(xl(t)v ses gy xn(t))v

= V@), ... ().

dt

The solutions of this system of equations are, obviously, just the integral
trajectories of the field v(x). We should note that the right-hand sides of this system
do not contain the parameter (time) in an explicit form. Hence to each vector field
there corresponds a system of differential equations. The inverse is also valid.

Suppose that we are given a system of differential equations and assume that
the right-hand side of this system does not involve time in an explicit way. Such
systems of differential equations are called autonomous systems:
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dx
T = 'fl( ]s ’x"-)’
dxn
dt = fn(xlv ’xn)

Then we can construct a vector field v(x), setting vi(x) = i) = f,{xl, vy X,
where x!, ..., x* vary within a certain region G c [R". Thus, we have established a
relationship between vector fields v(x) and autonomous systems of differential
equations. Note that the singular points of the vector field v(x) are exactly the
singular points of the system of differential equations, and vice versa. We shall use
this simple relationship for the geometric description of an important concept,namely,
the integral of a system of equations.

By definition, the integral of a system of equations is a function fx', ... , x*)
constant on all the trajectories, i.e. on all the solutions of this system. Using this, we
shall construct a vector field v(x) in [R"; then the solutions of the system will be
integral trajectories of the field v(x). Let us consider an arbitrary hyper-surface
{f=c) (where c is fixed, but arbitrary). From the definition of the integral of a

it 1 ardinta that 1f an intaoral trntostor +1
Sycnu.u it is immediate thatif an i Imegra: uaqu.u; has at 1€ast one common pG}ﬂt vv'lt.h

{f=c}, then the whole of the trajectory lics on the hyper-surface {f=c]}, i.e. the
vector field v(x) is tangent to {f=c} at each point of this hyper-surface (Figure 60).

Jch a :I'ﬁ:aﬁt‘h
is «mposs,€e

Figure 60. f=z

Consequently, each vector v(x) is tangent exactly in one hyper-surface {f=c}
through the point x. This allows us to lower the initial system of equations from n to
n - 1, restricting it (i.e. restricting the vector field v(x)) to the hyper-surface {f= c}.
Recall that the dimension of {f=c} is equal to n — 1. This simple geometric
procedure of restricting the field v(x) precisely corresponds to the well-known
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assertion that the definition of the first integral of a system makes it possible to lower
its order by unity. If the second, the third etc., integrals of the system are known,
geometrically this means that we can continue restricting the vector field v(x) to level
surfaces of increasingly small dimensions.

If it so happens that we have lowered the dimension of the level surface to
unity (i.e. we have obtained a one-dimensional curve), this means that we have
managed to completely integrate the system, i.e. to find its solutions.

Since a stationary flow of liquid may be not only through a Euclidean space,
but also through a surface (for example, a liquid may spread about a two-dimensional
sphere), we can study vector fields and the corresponding differential equations on
surfaces in Euclidean space. Differential equations are of great importance, for
instance, on a two-dimensional torus (the boundary of a roll), but we shall not go
into detail. The differential equations on the torus will be discussed in celestial
mechanics.

As a concluding remark, we shall note an interesting fact that any stationary
flow of liquid on a two-dimensional sphere must necessarily have at least one
singular point (such as, for example, a source or a discharge). This distinguishes the
sphere from other two-dimensional surfaces. For example, on the torus there exist
vector fields without singular points (Figure 61).

—

Figure 61. “~S—/—/———=

It should be noted that a vector field without singular points obviously exists
on the circumference, which is a one-dimensional sphere. On the three-dimensional
sphere there also exist vector fields without singularities. This fact is generally valid
for any sphere of odd dimension.

It turns out that the presence or absence of singular points is connected with
the global properties of surfaces, with the so-called topological properties.

We now proceed to a more detailed study of a certain special class of vector
fields on the plane. To begin with we shall make a statement which will be of special
importance throughout this section.
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An essential part of the theory of two-dimensional Riemannian geometry of
surfaces in some exact sense comes out as the geometry of functions of one complex

variable.

We shall demonstrate this general principle on an example of vector fields
existing, for instance, in hydromechanics.

We shall emphasize once again that the hydromechanical interpretation of
vector fields has a deep physical meaning, and therefore we shall not divert from
using the hydromechanical terminology in our further presentation.

Suppose through a plane with Cartesian coordinates x, y there is a flow of
1 qui idv = (P, 0), where P(x, \7\ and O(x. v) are smooth functions on the n'lanp

Suppose aiso ’t;;t the flow v is stano’r‘l;ry-,alnd the liquid is incompressible; let its
density p be equal to unity (i.e. p is constant). Let D be a region on the (x, y)-plane,
and let the boundary of the region D be a piecewise smooth curve. We shall denote
the mass of liquid escaping from the region D per unit time by m;(D) and the mass of
liquid emerging in the region D per unit time by my(D). Suppose Am(D) = m(D) —
my(D) is the change of the mass in the region D (since the liquid is incompressible,
Am(D) = 0, but for the present we shall not use this fact because the final formula for
Am(D) which we are now going to derive is also satisfied in the case of a
compressible liquid). Consider an infinitesimal rectangle IT with sides Ax and Ay

parallel to the coordinate axes. Then for Am(II) we are led to the following picture

(Figure 62).

(ey+dy) (zrary+dy,

. &y (x+dz, )
Figure 62. P=P@+A.z-,y+a)—ﬁcz-,y+a)

Since the flow v can be expanded into the sum of two flows v= (P, Q) =
(P, Q) + (0, Q), it suffices to be able to calculate the change of the mass for each of
these two flows. In Figure 62, the region ABCD shows the variation of mass of the
flow (P, Q) (recall that the density is constant).
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By virtue of the mean-value theorem known from analysis, we derive

(aP(s) aQ(z)

= =) Ax Ay,

Am (1) =

where s and ¢ are points situated somewhere inside our rectangle I. Approximating

the rpg-unn D hv rpr-rnnu'lpc 11 we ﬁnnllv come to

Am () = _[J(gxi+%) = -gdiv(v)dxdy,

where div (v) = 0P/ox + 0Q/dy. The result obtained can be reformulated as follows.

Consider the region D and the integral trajectories y(z) of the flow v. Letxe D
and x = ¥(0); then we examine the point x(z) = ¥(2). If we now fix some value of ¢,
we shall oabtain a set of points {x(r)}, where x(0) € D. The points {x(¢)} form a
region D(¢) which is the image of the region D under translation by ¢ along all the

integral trajectories. Let S(D(z)) be the area of the region D(f). Then we have, in
fact, proved that

d .
<50, = J' div @) dx dy.
D

Since, in our case, the liquid is incompressible, it follows that Am(D) =0 for
any region D, i.e. div (v) =0.

We shall introduce another important class of flows v. Recall that if ¢ is an
arbitrary piecewise smooth closed contour on a plane, then the circulation of the flow
v along the contour c is the integral L P dx+ Q dy. The flow v is called vortex-free

if its circulation along any closed contour is equal to zero.
Suppose the flow v is vortex-free; then if D is a region bounded by an arbitrary
closed contour C, we obtain by the Stokes formula

0 =J.Cde+Q dy = H(%-%)dxdy
D

and by virtue of the arbitrariness of the contour C we haye dP/dy = 9Q/dx. This
equality is the necessary and sufficient condition for the flow to be voriex-free.

(nnﬂ'prrpr a potentiaD. ie.
Wkt o ot o) e ad “"V.ﬂ—"i. l', bur o BIOWwH

PROPOSITION 2. Let v be a vortex-free flow. Then the flow v is potential
here

exicte a function alx, W\ such that erad a(x, W =v,
oo Bral Ba2 “J“'."..V" \ J’ MV b 6 WL vy Jl
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In particular, the form P dx + Q dy is the total differential of this funcrion a(x, y).

LI4Lar, & UL Ly Ol

The function a(x, y) is uniquely defined with an accuracy to an additive constant.
A flux v such that v = grad (a) will also be called a gradient flow.

Proof. We shall integrate the following system of differential equations in partial
derivatives: P = da/dx; Q = da/dy under the condition that 3P0y = 30 /ox.
Integrating the first equation over x, we obtain a(x,y) = J': Px,y)ydx + g(y).

Differentiation with respecttoy yields

da(x,y) _ J" oP(x,y) , _ dg®)
Tl - | :

dy
whence either
{0y , . dg®)
Q(xv }’) = j'; ax dx+ dy ?
or
dg(y)

Q(xa _V) = Q(xz }’) —Q(O- .V) + = .
ay

From this we find

§0) = 00, g0) = [ Q0N dy+e,

where ¢ = const. Finally, we are led to
y
awy) = | P,y dx+ [ 00, 5) dy+e.
If we started our integration with the equation Q = da/dy, we would obtain

awy) = [, 0N dy+ [ P 0 dx+c.

The function a(x, y) is called the potential of a flow and is uniquely defined to
an accuracy of a constant, This function can be described geometrically.
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Figure 63. 7 —

We shall consider two piecewise smooth paths: Y=Y, UY;and ¥Y=7, U T,
(Figure 63). It is clear that

a@y) = [ Pwndc+ (00N d = [ @ dx+0dy

a,y) = [ 0w dy+ [ Pa0Vdy = [ Pax+Qdy),

that is, the value of a(x, y) can be obtained via integration of the differential form
o = P dx + () dy either along the path 7y or along the path ¥ which both lead us form
the point (0, 0) to the point (x, y). We can make the general statement.

PROPOSITION 3. Suppose the flow v is vortex-free. Then the flow is potential,
and the potential a(x, y) can be represented as follows:

where Y is an arbitrary piecewise smooth path leading from the point (0, 0)to the
point (x, y). In particular j  is independent of the choice of the path ¥.
Y

Proof. To begin with we prove that the integral j P dx + Q dy does not depend on
Y

the choice of path (under the condition that the initial and the final points are fixed).

Indeed, let 7 be any other path from (0, 0) to (x, y); examine

a=fo-{o={ ®;
¥ =)
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here by (- %) we denoted the path ¥ oriented in the backward direction (Figure 64).

5y
;’ ("
| L7
Figure 64. ¢ Z

ThenJ' (Pdx+Qdy) =J' (P dx + Q dy) since C =y (-7)is a closed
wy) C
contour and the flow is vortex-free. So, a =0 and J' 0} =I ®. Since we have
Y Y
proved the indpendence of J o of the path ¥, it follows that to find the numerical
Y
value of the integral J' ® we can, say, take one of the paths depicted in Figure 64,
Y
which will give us the equality j o = a(x, y). This completes the proof.
Y

The change of the initial point of the integration path, obviously, changes the
potential a(x, y) by and additive constant.

Now let the flow v be both vortex-free and incompressible (which is exactly a
Jlow of incompressible liquid). Then the coordinates P, Q of this flow satisfy the
following equations ’

oP 00 , da_ _ _da.
a = -_a;1 P -a_xv Q —sy—',
whence we find -qz—a—+§2£- = 0.

oy

DEFINITION 4. The linear differential operator A of order two, A = 3%/0x® +
0%/9y?, is called the Laplace operator. The function f(x y) satisfying the equation
Af=0is called harmonic.
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Thus, we have proved that the potential of a vortex-free and incompressible
flow is a harmonic function on a plane (x, y). The potential a(x, y) is conventionally
considered in pair with another potential, b(x, y), which is called a conjugate
potential or the potential of a conjugate flow. To define this potential we shall

consider the following system of differential equations: 2 = - — = P, The

ox 9y

function b(x, y) is the solution of this system (if this solution does exist) and is called
a conjugate potential. We shall now prove the existence of a solution and its
uniqueness to an accuracy of an arbitrary additive constant. We introduce a new
notation: P --Q, Q P. Then we have ob/ox = P; ;0bfoy= Q under the condition
that % = % ; g = 5 This system of equations and conditions we

recognize as the one that we have just integrated to find the potental a(x, y).
Consequently, the potential b(x, y) exists and plays the role of the potential a(x, y)
forthe flow (P,Q) = (- @, P). We should note that the flowv = (P,Q) iscalled

conjugate to the flow (P, 8). Obviously, the inverse is also valid: the potential
a(x, y) is conjugate to the potential b(x, y), that is, a potential doubly conjugated to
d(x,ﬂ:y) coincides with the latter. Note that the flows v and v are or rithogonal:

(v,v)=—-PO+QP =

We shall now take an important step in the study of the geometry of our flows.

Consider a plane (x,y) as a plane of one complex variable z=x + iy and
consider the following complex-valued function: flx, ¥) =a(x, y) + ib(x, y), where
a and b are the potential and the conjugate potential of an incompressible flow
v=(P, Q). In the sequel we shall write, for simplicity, g,, g, instead of ag/oy,
Jg/ox, respectively.

Since a, = P; ay =0, b, =-0; b =P, it follows that a, =by; a,=-b,. Such
ﬁmrhnnsﬂx V-a+ Ib are called cgmnlpr analytic ﬁmrngn,_g and the equations for
the functions a(x, y) and b(x, y) are called the Cauchy-Riemann equations
(conditions). The functions a(x, y) and b(x, y) are respectively called the real and
imaginary parts of the function f and are customarily denoted by a = Re (f) and
b =1Im (f). We shall recall some properties of the complex analytic function.

Suppose z =x + iy; z =x-— iy;thenx = 12@ +z),y=-i/2(z - -2 z ), and
therefore any function g(x, y) = u + iv can be written in the form g(x,y) =g (z, 2).

By the rule of differentiation of a composite function

0 & 0 dy d _ (3.8)
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this property can be written as = (0. Only these functions are called complex

analytic; they can be expanded only in power series of the variable z (this is one of

the possible definitions). Since dg/dz = 0, it follows that g, +ig, =0,

Le.up+ v+ (1 + ivy) =0 and we arrive at the conclusion that the condition

dg/oz =0 is exactly equivalent to the Cauchy-Riemann equations: u, = Vys Uy ==V,
Thus, we have proved the following statement.

THEOREM 1. Any vortex-free incompressible flow v = (P, Q) can be represented in
the form v = grad (a(x, y)), and the conjugate flow v = (P ,Q) in the form
v = grad b(x, y), where the function f(x,y) = a(x,y) + ib(x, y) is complex
analytic and is uniquely defined up to an arbitrary additive constant. The inverse is
also valid: if {z) is an arbitrary complex analytic function, then the flows v = grad
Re f(z) and v = grad Im f{x) are vortex-free and incompressible and are, in addition,
rmutually conjugate.

The integral trajectories of the flows v and v are orthogonal to one another at
each point. The function f=a + ib is called the complex potential of the flow. Let
Rz) = a + ib be an analytic function. How shall we go about finding the zeros of the
flows v and v? From the Cauchy-Riemann equations we obtain

@) = 12(-if) = ay—ia, = b, +ib,.

This implies the assertion: the points at which the derivative f, vanishes coingide
with the zeros of the flow v (or, which is the same, with the zeros of the flow v).
Hence, to find the zeros of the flows v, v, it suffices to solve the equation f;(z) = 0.

The flows v, v may have singular points other than zeros (points of
discontinuity), which are not of course roots of the equation f,(z) = 0.

We ask a practical question: if v = grad Re f{z), where f{z) is the kown
analytic function, then in practice how shall we find the integral trajectories of this
vector field? It turns out to be unnecessary to solve, in an explicit form, the
corresponding system of differential equations.

PROPOSITION 4. Let f=a+ ib be a complex analytic function, v = grad (a);
v =grad (b). Then the function b(x, y) is a first integral for the vector field v, and
the function a(x, y) is a first integral for the vector fleld v, i.e. the integral trajectories
of the flow v are exactly all the level lines of the function b, and the integral
trajectories of the flow v are exactly all the level lines of the functions a.
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Proof. 1t suffices to calculate the following derivatives: da/d: and db/dv. For
example, db/dv = (v, grad b) = a,b, + ayby = byb, — b b, = 0. Similarly,
da/d'; = (0, i.e. the functions a and b are constant on corresponding integral
trajectories. This completes the proof.

We shall give some examples. Let f{z) =  k22; rf= k1, J(@) =0 only
at the point 0; f = r* (cos k¢ +1 sin k¢); ie.a=r*cosk¢;b=r*sink¢. Figure 65
shows the integral trajectories of a flow grad (a) (for k= 4). The origin of
coordinates is a singular point which can be obtained through merging of several
singular points of higher order.

Let f= z""; k=1,f= r"(cos k¢ — i sin k¢). Figure 66 shows the integral
trajectories of a flow grad (a) (for k = 4).

\\ Pote ¢f

Figure 66. ' ouder k

Figure 65.

Let ﬂ'z\ =lnz. Flgure 67 shows the mtegra] rrmemnnec of flows v and v

An example of a more composite function is depicted in Figure 68. (The
Zhukovsky function f{z) =z + 1/z2.)

@@>>

l\/

Figure 67. Lojarithmic :.nyu?ancy Figure 68. v
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We shall give another example: f{(z) =(In (z + @) —In z)/o (Figure 69).
On this example we may demonstrate how singularities merge. Let a — 0.
Then clearly f{z) = (In 2), = 1/z, and geometrically it is also obvious that the field of

the dipole becomes the field of the flow corresponding to the first-order pole
(Figure 70).

)/
(=)

Figure 69. Lipofe Figure 70.

We have considered vector fields onthe plane; all these fields can, however, be
mapped onto a two-dimensional sphere 2. Recall that a stereographic projection
(see Part I) establishes a one-to-one comrespondence between all points of a
two-dimensional sphere and points of an extended complex plane (an extended
complex plane is a plane of one complex variable endowed with an infinitely remote
point). It is sometimes more convenient to view vector fields on a sphere rather than
on a plane.

In conclusion, we note that a constant flow v on a plane (i.e. v = grad (z)) has
the only singular point at infinity; more precisely, infinity for this flow is a first-
order pole. A particularly illustrative example may be the sphere 52 (Figure 71). The
flow for f=z + 1/z on the sphere is given in Figure 72.

Figure 71.
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As an exercise we recommend constructing, on a plane, a qualitative picture of
the behaviour of integral trajectories of the fields grad Re f{z) and grad Imf{z) for the
following functions f{z):

az+b
cz+d )’

(0+i ) ln(

1/z+1Inz;

z"+1n z.
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3.5 [Functions on Manifolds and Vector Fields

Suppose we are given a smooth function on a manifold M".

DEFINITION 1. A point Pis called critical or stationary (extreme) for a functionf on
a manifold if (df)p = O or, in terms of local coordinates (!, ..., x"), we have

0ffox!, ..., offox™ = 0.

DEFINITION 2, The critical point P of a function f is called non-degenerate if (in
terms of local coordinates (x', ... ,x*)) the matrix (9°f/0x™ axl");. is non-degenerate
(det = 0).

DEFINITION 3. A function f on a manifold M" is called rypical (or in general
position, or a Morse function) if all its critical points are non-degenerate.

We shall describe an important class of functions. If a manifold M" is
smoothly embedded in Euclidean space R and if a straight line E,.(t) goes in n- or
— n-direction through the origin of coordinates in [R", then we define the function
2,(P) (the “height” or “coordinate” function) whose value at the points of the
manifold is equal to the orthogonal projection of the points of the manifold onto the
straight line E,().

We shall enlist the properties of the height (or coordinate) function.

1. Such functions are in correspondence with pairs of diametrically opposite
points of the sphere S™!(n, — n) or, equivalently, with the points of the projective
space (this is obvious).

2. Apoint P € M"is a stationary point of a height function g,, if the vector n
(or — n) is orthogonal to the manifold M" at the point P (this is obvious).

3. We should discover conditions under which a critical point P of a height
function g, is non-degenerate.

LEMMA 1. For hyper-surfaces M" c R™! the Gauss map M" — §"* — RP"is
defined, the point P is a non-degenerate critical point of a height function g¢, _py
(= g,) if it is a regular point of the Gauss map F: M" — [RP", where the vector n is
orthogonal to the surface M" c R™! at the point P.

Proof. We take the vector n to be the ¥**1-axis and the vectors x!,..,x"tobe
tangent to the manifold M". In a neighbourhood of the point P the manifold is given
by the equation x**! = ¢(x!, ... , x™ and (d ¢)p = 0. In the region near the point P
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the coordinates x', ... , x” serve as local coordinates on the surface; the “height” g,,

in that neighbourhood is the function ¢(xl, ... , x*) = x"*! of the point on the

surface. Similar coordinates x , ... , x " are chosen on the sphere in a neighbourhood
of the point n (or — n). Repeating the calculations, as in the proof of the theorem
saying that K do = f* 2, we obtain that in coordinates x, .., 2 x), ..., x atthe
point P, the matrix

Bg,,)_ azq;)_az“
P~ P T N_g’P
ax%axP x%9x oxP
and
2
dg
det(——), = k.
ax"oxP
Therefore, the condition of regularity of the Gauss map at the point P, namely
-~ 32-
(%) 20, is equivalent to det (—="—) » 0, This completes the proof of the
b axaxP

lemma.

An embedding M" < RY, where N > n + 1, defines a “normal manifold”
whose points are pairs (P, np), where P € M", np 1 M" at the point P. This normal

manifold is denoted by N(M") and has dimension N — 1. The Gauss map is defined
to be

NM™ — S - RPM,

(P,np) = np = (n,—n).
The lemma is also valid in this case: if a point (P, np) and a point P are regular, then
the “height” 8np has P as a non-deenerate critical point. The proof is identical to that
of the above lemma. Carry it out for a circumference S in space R3.

The lemma implies

THEOREM 1. A height function g, _, on a hyper-surface M" < R™ s typical

(i.e. all of its critical points are non-degenerate) if and only if the Gauss map
F: M" — RP" has (n,—n) = Q as a regular value. Almost all height functions are
bpical.
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Proof. The lemma implies that the point P € F~'(n, — n) is non-degenerate for the
“height” g¢, _p) if and only if P is a regular point. Therefore, the theorem follows
from the lemma, from the definition of a regular value (all pre-images are regular) and
from Sard's lemma (almost all the values a € [RP” are regular). This completes the
proof.

Thus, the set of critical points of a height function g, is a union of two
pre-images under the Gauss map F: M™ — [RP"; this union coincides with

Fln) uF(-n).

DEFINITION 4. A non-degenerate critical point of a function is called a point of
type (k, n— k) if at this point a second differential (d g)pis a quadrati. -1 with k
positive and (n — k) negative squares in the canonical form (obviously, the sign of the

determinant det (9°g/0x™ axP)p is equal to (- 1),

The following theorem holds

THEOREM 2. Suppose we are given an oriented hyper-surface M" < R™ Yand a
typical height function g,; if fis a Gauss map, then the “sign of a point” P for the
map f (i.e. the detree of f at the point P) coincides with the sign of the determinant
sgn det (3%g,/0x* 9xP)p = (— 1) %), where the point P has type (k,n—k). If n is
even, the functions g, and g_, = g, are of the same sign. For even n =2l the degree
of the Gauss map is calculated by the formula

L )) E(-l)

2degf = E (sgn det (
ox"oxP

where P is a critical point, and the summation is over all the critical points of the

“height” g,,.

Proof. The sign of the point P & f1(Q) is defined as the sign of the Jacobian of the
map fin local coordinates near points P and Q. In terms of the chosen coordinates on
the hyper-surface, where x"*! = g(x!, ..., x") and (dg)p = O and on the sphere

= ((x Y+t (x ")2)”2, where (dx "*I)Q =0 we had

ox™ e
(axﬂ) = ( xaxﬁ)




FUNCTIONS ON KIANIFOLDS AND VECTOR FIELDS 321

Therefore, the sign of the point P for the map f coincides with the sign of the
determinant det (azgfchcIlL axf’),, =(-1)"* If nis even, we have (- 1)"*= (- Dk
Under the change g » — g the numbers k and n — k in the type of a critical point
change places

(k,n=k) » (n—k, k).

From this we have

2

dg "
degf= ¥ sgndet(—=2-),= X (-1
Pej lm ox%a pei )

Similarly, at the point — n we have (since g_, =—g,)

2
dog .
degf= Y  sgndet(—= )P=E (- ¥,
rei lm ax%axP P
For even n we obtain
32g
2degf = > sgndet (—2), = X (-1
rei o em xP P

This completes the proof of the thoerem.

Examples are given in Figures 73, 74 and 75.

Figure 73.
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1) The sphere (the boundary of a convex figure — Figure 73):
2degf =2 = lp1 + lpz;
2) The torus (see Figure 74):
2degf= 1P1-1P2_1P3+1P4=0;
3) The pretzel with g handies (see Figure 75):
2degf = 2-2g, degf=1-g.

We have illustrated such embeddings (positions) of a surface with g handles
for which the formula deg f =1 — g is satisfied. But the formula for the degree of
the Gauss map is not yet proved for all embeddings of a surface. For example, a
torus can be knotted (Figure 76). A torus embedded in such a manner cannot be
deformed regularly into a usually embedded one.

Figure 76.

On any manifold M" with a Riemannian metric (g;) a smooth function g
defines the vector field V-gradient by the formula (in terms of local coordinates)

R’

axP

The critical points of the function g are such that (Vg)P = 0. Each point is
ascribed the sign (— 1)™*, where n —k is the number of negative squares of the
quadratic form (dzg)p. In calculating the degree of the Gauss map (for even n) we
considered the expression

x(-n™,

P

where (k, n — k) is the type of the critical point P of the height function g. Now we
shall examine an arbitrary vector field (§*) on the manifold M".
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DEFINITION 5. A point P is called singular for a vector field (%) if £* =0,
a=1,.., n.

DEFINITION 6. A singular point P of a vector field is called non-degenerate if

o
det 2%—)#0, where (x!, ..., x") are local coordinates and (£', ..., E") are
ox
components of the vector field in terms of these coordinates.
DEFINITION 7. The sign det (0 g“/axf’),, == 1 is called the index of a non-
degenerate singular point P of the vector field (™).

A simple lemma holds.

LEMMA 2. Let a Riemannian metric be positive and a vector field (%) be the
gradient £* = g®P 5g/0xP of a function g. If P is a critical point, then the following
equaliry holds
a ~
sgn det (éﬁ_) p = sgndet ( '
oxP ox“dx

B),, = (-

where (k, n—k) is the type of the critical point P.

Proof. If the metric is Euclidean, g = &;, then £ = dg/ox™, and the lemma is
obvious. If the metric g;; is not Euclidean but (g4p)p = 8,p and (agu,,/axi),, =0,
then the lemma is also obvious. On the surface M? = R> we could always choose

coordinates x', ... ,x" in a neighbourhood of the point P, such that (f,5)p =0,
(Bg,_plaxj)p = 0. This implies the assertion for surfaces M2 c R* (similarly, for
hyper-surfaces M" ¢ R™!). In the general case, for any (positive) metric 8up in
coordinates xJ, ... , ¥* we can consider the deformation

Bup(® = (1 -Dgop+18,p, 0211
For all 0 <1< 1 this metric g,p(r) is positive and
8xp0) = gups 8op(1) = Bup-

The sign sgn det (0£*/0x”) remains unchanged for all 0 <¢<1 since for all
those ¢ we have det (9E%/dx"") # 0. This completes the proof.
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DEFINITION 8. A vector field on a manifold M" is called “rypical” (in general
position) if all of its singular points are non-degenerate.
Let §°‘(xl, ey X1, 06 =1, ..., n be a vector field in a region of Euclidean

space with coordinates x!, ..., x> Letn®™ be a constant vector (independent of
x1, ..., xX*. The following theorem holds.

THEOREM 3. Almost all of the vector fields (£ + m)* = n™+ E¥(!, ... , x™), where
N* = const., are typical.

Proof. The components E*(x, ... , ¥*) define the map of the region U:
ez U= R, where ¢f(x, ... , ¥*) = E*@&?, ..., x™).
A simple lemma holds.
LEMMA 3. A point P U is regular for a map ¢ if and only if
a
det 9_&_) p = 0.
axP
The proof is obvious by definition.

Next, the value O (the origin) is regular in R" if and only if all points Py of the
pre-image 0~1(0) are regular. This means that the value is regular if and only if the
vector field E* is typical. Sard’s lemma tells us that almsot all values O € [R” are
regular. Suppose 1) is a vector going from the origin O into a regular value O € R".
Then the vector field £ + n is such that O, n(0) = ¢[‘(0). Since n = const., we obtain
that for almost all ) the field £ + n is typical, as required.

Suppose now that we are given an arbitrary vector field (E*) in a region U of
Euclidean space [R*. Suppose V c U is a sub-region in which the vector field £* does
not have singular points £ =0.

J
The “spherical” map V —§> S is defined by the formula
3

Ae .2t = =2,

IE]

This formula has sense in the region V, where £ # 0. On the sphere 5™ we have
defined the form Q of degree n — 1 (the volume element) and also defined the
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expression Qg = f*(Q) (in the region V). The form Qg has degree n~ 1 in the region
V of n-dimensional space.

If P is an isolated singular point of a field £ in a region U, then in a small
neighbourhood of the point P everywhere E# O except at the point P. Consider a
sphere

sy {E(x -z = €}

where € is a small number > 0 and x}, ... , x§ are coordinates of the point P.
Everywhere on the sphere we have £ = 0 and in the interior of the sphere P is the
only singular point. On the sphere S5~ the “spherical” map is defined to be

P 1 I .
de = — Q).
Forn=2wehaven—1= 1and Q =d¢. Forn =3 we have n—1 = 2 and
=Isin 01d0 d¢. Let all singular points of the vector field £ in aregion U of space

MR ha jonlatnd avamamle mam dacamacneay T oae ARl 0 77— MDA L. o Alac~
U UL 1oulaitcu \IUI CAG.IHPIC, llUll'uCECllCldlC} L vl LGN &7 S W | ] uC da CloyxCdJd

hyper-surface on which there is not a single singular point.
The following theorem holds:

THEOREM 4. The integral f () is equal to the sum of the indices of
a(n) h{kl

all singular points of the field £ which lie in the interior of the surface M™, where

a(n) = J.Sn—lQ-

Proof. The form £ on the sphere s* has degree n — 1 and, therefore, is closed:
dQ=0. Consequently, the form Q is also closed in the region V c R", where £ # 0
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since fE(dQ) = d(fE(Q) = 0. Consider the region between the spheres V
surrounding each singular point P; in the interior of M™ and the M itself. The
boundary of the region V" is M*1 U SHP;] U...u S"p;ll, where N is the number of

singular points in the interior of M™™!. By the Stokes formula we have

- fim= ] in-

ov
- sa+f rao+. ..+ sa-
- Mn—l'g -'Sn—l§ ' -'sn—l§ -
Py N
--j f;Q+;degf£“
Mn—l

and the theorem follows.

On the plane R? the theorem becomes more illustrative since the index of a
singular point is the rotational number of the vector field in going round this singular
point.
cld au at a non-degenerat

pul
ag = (9E*/axP)p and its eigenvalues Ays «o oAy are defined. LetReX;20,i=1,.

n. We have k eigenvalues A;, where Re A; > 0 and n — k eigenvalues, where
ReA; <0. The type of the singular point is (k, n — k). Reduction to the canonical

Tmem o sraméme L" afmaiilae matnt D sha ccantmier
Ul d vyoLlul 11l 1l ulal P 113L I uUic uidllla

o

form yields
sgndet( ) —(-1)
oxP

We have the following theorem.

THEOREM 5. The index of a field £ at a singular (non-degenerate, Re A; # 0) point
P is equal to (— 1)"‘Jt

Proof. In a neighbourhood of the point P we have £* = a"é x? + A%(x), where A*
have a higher order of smallness, ay = (3 £%/oxP)p.

Consider a field E*(?) = ai’,‘x‘3 +A%(1 -1),0< <1, in a small neighbourhood
of the point P non-degenerate for the reason that det (as') # 0. Forz=1 we obtain
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E*(1) = a"ﬁ xP, where aE‘ = const.

Under deformation 0 < ¢ < 1 the index of the point P remains unchanged. The field
E™(1) is linear. Obviously, the degree of a singular point is the degree of the linear

map (on spheres, since under the map x _q_;) a(x) a ray is transformed into a ray):
Px)* = a‘f," P,
Obviously, this degree is det ag, and the result follows.

EXAMPLE. On the plane (n = 2):

1) aknot, a focus, a centre have index equal to 1,
2) asaddle has index equal to—1.

Next, let on a plane [R? there exist a curve such that:

a) either the field is everywhere tangent to the curve (a periodic solution),
b) or the field is nowhere tangent to the curve (a contactless cycle).

We arrive at the following corollary.

Inside such a curve there necessarily exists a singular point. Rotation of the
field along such a curve is equal to 1, and the theorem given above tells us that the
rotational number of the field around a curve is equal to the sum of the indices of all
interior singular points. Note that the index of a non-singular point is equal to zero

(verify it). o
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For an arbitrary closed, oriented manifold M" and for a vector field £, on this
manifold, with isolated singularities it turns out that the sum of the indices of these

singular points % ind, € is independent of the vector field; this sum is called the

Euler characteristic of the manifold. This fact can be explained quite simply: two
vector fields £ and n with isolated singularities appear to be homotopic, and
throughout the homotopy process the vector field has isolated singularities. But to
prove this fact is not very easy. We shall prove this assertion only in the simplest

cascs.

THEOREM 1. 1) If we are given a two-dimensional disc D?and if on this disc D%a
vector fleld & is defined which is not equal to zero on the boundary I and is such

that
a) either the field E or the boundaryT" of the disc D?is evberywhere tangent to

the boundary (U is an integral trajectory),
b) or the field £ on T is nowhere tangent toT" (the boundary is a “cycle without
contact’), then the following equality holds

1= Y _ind, &
Pinside D* “

and, in particular, in the interior there exists at least one singular point.

2) If 5% is a two-dimension sphere and E is a vector field on it, then the
Jollowing formula holds

2 = ind, &.
3 2

Proof. Item 1 was, in fact, proved in the preceding section. The point is that under
the conditions of the theorem, the field rotation along I is equal to 1. Let us prove
item 2 concerning the sphere S2. Suppose Q is a non-singular point and Dgis a small
disc with a centre at this point. Suppose D,2 is a complementary disc 52 =D3
w D? In terms of local coordinates (y;, y;) the vector field £ in the interior of the
disc Dgis approximately constant, and therefore in these coordinates (y) it is

homotopic to a constant one. Hence, on the contour I the field £ is homotopic to
such a field which has constant components in terms of the coordinates (y) in the
interior of the disc D3 In coordinates (x) in the interior of the disc D? the field
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does not have constant components: taking D% as the lower hemisphere of the sphere
$% and D% as the upper one with standard coordinates, we see that the field £ on the
contour I" in the coordinates (x) of the disc D% is homotopic (Figure 77) to an
absolutely standard half-field n (on I') which has constant components under change
to the coordinates (y). What is the rotation of the field n along I'" in the coordinates
(x) of the disc D%? This rotation is the sum of indices of all singular points of the
field &, which lie in the interior of the disc Dlz; this sum does not depend on the field
E. The vector field (the gradient of the height function), where the sum of
indices of the singular points is equal to 2 is directly specified (see Figure 77),
Ind P, =Ind P, =1, ie. PE Ind, . This implies the theorem.

a
a

N

Figure 77. “

REMARK. The proof of the theorem works for spheres of all dimensions n  but
g‘. Ind, & = 1+(-1)" (Proveit!)
a
a

How can we verify , in practice, for particular fields that along the boundary I"
of the disc D? the vector field & is transverse to I'? Suppose we are given a
(Lyapunov) function F(x!, xz), such that a) I" is the level surface F(x, ) =c and
b) the function F is such thatVt F <0 for F = c (on the contour I'). Then the fieldI”
is transverse to the boundary I" (verify it). If, in addition, in the interior of the disc
there exists exactly one singular point P of index 1 and if this point “repulses” the
integral trajectories of the field £ (a repulsing focus or a knot), then somewhere there
exists a periodic trajectory (the Poincaré-Bendixson theorem).

For example such conditions are satisfied by a vector field given by the
equationsx = v, v =jf{x, ), where fx, v) = - sin x + kv. Find the contour I" and
the Lyapounov function F, where Vs F<OonT.
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How are two-dimensional, compact, connected, snooth manifolds without boundary
organized? It turns out that their description is quite simple. We shall describe two infinite series of
manifolds. The direct product of a segment by a circumference will be called a handle. A handle is
homeomorphic to a cylinder. The edge of a handle consists of two non-intersecting circumferences.
Discard from a two-dimensional sphere two non-intersecting closed discs. Then glue a handle to the
boundary of the manifold obtained by identifying each of its boundary circumferences with one of the
circumferences, which are the edge of the sphere with two holes. We obtain a two-dimensional
manifold without boundary. We shall call this operation the glueing of a handle. It is clear that in
an analogous manner we can define glueing of several handles 10 a sphere,

The second series of manifolds is obtained as follows. Consider a Mobius strip (band) and its
boundary circumference. Discard a disc from a sphere and glue the hole with a Mbius strip (i.e.

idantifv the boundary of the M#hing strin with the boundarv of the hola in the sphers), Wae shall call
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this operation the glueing of the Mtbius strip. Naturally, we can define the glueing of several
Mbbios strips in a similar way.

The classification theorem for 2-manifolds. Any smooth, compact, connected,
two-dimensional manifold without boundary is homeomorphic either to a sphere with a certain
number of handles or to a sphere to which several Mobius strips are glued.

The two series of manifolds described above may be regarded as smooth manifolds. Then we
appear to be in a position to substitute differomorphism for homeomorphism in the classification
theorem.

We shall not prove this thoerem here.

We shall emphasize an essential property of smooth two-dimensional manifolds. To begin
with we shall give an important definition. We say that a compact two-dimensional manifold
without boundary admits a finite triangulation if on this manifold there exist a finite number of
points (called vertices of triangulation) joined, in some order, by a finite number of smooth curve
segments on the surface. Given this, it is required that each curve segment should join two distinct
vertices of triangulation and that it should not pass through any other vertices. It is also required
that the set of all these curve segments partition the manifold into a finite number of closed triangles
with vertices from the set of vertices of triangulation. The sides of the triangles are called the edges
of wriangulation. Finally, it is required that any two triangles of our partition should either not
intersect, or intersect in one common vertex or intersect on a single common side, i.e. on a common
edge of triangulation.

1t can be proved that an arbitrary two-dimensional smooth, compact, connected manifold
without boundary allows a finite riangulation.

We fix such a triangulation (it is not uniquely defined) on a manifold MZ. The number of
vertices of triangulation we denote by ag, the number of edges of triangulation by a;, and the

number of triangles in triangulation by a;. We obtain the following equality: x(M) = ag - a; + a3.

THEOREM. The number y(M) does not depend on the choice of finite triangulation of the
manifold. This nunber coincides with the Euler characteristic of the manifold.

Occasionally, the Euler characteristic is introduced, by definition, as the expression
ag —a) +aj.



SINGULAR POINTS OF VECTOR FIELDS 331

We now proceed to an important concept of the fundamental group of a
manifold defined via classes of homotopic closed paths with their tails (and tips) at a
fixed point P € M".

We shall now introduce simple concepts.

The path is a continuous (or even piecewise smooth) map of a segment /
(a £1<b) into a manifold y: 7 — M" (or ¥(r) are points of the manifold M™)

The cyclic path is a map of a circumference into a manifold 1. $! — M" (the
initial and terminal points coincide, but are not fixed). '

The closed path is a map of a segment y: 1 — M", where Y(a) = y(b) =
P e M", aand b are the end-points of the segment (the initial and terminal points are

fixed and coincide).

NOTATION. Qpp(M")is the totality of paths from a point P to a point Q along the
manifold M"; Qpp = Qp (closed paths beginning at P).

DEFINITION 1. a) Two paths 7,(z) and ¥,(¢) of Qp are called homotopic if they
are homotopic as a map ot a segment, such that in the homotopy process the
beginning and the end are stagnant (are homotopic in the interior of Qpg). This type
of homotopy will be denoted by v, ~ ¥,.

b) Homotopy of cyclic paths is an arbitrary continuous homotopy Yz, 1),
where v, =¥, 1) and ¥, = 1, 2), 1 £1 £ 2 (this is homotopy of two maps of a
circumference, where for any T (2, T): S! — M").

Homotopy of cyclic paths will also be denoted by ¥; ~ ;.

LEMMA 1. Iftwo paths ¥,(t) and ,(r), where 0 <t <1,0<t <1, are such that
Y,(T) and ¥, (¢(1)), then these paths are homotopic.

Proof. Let us consider a function #(t) and let us deform it to the function ¢t = t. Then
the lemma will be proved. Let us examine the graphs of the functions #(T) and = <.
Figure 78 makes obvious the deformation of the graph #(1) and ¢ = T illustrated by the
arrows. We can see that the end-points do not move, and the lemma follows.

For the proof of the lemma it is of no importance that dr/dt > 0, as is seen in
Figure 78. The change need not be necessarily one-to-one.

According to the lemma we shall not distinguish (up to homotopy) between
paths which differ only by the introduction of a parameter. Moreover, we shall
choose (or change) the parameter or even the range of its variation as convenient,
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namely, make parallel transport and extend without distinguishing between
cooresponding paths. Obviously, with such operations we can always reduce the
range of parameter variation to a segment of 0 to 1.

Figure 78. -

Algebraic operations on paths.

1. The product of paths. Given two paths ¥, € {2pp and Y, € Qpp, their
“product” is defined to be

Nhot€ Qpp

where we first go along the path ¥; (¢ ranges from 0 to 1) and then along the path
Y, (tranges from 1 to 2). A simple lemma holds.

LEMMA 2. Given three paths Y, € Qpg , Y, € Qpp and Y3 € Qpg, the product is
associative (up to homotopy)

Metdeys ~Yo(aots)

Progf. We shall choose, making us

of e a
(for 11), between 1 and 2 (for 7,) and between 2 and 3 (for ¥3). Then Lemma 2 is
obvious.

e
-

2. The inverse way. Forthepath Y(t) € Qpg, 0 < r < 1, the inverse path
Tle Qpp is defined; this is exactly the same path but in the opposite direction.
Y Y= Y(2 —1), where 1 <r<2. Then we have a simple lemma
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LEMMA 3. Both the productsy™ o Ye Qpp and Yo Y € Qg are homotopic to the
constant paths Yoy ~1, Yoy ~ 1, where 1is a path j such that j(t) = P or
it =0.

The proof is almost obvious (see Figure 79).

Figure 79. 7 7 2 F

It is carried out, in fact, along the path 7 itself. Sincey” l(z) =Y(2 - 1), we have
for the path yo ¥l =x

), 0<t<1, t="1,

Yoy'=x x(1) = {
Y2-1), 0<:<1, 2-=1.

We shall consider the graph for the parameter (1) (Figure 79).

The deformation of this graph to ¢ = 0 is indicated by arrows in Figure 79.
Since ¢ =0, Lemma 3 is, in effect, similar to Lemma 1, but here #(0) = 0 and #(2) = 0,
i.e. the whole graph is deformed to ¢ = 0, which implies the lemma.

Let us now consider the closed paths Qp = Qpp with their starting and terminal
points at the point P. From Lemmas 2 and 3 there follows

THEOREM. 2. The classes of homotopic closed paths on an arbitrary manifold with
the starting and terminal points lying at a point P form a group (possibly,
non-commutative). We shall always denote this group by n\(M", P). This group is

called the fundamenzal group.

EXAMPLES.
1. For the Euclidean space R", the disc D", the group =, is trivial (identity).

The proof is obvious since the whole space [R”, D" (and, therefore, any closed path
in this space) can be deformed to a single point.
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2. For the sphere S" for n > 1 the group =, is the identity group.

Proof. An arbitrary path Y. 7 — S is homotopic to a smooth pathy: 7 — S”,
which is close to it. For all 7 the functions J(¢) and (1) are close to one another
(continuous functions are approximated by smooth ones). By Sard's lemma, a
smooth path leaves at least one point Q € S" free. The image of the path lies,
therefore, in R” = S™0. In a Euclidean space, any closed path is homotopic 10 a
constant (see item 1). Hence, (5", P) = 1.

3. For a circumference, m,(S*, P) is a cyclic (infinite group). Prove it.

3a. If we discard a point or a disc from a plane, then the remaining region U
has an infinite cyclic fundamental group, as a circumference. The proof consists of
shrinking this region U = IRZ\Q along itself to the circumference SlcUu (a detour
around Q).

4. If from the plane [R? we discard a finite number of points U, = RA(Q, U ..
..U Q,), we shall obtain a region U,. What is the group n;(Un, P)? Letn=2 and
let two points @, and Q, be discarded from R? (Figure 80). Verify directly
(by drawing) that the path aba™! b™! =y is not homotopic to 1 (to a constant path)

although the integrals of the analytic function éﬂz) dz = 0 are always zero (if

oints for f{z) are only 0; and Q5) and also that the rotation of any vector
field £ with singularities at points Oy and O, only along the path Yis zero as well. It
turns out that the fundamental group n;(U,, P) is a free group with two generatrices

a and b. All the elements of the indicated form are distinct:
auLl buLz au" bm’“'1

for any & and any integer @, ..., 0t,; (perhaps ¢, = 0 or ag,; = O, but the
remaining oy # 0).
Similarly, n,(U,, P) is a free group with n generatrices. Generally, the

fundamental group of any region on a plane always appears to be a free group with a
certain (possibly infinite) number of generatrices.
We shall pay attention to an interesting circumstance: for a region

Uy,= RA\(Q, v Q,) the paths aba ! =+, and b =y, are different elements of the
group n;(U,, P) (Figure 81).
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Figure 80. Figure 81.

However, these paths are homotopic. How can we account for this fact? The
point is that under deformation of the path aba™ to the path b the starting point is not
motionless, it moves along the path a detouring the point @;. Such a deformation is

not allowed by the definition of the group ;. Let the path aba™! be homotopic to the
path b only as a cyclic path (its starting and terminal points are not marked). We have

THEOREM 3. The classes of homotopic cyclic paths on a connected manifold M"
(where any two points can be joined by a path) are in one-to-one correspondence
with conjugation classes in the group n,(M", P).

Proof. Two elements a and b from the group =;(M", P) are called, as usual,
conjugate if there exists an element x € &;(M", P), such that b =xax"!. Letus prove

this theorem. By virtue of connectedness of the manifild, any cyclic path ¥ can be
deformed to a path through the point P (Figure 82). Now the point P will be thought
of as the starting and terminal point of the path ¥.

Figure 82.

Our task is the following: there exist two paths with the starting and terminal
points at the point P, or two elements a, b € n;(M", P). These paths are homotopic
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as cyclic paths (i.e. in the deformation process 0 <1 < 1 the starting and terminal
points traverse the path H(t), where H(0) = P and H(1) = P). How are the elements
a and b related in the group nty(M”, P)? The path H(7) is the motion of the starting
point P under deformation of cyclic paths. But the path H(t) is closed and
determines the element x € &;(M", P) since H(0) = H(1) = P. Let us verify the
equality b ~ xax™! in the group x,(M", P) ora ~ xbx~'. The transition froma to
xax™! is equivalent to the deformation of the starting point P of the path a along the
path x~! (Figure 83). This implies the theorem.

P ;] = 7ie
Figure 83.

The following, almost obvious, theorem will be useful.

THEOREM 4. For any pair of points P, Q on a connected manifold M" the set of
classes of homotopic paths with the beginning at the point Q and the end at the point
P is in one-to-one correspondence with the elemenis of the group m,(M", P) (or

mM”, Q).

Proof. Let us choose a path yy() leading from the point P to the point 0. Let v,(r) be
any other path from P to Q. Then 7y, o ¢’ determines the closed path y(z) from P to

P, i.e. the element of the group wt;(M", P). If the path ¥y is fixed, then there is a
correspondence (determined by the path ¥) Y Y ¥;'» 11 (from P to Q), ¥ (from P
to P). Going over to homotopy classes, we arrive at the statement of the theoremin a
trivial way.
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3.7 The Fundamental Group and Coverings.

Our aim in this section is to learn to calculate the fundamental group of some simple
manifolds and to give examples of its application. To begin with we shall give an
important definition of “covering”: suppose we are given a smooth map of two
manifolds of the same dimension

£ M o M

such that at all points P € M7 the rank of the Jacobian matrix is equal to n.
Moreover, suppose for any point Q from M} the complete pre-image f 1(Q) =P, U.
..U Py ... consists of the same number of points continuously dependent on the
point Q if it moves along the manifold M3 We shall require, in fact, that any point 0
€ M3 should have a neighbourhood U, where Q € U, such that the pre-image f~ l(U)
=U,u...uUyu...of this neighbourhood consists of a union of pairwise
non-intersecting regions U, in M7 and on each region U, the mapf: Uy = Uisa

smooth, with non-zero Jacobian, one-to-one map U/, = U. In this case the map fis
called covering. For coverings above a connected manifold Mj it is obvious that the
number of pre-images of distinct points is equal (draw a path from a point O, to
another point Q along the manifold M3; each of the pre-images of the point O will

continuously move along this point, follwowing it and imitating its motion).
Coverings, in which the number of pre-images of a point is equal to k are called
k-sheeted.

EXAMPLES.

1. The trivial k-sheeted covering. Here M] =M3 U .. .U M7 (k-sheeted),
and the projection f: M7 — M3 is one-10-one on each piece M3 c M7. To eliminate
trivial coverings, we shall further on require that the manifold M7 be connected (i.e.
any two points can be joined by a continuous path).

2. f: IRI(,‘) - Slm, where fix) = e2™*, Since ¢2™" = 1, where n is an
integer, we can readily see that this is a non-trivial infinite-sheeted covering.

3. f: S! =S, £ 22" the covering here is n-sheeted.
=1 xi=1

4. f. §* — RP™; if n is a unit vector in ™!, then the pair (n, — n) defines
one point from [RP™. This covering is 2-sheeted.

5 f: R2 — T2, where the points of the torus T2 are represented by
equivalence classes of the points {(x, y)} of the Euclidean plane, and (x + n,y + m)
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define one and the same point of the torus provided that m and n are integers. The
map F: R? — T2 is obvious since to the point (x y) there corresponds its equivalence
class.

6. £ R? > K2, where K2 is a Klein bottle. The points K2 are equivalence

classes of the points of the plane R2. Namely: let us take two transformations T
and T, of the plane

Tl(xry) = (x+ 1'- }’), Tz(x,}’) = (1 -Xy+ 1)-

The equivalence class of a point consists of all points which can be obtained
from the given point through transformations Ty, Ty, Tj}, T3 and their repeated
super-positions.

7. Let a Riemannian surface M2 in a two-dimensional complex space
G:z(zl, zz), where 2! =z, 2 =w, be given by the equation

Pz,w) = "+ Pi(wW) 2" + ..+ P,(w) = 0,

Py, ... , P, being polynomials.

The manifold M3 is a region U on the w-plane, where the equation does not
have roots that are multiples of z. The region U 1is R? with branching points
Qs ..., @, punctured out: U = RA\(Q,u...uU Qp). The branching points

are obtained form the solution of the two equations (so that the roots of the first
equation be multiples of z):

P, w) =0, %:; (z,w) = 0.
The manifold M? (the Riemannian surface) is projected onto the w-plane R%:
F: M®> - R

The manifold Mf is MA( 1(Qi) U...uf 1(Q,.‘,))= which means that the pre-images

of all the branching points are removed.
The map

F: M} - M

is an n-sheeted covering, i.e. for any non-singular w e M3 = IRZ\(Ql U...u0p
the equation 2" + P,(w) 2% + ... + Py{w) = 0 has n roots which are multiples of z.
How many branching points are there? If the polynomials P;(w) have the degree i in
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the variable w (the total degree of P(w) 2"~ s equal to n), then the number of
branching points in general position is equal to n(n — 1)/2, and above each of these
branching points there merges, roughly speaking, one pair of n roots (altogether
n(n — 1)/2 pairs).

8. Let M7 and M3 be connected, closed manifolds and let f: M} — M2 bea

1 euch that the rank af tha Tacrshian matriy ha alwavs non-zere. Then thisis a
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e-sheeted covering map (prove it).

9. LetI" be a discrete group of transformations of the manifold M7. This
means that to each element g € I' there corresponds a non-trivial transformation
g: M7 — M7 with the property (“discreteness”) that for any point P € M7 and for
any transformation g # 1 the distance between the points P and g(P) is not less than a
certain number £(P). In other words, there exists a neighbourhood of the point P,
such that the points g(P) all lie outside this neighbourhood (for all g = 1).

The covering map f: M7 — MJ is defined as follows. Points of the manifold

™ma
18 -3

fini

M3 are, by definition, the equivalence classes of points from M7 or, equivalently,
orbits of the group I'. In addition to the point P, the equivalence class involves all
points of the form g(P) for all g € I, where I'" is a discrete transformation group.
The map f assigns to a point its equivalence class. The number of covering sheets is
equal here to the number of elements of the group I'.

Examples 2, 3, 4, 5, 6 are all of this type; in these examples M] = R!, S, §”,
R?, R% The group I" in example 2 is infinitely cyclic, in example 3 it is cyclic of
ordern, in example 4 — cyclic of order 2, in example 5 — the direct sum of two
infinitely cyclic groups (a lattice on a plane), and in example 6 the group is
non-commutative; it is generated by transformations T; and Th related as T) o Tp o T,
=T,. In example 7, for Riemannian surfaces of the form 2 + P, (w) = 0 (the roots
of the polynomial P,(w) are aliquant) the group I is cyclic of order n. For the other
Riemannian surfaces the covering maps from example 7 do no, generally, refer to
this class. To make the cause of this clear, we should define the so-called
“monodromy group” of the covering.

We shall now define the monodromy group of the covering

£ MR o M3

Let Q bea point in M}and let y(f) be an arbitrary closed path beginning and ending at
the point Q. Let ¥(r) define the element ye m,;(M3, Q) and let P, Py, P, ... be all

points from the pre-image (@) in the manifold M}. If the point Q moves along the

path ¥(¢), 0 €t £ 1, then by the definition of covering each point moves “above it”.
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Namely, suppose that O, = ¥(z) and suppose that P,(¢) is a point in M7 such that
Py(0) =P, and flP, (1)) = Q(t) forall 0 <:<1. The point P,(?) is uniquely defined
by the initial point P, and by the path ¥(z) (see the definition of covering). But when

in the manifold M3 the path ¥(¢) has become closed at £ =1 and the point Q has
returned to the initial position, the covering point P, () at r = 1 may fail to coincide

with the initial point P, (0) = P, (Figure 84).

Pyt)

=l
A
2

Figure 84. 7" claddd

What does the position of the point P,(1) depend on? Obviously it depends on
the initial point P, (0) and on the homotopy class of the path ¥(1), i.e. on the element
ve m(Mg, Q). A monodromy transformation arises: MY: Py(0) = P (1) (along
the path (#)). Obviously, M, is a permutation of points from the complete pre-image
Q) =P, U P,y ... The properties are obvious (here 1, ¥, ¥;» Y2 € m(M7", Q),
M, is a unit permutation):

- -1 =
My—l = (My) » (MYIYZ) = MY] 'MYZ.

There arises homomorphism of the fundamental group into a group of permutations
(“monodromy™). We have already dealt with monodromy transformations for the
simplest Riemannian surfaces z = (P,,)”2 w).

EXERCISE. For more complicated Riemannian surfaces
P(zw) = "+ P W) + . +P,w) = 0

in the “typical case” (when there exists n(n — 1) distinct branching points and the
degree of the polynomial P{w) z*" Zis equal to n for all i) the monodromy group of
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the covering above the plane without branching points is the total permutation group
of all n pre-images of the point.

We now proceed to a calculation of the fundamental group of simplest
manifolds. We know already that the Euclidean space R" forall n>1 and the sphere
S2forn>2 are simply-connected (i.e. m;(R") = 1 and 7,($§") = 1(n > 1)).

A manifold is called simply-connected if =,(M", Q) = 1 for any point 0.

THEOREM 1. If on a simply-connected manifold M there acts a discrete group of
transformations I and if a manifold M is defined as the totaility of the equivalence
classes of the points of the initial manifold M} with respect to the group T, then the
equality m,(M3, Q) =T holds at any point Q € \/" (the map f"M7] — M3 is the
covering from example 9). ’

Proof. Let us take any point P on the manifold M]. Its equivalence class {g(P)} for
all g e T defines a point Q of the manifold M;. How shall we descibe the closed
paths on M3? It is convenient to represent them as paths beginning at the point P and
terminating at any point g(P) of the same equivalence class forge I

Because of the simple-connectedness of the manifold M7, the homotopy
classes of such paths on M} with fixed end-points are completely defined by the
initdal and terminal points. Therefore, there exist precisly the same number of
homotopy classes of closed paths from n;(M%, Q) as there are elements of the group
I'. Obviously, the multiplication law in the group I" and in x,(M3, Q) coincides as
well. This completes the proof of the theorem.

thaes PRPIrYs |

We can thus calculaie the fundamenial group in all the examples of manifolds
which we may produce in the form of a torus, a Klein bottle, a projective plane, a
circumference (see the examples of coverings). All surfaces and regions on the plane
can be represented in the same manner, but this is somewhat more complicated.

Suppose there exists a closed differential form of rank 1 on a manifold M"

©=Xf®d
a @
(in terms of local coordinates x!, ..., ¥*; 0 < ot < n), dw = 0.
How shall we calculate the integral j w, where Y is a closed path? Let ydetermine
Y

the element of the group &, (M", 0). We shall denote by H,(M") the factor group
7, (M", Q) with respect to the commutation relation ab = ba (“a commutated group”).
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CLAIM 1. If the element Y has a finite order in the factor group H,(M"), then the
integral of any closd form along the path Y vanishes.

Proof. If @ is a closed form and if a, b are closed paths beginning at the point Q,
then we have

Since the form  is closed (dw = 0), the integral remains unaltered under -
homotopy (by the Stokes formula). The integral is therefore well defined on the
factor group of the group n; with respect to the commutation relation. If, for the path

Y. the path ye ...y becomes 1 in the group &, or in the factor group H,(M™),

then J. w=n j ® = 0. Therefore, I ® =0, and the claim follows.
" £ ¥
This implies that in the calculation of the integrals of closed forms, of
importance is only the factor group H,(M") with respect to all finite-order elements.

Non-commutativity of the group x; does not play a role here.
EXAMPLES.

1. For aregion on a plane U,, = RA(Q,; U ...u @,) the group m,(U,, P) is
free and the group H,(U,,) is the direct sum of m infinite cyclic groups.

2. For a projective space RP" the group n;(RP", Q) is of second order.
Consequently, the factor group H,(RP")/(the finite-order elements) is trivial
(identity) and the integral JY o vanishes provided that dw is equal to zero and the path

is closed.

3. For a Klein bottle the group nl(Kz, P) is generated by two elements T; and
T, linked by the relation Ty © T, © Ty =T, Therefore, with additive notation of the
group operation, in the group HI(KZ) we obtain 2[T;] + [T,] = [T,] or 2[T;]1 = 0.
The factor group HI(KZ)/(the finite-order elements) have a single generatrix [T°].
Hence the integral J"‘f  of the form w (where dw = 0) along any closed path is an

integer multiple of J-T .
1
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APPENDIX 1

THE SIMPLEST GROUPS OF TRANSFORMATIONS OF
EUCLIDEAN AND NON-EUCLIDEAN SPACES

- - - -
Wa chall nr\nsider xy s d-m ncinnal Diaman ln:n 1 mnnr“n]dS. I'he contormal class ot

¥Y Ww Olldll VU

metrics g;; = g8; in the two-dimensional case is invariant under confomal (complex
analytic) changes of coordinates. On any complex surface such a metric can be
defined.

I a surface is given in a space (z', z) of two complex variables by a complex
analytic (e.g. a polynomial) equation

PELA) =0
and if the space (!, z2) is endowed with a Euclidean metric

12

- 1
L1 T

2.2

4

- ET‘/J..(!Z

21 = g \ax
a=

2
a* = 1d Y

d
where
d=xt+id, 2 =xr+ix,

then on the surface there arises a conformal metric in natural conformal coordinates.

Namely, suppose z2 =f(z) is a local solution of the equation if (z') is an analytic
function,

a’22
— = 0,
dz
where the metric on the surface has the form
1..1 -2
&' d3 +dldst = 1 P 1P I 1 ?
z

(1+| |)dz1 dz .

Similarly, if a parametric surface is given in the form 2' = z}(w), 2 = 2(w),
where z}(w), zz(w) are complex analytic functions, then the metric on the surface is
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12 22 -
1dz' P+ 128 = (12217 + 120 dwdo
do dw

(the reader should verify it!).
We shall now make an essential assertion which we formulate as a theorem.

THEOREM 1. 1) If we are given a conformal metric g dz dz , then the expression

2

1 & 1,3 9
K= —— = ———{——+——)In
22 9z0z (ng) 2 (ax2 * 83’2 ) &

remains unchanged under conformal coordinate changes z = z(w): ifg(z) dzdz =
g(w) do dw, then
1 az 2

__ 1 2 _
"% 525 "8 =% So5e O

2) If a surface is defined in a three-dimensional real Euclidean space
x>~ = x"'(yl,yz), o =1, 2, 3, and coordinates y' = u, y* = v are conformal (i.e.
g;= 2o, ¥ 8;), then the expression

2
1 o
- — —In
% 9201 °
coincides with the Gaussian curvature K of the surface ,
.0 1,0 .9
zZ = u+iv, 5 = E(E—lav)'
0 1 B+ 0
9z 2w ov

Verify this assertion by direct calculation!

Thus, for conformal metrics the Gaussian curvature is a rather simple function
of the metric on the surface itself.

We shall analyze several examples.

1. The Lobachevskian plane. In a z-plane we are given a region y > 0,
z=x+iy;
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a? = -%(dx%dyz) = 'l_ -dzd7 = - d“i_zz.
y I(z -2)I Iz —zI
It can be checked that
1 9
—_ — (Ing) = -1.
28 9z90z &

In a unit circle Izl < 1 the metric has the form

g% = dzdz

Ca-d?

2. The sphere. Conformal coordinates on the sphere are introduced
proceeding from the fact that the sphere is precisely the same manifold as CP!. A
finite region is served by a coordinate z, and at infinity there exists a coordinate @,
where @ + 1/z in the region z + 0, w + 0. The point ® =0 is z = e (infinity). In a
finite z-region, the metric is

2 didz
a + 12152

The total group of linear fractional complex (projective) transformations of the
manifold CP! has the form

d K =+1.

N az+b
T c+d’
a b Aa Ab )
where the matrices = Aand A = for A =0 define one
c d A Ad

and the same transformation; if

x! x® - ax! + bx°,
Z = T and
x X = ex! +ax®

b
then z = % , which means that the transformation is projective.
cz
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Since A and AA yield one and the same transformation, it follows that an
appropriate choice of A may lead to det A = 1. From this we can see that the linear
fractional group is isomorphic to the factor group SL(2, C)! £ 1 since L =% 1 yield
one and the same linear fractional transformation. The group SL(2, C) consists of
two sub-groups

1) SL(2, R) < SL(2, C)
(the motions of the upper Lobachevskian half-plane y > 0),

2) the sub-group SU, c SL(2, C), where

a b a b
[ ):[_ i J lal® + bl = 1.
c d —b. a

This is the group of motions of the metric of the sphere

SU,/+1c SL(2, )/t 1,

and the group SU,/ % 1 coincides with SO5.

The most symmetric two-dimensional metrics are the Euclidean metric, the
metric of the sphere and the metric of the Lobachevskian plane. We have already
pointed out the parallelism in the study of the geometry of the sphere and the
geometry of the Lobachevskian plane. Now we shall investigate this parallelism in
more detail.

Consider a sphere 52 = R? of radius R with centre at the origin. Let (r, 9, ¢)
be spherical coordinates in [R; then, as is known, the Euclidean metric dx® + dy* +
dz? takes, in terms of these coordinates, the following form: ds? = d*+ 7 de* +
r? sin2 0 d¢ (verify it!). From this we obtain ds?(S%) = R%(d6? + sin’0 d¢?). Here
0 < ¢ <2m; 0<6 <r (Figure 85).

The distance between two points A and B measured along a circumference of
radius 7 is equal to zero, i.e. the whole boundary of the circle is glued together into
one point, which yields a two-dimensional sphere.

In a small neighbourhood of the point O we have sin 8 ~ 6, i.e. ds? (5)?

becomes the Euclidean metric: d6? + 62 d ¢
Consider a stereographic projection of a sphere onto a plane (Figure 86)
(depicted in this figure is a plane cross-section of the sphere).
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]
iy
IRy
; ¢
2
[
X
Y

[
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Figure 85. Figure 86.

Here (8, ¢) are coordinates on the sphere and (r, ¢) are polar coordinates on the
plane. From Figure 86 it follows that ¢ =¢; r =R ctg (8/2). Using these formulae
for transition, we can rewrite the metric ds’( $?) in terms of the coordinates (r, ):

P - 4R2 . (@ +rded)

(R +r2)2
(verify it!). Clearly,
2
2
ds’(sh = —;R—; - ds5(R).
(R +rz)

Now we shall proceed to Lobachevsky geometry. Consider a pseudo-
Euclidean space [R:;' and a pseudo-sphere of imaginary radius iR. Then the

stereographic projection of a hyperboloid of two sheets onto a (y, z)-plane is given
by the formulae (see Part I):

(u u)+R2 —ZRzu1 —ZRZu
x=-=R- Y = em——;
(u, u) R (u, Z)—R2 (u, u) - R

where (u, u) = (ul)2 + (uz)z, il being coordinates in a ring of radius R on
the (y, z)-plane.

Consider the restriction of an indefinite metric ds*(F} =— dx? + dy* + d* to a
pseudo-sphere of radius iR; direct calculationtions show that this induced metric
a’sz(Lz) has, in terms of the coordinates (1!, 1), the form
AR ((du' ) + (@)

@ + @’ -’y

ds’(L,) =

(verify it!).
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Introducing in a ring or radius R polar coordinates p, ¢ (i.e. p2 = (ul)2 + (u2)2;
tan ¢ = u?/u'), we obtain ds?(L,) = 4R*(dp? + p? d¢*)/(R? - p*)2.

We have earlier dealt with the affine definition of Lobachevsky geometry, and
now we have obtained its mewic definition: the Lobachebvskian metric is a metric
induced from a hyperboloid (i.e. from a pseudo-sphere of purely imaginary radius) in

a pseudo-Euclidean space !R? Clearly, this metric can be given by

dsi(L,) = 4R* ds{R®)/ (R? - pH2.

Comparing this notation with the corresponding notation of the metric of a
sphere we can see that the only difference between them is the sign before p2 and 2.

In what follows we shall assume, for simplicity, that R = 1. Next, by analogy
with the sphere 2, we shall examine the following transition formulae: ¢ = ¢;
p = cth (/2). Representing the metric dsz(L,) in terms of coordinates (¥, ¢), we
come to (verify it!) ds¥(L,) = dy® + sinh® x d¢?.

The distinction of this metric from that of the sphere is that the function sin is
replaced by the function sh. We shall tabulate all these forms of the metrics of the
sphere and Lobachevskian metrics as shown in Figure 87.

32 ] lZ
T 6 —ia-fon 'y _ .
» &% +she2
an g
- '\:'J/T &
<l l>
» 62Tt :5,.
_/‘ﬁ’ A_ ( /.,2,
LT. =7 143
i 3 '
Figure 87. RO A

We shall note an interesting fact: although the metric dsz([]:f’l) =-d + dy2 +

dz? is indefinite, its restriction to a pseudo-sphere of radius iR is a positive definite
metric. The geometric interpretation of this fact is presented in Figure 88.
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Figure 88,

Indeed, it suffices to verify that the scalar square of an vector e tangent to a
hyperboloid is positive. For such vectors e, vectors e! parallel to them face a
“positive” region of [R5, which completes the proof.

On a hyperboloid we can also introduce some other coordinates, for example,
(¥, 2), i.e. we can project a pseudo-sphere onto a (y, z)-plane parallel to the x-axis
(precisely such coordinates are often considered in the special theory of relativity in
the space [R}). Direct calculation yields

(1 +zz)dy2—2yz dydz+(1 +y2) a7

a*L,) = -

1+y2+z

(verify it!).

The positive definiteness of this form is already not so obvious as in the case of
the metric in the Poincaré model, but it can be readily established through calculation
of the determinant of this form (verify it!).

Now we shall examine the Poincaré model and employ it for writing the
Lobachevskian metric in the complex form. Suppose dp2 + p2 dp*=dz dz = d +

dy% p =1zP, i.e. we are led to
ds¥(ly) = 4dzdz [ (1 - 12192,

While a pair of points is tending to the boundary of a circle, the distance
between these points tends to infinity; the boundary of the circle is sometimes called
an absolute; recall that the points of this circurnference do not belong to the set of
points of the Lobachevsky geometry.

Let us consider another form of notation of the Lobachevskian metric. Itisa

Lnawn fact fram tha thoenrv af fiunctinne nf ane ~omnley variahle that there
AUUWIL ddavi LIVL Miv UivAJL Y Ul LUWIVUULD Ul Ullv VULLIPIVA Yallaviy Wide Wiviw
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upper half-plane into a unit ring. (The linear fractional transformation is a map of the
cz+b

+d
plane into one point. To eliminate this trivial case, we customarily assume that

+i
ad - bc # 0). One of such transformations is z = i :::

formw=Lz) = . In the case ad - bc = 0, the transformation f maps the whole

; z = g(w), depicted
in Figure 89.

igure

Thus, we have introduced new coordinates w on the ring. If we write the
metric dsz(b,) in terms of the coordinates w, we see that the direct calculation yields

1 1.2
(dx’) + (dy’)
1,2
o)
Now we shall proceed to the groups of motions of the metrics of the sphere

and thoge of the obachevskian nlnnp Recall that the group is a set of elements G on

ANTOW Wa AW A AW ¥ OEnitads Avwwtaal wadab - i r ad & Sl Ua wawddlaia s WS

dsz(Lz) = , where w =Jr1 + iyl.

which two operations are deﬁned. (x,y) = x + y,x = x"! (where xy € G) with the
properties

) )z = x(yz);

2) thereexists ane e G such thatex = xe = x;

Nl =xkx=e¢

A very essential role in geometry is played by the so-called topological groups
(and a more special class of them — the Lie groups). A group G is called a
topological group if the set G on which the group operation is defined is a topological
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space and both operations — multiplication and taking the inverse element — are
continuous on this space (continuity is understood here as that of the mapping). So,
for example, the totality of all transformations preserving some Riemannian metric is
a topological group.

As has already been proved, the set of all possible motions of a sphere s?
coincides with the set of all orthogonal (3 x 3) matrices A1 = AT. This group is
denoted by O(3) and is called the complete orthogonal group. Being a topological
space, this group consists of two connected components (two pieces): one
component consists of those matrices A for which det A = + 1, the other consists of
those matrices for which det A = — 1. Tose matrices for whichdet A=+ 1, form a
sub-group which is denoted by SO(3). The second connected component is not a
group (since (— 1) » ( = 1) = 1). The elements of the sub-group SO(3) are
occasionally called proper rotations, while the elements of the other component are
called improper rotations.

REMARK. We have seen that all posssible transformations of the sphere defined by
orthogonal matrices are motions, and therefore the group O(3) is contained in the
group of all motions of the sphere 52, But we cannot, as yet, prove that the group
O(3) does actually coincide with the group of all motions. This coincidence takes
place, and any metric-preserving transformation on 52 is a linear and orthogonal
transformation in ’’; a ri gorous proof of this fact requires, however, an application
of the concept of a geodesic line.

To make the notation shorter, we shall introduce the following: we shall
denote by G(R";) the group of motions of the pseudo-Euclidean space R’ under
which the point O (the origin) remains motionless. It is clear that this group
coincides exactly with the group of all motions of the pseudo-sphere §™~! < R" (with

.
the centre at 0). In particular, for 5 =0 we have

GR) = GRY) = 03), G(RY) = OQ).

Before proceeding to the group of motions of the metric a'sz(LQ, we shall go
back and examine the group of motions of the Euclidean plane R? and that of the
pseudo-Euclidean plane IR%, which keep the point O motionless, i.e.

the groups G (lR%) and G([Rf). We have calculated both of these groups before. So,
GR) = G([R%) and consists of swo connected components. The group of hyperbolic
rotations G([Rlz) consists of four connected components. Figure 90 illustrates four
transformations: g,, g9, g3, g4 which preserve the pseudo-sphere S} (of dimension
one) and belong to four distinct connected components of the group G(IR]Z).
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g1 identity g2 reflection g3 reflection g4 reflection
trans-formation in the x2-axis at the point O in the x2-axis
Figure 90.

Now we shall consider the Lobachevskian plane L,. We shall calculate the
group of motions of L,. Examine the upper hal{-plane and dSl(Ly) = (d? + dyz)/yz;

az+b

cz+a

upper half plane into itself. Then it can readily be shown (verify it!) that the map f

preserves the condition y> 0 if and only if a, b, ¢, d are real numbers and
ad - bc > 0.

We claim that any such transformation f is a2 motion of the Lobachevskian

y>0. Let w=f{2) =

.be an arbitrary linear fractional transformation of the

Indeed,
2 2 -
dx” +dy -4dzd:z ad-bc
ds 5 —i dw = 5 dz;
y (z-2) (cz+d)
whence
2 - 2
(cz +d) . +d)t —
dz = i dw; dz = e dw;
- . -4dzdz .
(a, b, ¢, d are real!). Substituting these formulae into ds? = — and carrying
(z-2)
. -4dwdw
out all the calculations, we shall come to ds? = ——— (verifyit!), thatis, the
(w-w)

iransformation f preserves the metric dSZ(Lq). Thus, the group of motions d.\'z(lq) of
az+

. ] b
course contains the sub-group of transformations w =f{z) = — wherea, b, c,
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d are real and ad — bc > (. We denote the set of all such transformations by D;.
Note that all these transformations are conformal (angle-preserving)

transformations. The transformations D;, however, do not at all exhaust the set of

motions of the Lobachevskian metric. Indeed, let us consider the transformation g:

z — —z which is obviously a self-image of the upper half plane (reflection from the
y-axis) and which, furthermore, preserves the Lobachevskian metric:

LRt R it I LA e LML L ANUICR 2D L0l

2 4dzdz _ -4dzdz

ds —Jp— .
@-2* @-2°

At the same time it is obvious that the tansformation gy z =~z cannot be
represented in the form gy(z) = (az + b)/(cz + d) (this transformation changes
orientation of the angles). ,

All this means that we must exarmine all possible transformations g(z) of the
form w = g(z) = — (dz +B)/(yz + 8), where a, B, 7, 5 are real and ad - By 2 0.
Clearly we can write w = (0.z + B)/(yz + 8), where a, B, v, 6 are real and
ad - By<0.

We shall denote the set of all such ransformations by D,. Note that the sets of
transformations D, and D, are homeomorphic as topological spaces. Since any
transformaion g € D, has the form of the composition g = g¢f, where fe D,, and
since gg and f are motions, it follows that g is also a motion.

Two sets of transformations Dand D, have an empty intersection as long as
& +b oz B_ Their union D =D;u D, ={f} U{g), obviously, forms a
cz+d Yz + 8
group in which D, is a sub-group and D, is not a sub-group. The group D is already
the complete group of motions of the Lobachevskian plane. In the same way as the
group of motions of the two-dimensional sphere O(3), the group D consists of two
connected components.

Let fiz) = az + b)/(cz + d) be an arbitrary transformation from D;. Since
az+b _ Aaz+Ab

cz+d  jez+dd
we may assume that if g(z) = (atz + B)/(yz + 8) is an arbitrary transformation from
D,, then ad-By+-1.

Let us consider the set of all real matrices of order 2 with determinant * 1; these
matrices, obviously, form a group which we denote by L(2):

we may assume that ad —bc =1. Using similar arguments,
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((a b° ’
LQ2): L(2) = i(a d):ad—bc=:t1}_
c

The group L(2) is disconnected: it consists of two components : L(2) = L,(2) U
L,(2), where

((a b}

L,@) = i rad-bc=+1f.
\c d)
((o B

Ly2) = o -Py=-1].
\Y 6

The sub-group L;(2) is customarily denoted by SL(2, R). Let us construct a
map ¢: L(2) — D by the following rule: if

a b
A= [ } € Ly(2),
c

d
then §(A) =f, fe Dy andf(z) =(@az+ b)! (cz +d);ad-bc=+1. If
/ R\

B = Lu ;J € L2(2), then ¢(B) =g, g € D2.
Y

The map ¢ is an epimorphism (i.e. the image of ¢ covers the whole group D),
but not one-to-one. Clearly, ¢(A4) = d(-A) and ¢(B) =¢(-B). However, if in the
group L(2) we identify matrices of the form C and — C, i.e. consider the factor group

1

0

one-to-one. Furthermore, the map ¢' establishes the algebraic isomorphism of these
groups. For this it suffices to verify that the identity ¢'(C} « C')) = ¢'(C}) + ¢'(C') is
satisfied. This can be established through a direct calculation (verify it!). Thus, we
have proved that the group of all motions of the Lobachevskian plane is isomorphic
to the group L(2)/(xE). In particular, the group D, is isomorphic to the group
SL@2, R)/(xE).

Now let us turn to the group G(IR%) {for the definition of this group, see
above). This group, of course, contains the group D as a sub-group which,
however, does not exhaust it.

0
LQ2)/(XE), where E= { L ], then the map ¢": L(2)/( % E) — D will already be
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The inclusion: D ¢ G(R) follows from the fact that the Lobachevskian metric
is an induced metric on a hyperboloid in [R‘? (pseudo-sphere of imaginary radius), and
therefore any of its motions is the element of the group G([R‘,a). The group G(IF\"’{) (the
same as the group G([Rlz)) consists of four connected components (Figure 91),

T ——

Figure 91.  z=/G)/:r

Figure 92 presents four transformations: gy, g5, £3, g4 Which preserve the
pseudo-sphere S} (= L,) and belong to distinct connected components of the group
G(R).

o0 o0 ofo  ofe

o= & Sr e
identity reflection in reflection at reflection in
transformation the (yz)-plane the point 0 the x-axis
Figure 92.

The Lobachevsky geometry is realized separately on each of the sheets of the
hyperboloid; we can say that a pseudo-sphere of imaginary radijus is a union of two
copies of the Lobachevskian plane.

In the space R} of the special theory of relativity, a a pseudo-sphere of
imaginary radius is also a three-dimensional hyperboloid of two sheets. The
Riemannian metric induced on the latter by the envelope indefinite. metric
ds? (IR?) =—cdP+d+ dy2 +d2is positive definite (verify it!) and is called the
metric of the three-dimensional Lobachevskian space.

We recommend the reader to study, repeating the arguments analogous to those
used above, the geometry and the metric arising on a pseudo-sphere of real radius,
which is (in the Euclidean model) a hyperboloid of one sheet.
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APPENDIX 2

SOME ELEMENTS OF MODERN CONCEPTS OF THE
GEOMETRY OF THE REAL WORLD

A1 Introduction. Basic concepts

meminsrmal fvmao Af rainnl fArnac Aatarmmining tha cammeatry Af tha cnirreannAdin g

Thb Pllllblpﬂl L]PCD vl Pll])ibd.l 1ULVOLD uClCLllﬁllllls i EUUILICLI.] [0)1 LllC Sullivunuil g
macroscopic phenomena are gravitational and electro-magnetic forces. At the present
time we know about the existence of four types of fundamental interactions, namely,
nuclear (“strong”), electro-magnetic, “weak™ and gravitational. Strong as they are,
nuclear forces are rather short range, with the characteristic effective range of about
10713 cm, called also the nuclear size. It is only electro-magnetic forces that
eventually create (however, not without the aid of quantum theory) the surrounding
matter, i.e. fasten together particles so that they form solids, liquids and gases,
determine Mendeleyev's law etc. We shall not dwell on weak interactions — they are
(for the present!) less noticeable. Gravitational forces keep us on the surface of the
Earth, form the solar system, fasten galaxies together ( ~ 10?° cm) and are, possibly,
responsible for the whole evolutionary process in the Universe ( ~ 10% cm). Itis
relevant to note here that nuclear and weak interactions can be treated solely in the
framework of quanturn theory and have no classical equivalent. So, the basic types
of fundamental forces which come under consideration without involving quantum
theory and proceeding exclusively from the ideology of geometry and classical
mechanics, are electro-magnetic and gravitational forces.

From the contemporary viewpoint, which basically took shape during the first
two decades of the 20th century, space, time and gravity (together) form the
space-time manifold M*. The decisive role in the development of this theory was
played by the papers by Einstein. An important contribution was also due to Lorentz,
Poincaré, Minkowski and Hilbert. Points of the manifold M* are “events” which
occurred in a certain place in space at a certain instant of time. It would, of course,
be more precise to say that the assignment to each event of a point in a certain
four-dimensional space-time manifold M* is a very convenient tool for the
systematization of a large number of events.

Recall that a manifold M* is defined by an “atlas” M* = U X, consisting of
q

“charts” X, with local coordinates xf,, a=0,1,2,3. Each chart X, is aregion in a
space R* with coordinates (x“q). In the common region of action of two coordinate
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systems, i.e. in the region X, (M X, all the expressions of coordinates in terms of
one another

x“(x x x 13)

are smooth functions for ali pairs (g, 5), where the intersections are non-empty and
have a non-zero Jacobian
a

ax
I o
ox

s

We shall use the term “Cartesian space” for the case where M* is described by
one chart X with coordinates (x®) running through all the real values.

According to modem concepts dating back to the famous paper by Einstein and
Grossman (1913), the gravitational field is an indefinite metric on a space M?*, which
has at each point the signature (+ ———). This means that in each chart X, with

coordinates (r”\ there are given tensor fields o(9) = o( q) (a,b=0,1, 2, 3) such gh_ in

Ll 17, Sl

the region X, (M X, they are mapped to each other

a axb g
—2@ Gy ) —& = £ &),

Xq =X4(x,) in the region X, M X, .
It is assumed that at each point x, of the region X, the quadratic form
8ap (xp) E° E? is brought through a linear change to a diagonal form of the type

s 3
UPED) ﬂi (i.e. has the signature (+ ——-). Given this, det g, # 0. Asarule
=1

we shall, in fact, work only in one coordinate system and shall not write the index q.

A Mirnkowski space (or a pseudo-Euclidean space) M* =R can by definition
be given in the form of one Cartesian space IR* with the so-called Euclidean
coordinates (xo, x!, .12, 13) and endowed with the metric

! 0 02 < 2
8= ! | ,dlf = @ - 3 (@™

Lo ~1) o
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In the case of Minkowski space we say thai the gravitaiional field is trivial or
zero. The group of motions of the Minkowski space is called the Poincaré group.
The electro-magnetic field is determined by the covector field
(“vector-potential”) A, (or by the 1-form A =A, dx”) on the space of events A,(x)
which in the local system of coordinates X9 is given by the components A(x): under
the coordinate change x(y) the components are transformed by the formula
&a
a

AO) = A, 0), A dl = A,

By definition, this covector field (or the differential 1-form) is given with an accuracy
to a gauge (gradient) transformation:

Agdé = A =A+dp = A, dA

ob '
A=A+ ;x;- = A, (1)
where ¢(x) is an arbitrary scalar function.
The electro-magnetic field tensor is the expression (the skew-symmetric tensor

F; or the differential 2-form)

Fadf A d® =F = dA, @)

independent of the choice of the field A, up to the gauge transformation (1).

In the Minkowski space M*=R3! with psuedo-Euclidean coordinates (x%),
where the metric has the form

3
g P = @H? - 3 @™
o=1

the tensor F, is thought of as having the electic part E,, = Fg, and the magnetic part
Hop =Fopg B =1,2,3; the three-dimensional skew-symmetric tensor Hyg is
formally associated with the so-called axial vector of the magnetic field

H' = Hy, H® = —Hyy, H® = Hpp.
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In the three-dimensional formaliém and notation we construct the 1-form of the
electric field E, dx™ and the 2-form of the magnetic field H = Hyp dx® A dxP. Inthe

Minkowski space the quantity x%/c is called the “world time"”, where c is the speed of
light in a vacuum (¢ = 3,10 crays).

In any manifold M?* with an indefinite metric 8.p(x) of signature (+ ——-) and
at any non-singular point x, where det g, # 0, there exist three types of vectors:

a) time-like vectors,

b) space-like vectors,

c) isotropic (light-like) vectors.

We shall further denote % n? g, by (€, ), which is the scalar product of
vectors £ and m, at a point x, generated by the metric g,,(x). The quantity °n° gz
will often be denoted by InliZ.  So, we have three types of vectors:

a) Ini2 >0, b) IMI® <0, c) ImI? = 0.

Correspondingly, the line x°(t) in M* is called:

a) time-like in the case lldx/dzI* > 0 (everywhere);

b) space-like in the case lldx/dtI? < 0 (everywhere), and

¢) isotropic (light-like) in the case lldx/d T2 =0 (everywhere).

The evolution of any point particle during its lifetime is represented by a line in
the space of all events M* (the “world line” of a particle). The following fundamental
idea is hypothesized:

a) the world line of a particle of any mass m > 0 (a massive particle) is always
time-like;

b) the world line of a massless particle (m = 0) is isotropic.

By virtue of this hypothesis, for massive particles the “length” of any curve
x°(1) is positive definite

b
dx a&° dp \V?
0<l= II.__IId:=_[d1=J' 2 Z)
— (g, — d:) 3)

The following hypothesis (postulate) is assumed: the lifetime of a massive object
along the world line x%(t) is proportional to the length of this line (this lifetime is
referred to as “proper time”):

Torop = 1/c j dl = /. 4)
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EXAMPLE. Let
3
g dPdit = @H?- T @
o=1

Consider two curves ( a motionless point at zero and the motion along the world
line 2) depicted in Figure 93.

0-ct
i
7
2
Figure 93. 3. z’

We can show that the following always holds
L, =1 di,
2 = |,
I = jl dl = cltj—19) = ¢ty > Iy

(verify this!). Thus, the lifetime of a moving object is less than that of a motionless
one (with the same beginning and end).

It should be noted that for any world line (which does not concinde with 1) the
proper time is always less than the difference of the time coordinate at the initial or
final moments: Cf py — €t inirial > €T proper- ANY w_orld line of a massive particle
(i.e. a time-like line) can be parametrized by the element of length (i.e. by the proper
time), by the natural parameter, as is usuaily said in geometry:

1 =1lje, dt = dl/c. (5)

The 4-dimensional velocity vector of a particle is always referred (by definition)
precisely to the natural parametrization
a
= ) = nal? = A (6)
drt
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In the Minkowski space with standard pseudo-Euclidean coordinates x“,
dP =@’ - T (@x®® there exists another natural parametrization of world lines,
a

the one using the world time — the coordinates Lre =1
x* = 20, 1° = ce

A 3-dimensional velocity vector arises v™* = dx™/ dt which is related to the 4-velocity
vector by the formula

Yev™ = ™8 a =1,2, 3. @

The element of length takes the form

2.1n 3
1 2 2
—_= (1 =) d, v =Y ™. (8)
cz Qa=]
Since (u")* - E(u") = ¢, for the 4-velocity vector, we obtain the formuilae
0 c a _ el
- 12° )
(141D

The laws of relativistic dynamics, i.e. of the motion of a massive particle in external
electro-magnetic and gravitational fields, are defined proceeding from the extreme
action principle

*1
S =j @dl+BA di*)
*0

along the world tire-like line.

Given this,

o =-mc, where mis the particle mass,

B = e/c, where e is the particle charge. In accordance with the general rules of
variational calculus for an action of the form

S() = jYL(x, w) dt,

where w? = dx?/dt is the formal velocity, the 4-momentum is defined to be
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aL —mcw * 4 ab

a = 12
MW (W - T W)

e
+ -

P, =

Now, if A, =0, then choosing dt =dl/c we obtain

P = —mi®,

a

p

g% py,

where 1° are the components of the 4-velocity vector with respect to the natural
parameter T =1//c. In the Minkowski space R*! we obtain

mc mv®

—Py = ——z—m, P
(1-3)
c

a

B 2 1p (10)
1%
(1 -?’)

Note that in the three-dimensional formalism, which is convenient for comparison
with non-relativistic mechanics, we must choose the quantity r = x%c as the parameter
along the world line. We obtain the Lagrangian and the action of three-dimensional
curves:

S = J'(-mcz (1-v¥c2)2 4 %Auva+er) dr. (11)

Suppose that A, = 0. We have the standard concepts of energy and 3-momentum for

(11):

2
e 2, 12
(1-vc%)
mv2 (=4
p(!. —_——___-+EAG' (13)

B Y]
(1 - vzlcz)
This definition agrees with the preceding one, where

E = -¢pp (14)
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The energy is, therefore, proportional to the component pg. We wish to emphasize an
essential consequence: in the absence of electro-magnetic field, A, = 0, the following
equality holds

(p.p) = 8% p,py = m*c® = m*(u, u), (15)

where g°° g, = o2

The surface (15) is called the “mass shell”. Thus, the 4-momentum of free
particles lies on the mass shell. The geometry of the mass shell, generated by the
restriction to the mass shell of the Minkowski metric, is Lobachevsky geometry (see
Section 1.4). Thus, Lobachevsky geometry is the geometry on the set of states of a
free particle in the momentum space. In this context Lobachevsky geometry is a
fundamental part of modemn concepts of the real world.

A.2 Conservation laws. The Lorentz group

In the framework of variational calculus (or analytic mechanics) the laws of
conservation are naturally associated with invariance of a system under simplest
space-time transformation groups: time invariance and invariance under space
translations and rotations. Mathematically, this can be explained as follows. Let
there be given an arbitrary “Lagrangian” of the form L(x, x") independent of the
“time” T and an “action” functional S on curves x7(t)

Sty = J.L(x, gf-)dt,
T

x =xL, ., 2" W = ddld. (1)

The conservation laws have the form:
1) the quantity € =v7 (@L/ov?) — L (the “formal energy”) is conserved along
the trajectory, i.e. by virtue of the Euler-Lagrange equation

q
ie-zo, ﬂ:il‘-, pq=.§-L‘—
drt dt  f Al

called the “formal momentum”;

2) if the Lagrangian L does not depend on one of the coordinates BL/Bxk =0,
then dp¥/dt = 0.
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More generally, if the Lagrangian L does not change along the vector field
Yi(x)

dlL
aYlv’—-O (2)

Y —
i Bx’ av'

1.-!.-.

then (by virtue of the Euler-Lagrange equations) the consciation law holds

dp,
— =0, Yy p .
It Py = IPq

Here py is the component of the momentum along the field ¥. This form of the

momemtum conservation law is equivalent to the previous one inasmuch as in a
neighbourhood of any non-singular point xp of the vector field ¥(xp) + 0 there exists
a coordinate system z', ... , Z™ in which the field ¥ has the form Y=(1,0,0,.

., 0). . Therefore, equation (2) reduces to the form oL /22 = 0.

In classical mechanics we consider a system of n particles in a
three-dimensional space (i.e. m = 3n). We have the total Lagrangian and the action

L= L(xi’.) .. )x:a V?, ey V:), a = 19 29 3-

The energy conservation law reduces to conservation of the quantity

-EEv L

q=1 o=l ava

The law of conservation of momentum and angular momentum arises from the
requirement that the Lagrangian L be invariant under all general translations and
rotations in [R?, where the mutual position of particles remains unaltered:

L(Axls eee g Axns A. vly ses 3 A. vn) = L(I], see gy xn!vly see 3 v,;)- (3)

Here A is any motion of the entire space IR3,A, is an induced transformation of

variables v;.

EXAMPLE 1. A is a translation along some axis in R? (for example, x'). For L we
have
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EEL__:()(-))"’“EL.‘__O, ﬁ:(),
4axq ax; o

= (,00,100,..,1,0,0).
Condition (3) gives rise to the law of conservation of total momentum

4 dL

total, @ qz=.-1 pq,a' pq,a -é:; ’

Here three-dimensional vectors p, = (P, are called, by definition, momenta of each
particle. If

2
mq Voo V(xl, . x"),

B =

L=Y
q

then the condition of translation invariance of the Lagrangian L has the form
V = Vi =X o s X — Xp). )]

Naturally we have V = 3, V(x, -x)). The total momentum is given by
r<q

Ptolal =Eqmqvq = %-Dq'

In an electro-magnetic field (or in a co-moving coordinate system) the Lagrangians
take the form

L= Elmv EV(x-x)+e2‘,(A Vo le + A ). )

2 494

The energy and the total momenta are expressed as

1
£ = Ezmqvq+V +e EAO(xq),

e
p= %p Em v +EA(xq).

In the presence of an external field A, the system (3) loses its translation invanance,
and the total momentum is not conserved.
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EXAMPLE 2. Let A be the matrix determining rotation (e.g. in a plane o, 1) =
(x, ). In this case, the vector field Y corresponding to the one-parameter group of

rotations around the axis z = x°, has the form

Y = (-x3,x1,0,-2%,x3,0, ..., - x%, x5, 0).
We shall introduce in R® a cylindrical system of coordinates (z, p, ¢) = (yl, y2, y3)

x = x' = pcos ¢,

y=x2=psin¢,z=x3. (6)
The vector field ¥ in coordinates (yll, y%, y?, oy yi, yﬁ, y3,,) becomes

Y =@001,..,0,0,1)

The corresponding law of conservation of the component of momentumn will be given
by

e aL dL
py=Xp, =X =X
g=1 q ayq 7 00y

Because of (6), an elementary calculation gives

L(y,y) = L&, X) =
= L(p; cos ¢, pysin ¢, 27, ...; Py cos @y —
—p1sing; ¢, prsing +pycosdy ¢y, 21, - ) @)
oL _asz+6Lx1 X, D, =YD
TS TN T T APy TN Py
a¢! a)"l ax; 1 1
The quantity
— = X - =
86" quq }’qP,q P¢q

is called the z-component of the angular momentum M;;’ of a g-th particle. The total
vector of the angular momentum M, of the g-th particle results from the change of z
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by x ory. From formula (7) we obtain the law of conservation of the total angular
momenturn of a system of particles

M= EM E[x qu]
q=1

where x, and p,, are respectively the radius-vector and momentum of the g-th particle.
It would be more correct (and this also refers to the case of the magnetic field)
to assume the angular momentum to be the skew-symmetric tensor of rank two

R ®

As is well known, in mechanics there exists a requirement of system invariance under
Galilean transformations (the Lagrangian L of a system may change by a full
derivative; given this, the “action” S remains unaffected to within boundary terms):

X=x+wt, w=const, t'=1¢ €))

and for a system of n particles in [R® we shall have

L@ = L swn i ew + Do, (10)
where ij: = df & , JCX) is a certain function.
dt dx

For the total momentum this implies

oL' dl 9
Pi=—r=- ﬂj.c)' '=p-Vf
dx ox ox

Thus, momentum may change only by a total gradient (note that in classical
mechanics, Lagrangian is generally defined with an accuracy to a full derivative.
momentum is thus defined within the gradient).

For the energy we obtain
, oL’ oL
' P e—— L -w) — —L = £—pw. 11
E ™ -L'=(@ w)av L =g-pw (11)

For the important case
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_sl 2
L=ZXzmv -Va)

under Galilean transformation we shall obtain by virtue of (11)

p'-p-Mw, M = Zm, (p = P )

E=c-pw+ sz
= _p "'2—!
l‘lﬂ'w2
£=£’+pw—-i-. (12)

Now turning to relativistic mechanics, we should consider the whole system in
a four-dimensional space (x%, a =0, 1, 2, 3. We shall deal with the laws of

conservation only in a Minkowski space endowed by the metic (d))? = (@x%? -

Y (dx“)z_ The Lagrangiah LG, oy x2, x5, ..., X&) will be referred to a certain
a

parameter X = dx, /dT.

In this case we should require invariance of the system under the general
motion A of the Minkowski space R>!. The group of all motions (generated by
linear transformations around the origin O and translations) is called the Poincaré
group. The sub-group of linear transformations is denoted by O(3, 1) and is referred
to as the Lorentz group (the group of pseudo-orthogonal transformations). The
connected component of unity in the Lorentz group is denoted by SO(3, 1). As
distinct fom ordinary groups O(n), i.e. from the orthogonal transformations of
Euclidean space R", the Lorentz group O(n, 1) consists of four connected
components.

THEOREM. There exists a continuous homomorphism ¢ of the group O(n, 1) into
the group Z, xZ, (involving four elements) defined as

®(A) = (sgndet A, sgn {ey, Aegy)).

In particular, if §(A) = (1, 1), then we have A e SO(1, 1), i.e. A looks like

chy shy
A= .
shy chy
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This is a connected group. The connectedness of the group SO(n, 1)forn>1is
proved in a somewhat more complicated way (we leave it as an exercise to prove it
forn=2,3).

Transformations belonging to the group SO(1, 1) are called “elementary
Lorentz transformations”. The whole group O(n, 1) has the form

O, 1) = SO(n, 1) P° T,
where s=0,1, ¢g=0, 1.

n
L

x4, a
PG = {

-xX% a=12..,n

(“spatial reflection’),

a =0,

[
T(x") = . N
lx“v a = 1,2, ey 3

(“time reflection™).
The transformations A € SO(1, 1) are written in the form

( 1 v/c \
12 12

A - (1 - vzlcz) (1 - vzlcz)

vic 1 ,

\ (1- vzlcz)il2 (1 —vzlcz)m )

where v is the three-dimensional velocity and ¢ is the speed of light in a vacuum. For
v/c << 1, we obtain the Galilean transformations

vie =0, 2 =ct, x=cr,

rx= x' _ . vt 1/2} . x=x'+vt',
{ (1 - vzlcz) (1 - v2/c2)
A 13
x'vic _ ct’ ] )
et = 12 + 12 » =1
k (1-d) (1-+4c%) J
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We now proceed to the laws of transformation of a system of n parrticles in a space
[R*!, invariant under all the motions

LAxy, ... ,Ax,, A X"}, ..., AX,) =L

1. If A are translations, we are led as before to the law of conservation of the
4-momentum of the system

q
where € =~ ¢pg.

2. If A are rotations in a three-dimensional space, then we obtain, as before,
the law of conservation of the total three-dimensional angular momentum

M = 3 [xxpgl, M¥ = x5 pf-xbif.
q

3. If A are the various elementary Lorentz transformations in planes (0, o),
where a =1, 2, 3, then we arrive at

_s.0ac a0
MOG_quqpq xq . (14)

wherep = g% pay. For each particle we have xg =ct, pg = —E,/c, x4 are coordinates

in R>.

Thus we are led to
—l-Moa =2 (tp“--l-a x%) = const.
c g 9 29

Applying to the other laws of conservation:

Y& =¢ = const, ),p* = const,
[4 1 q 7

we finally have
2E, X
o = 979
D o + CONSE = K .

This is a uniform motion of the ‘“relativistic centre of mass™
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= (Zq‘, qug) /% €, * = const.

A. 3 Free particles. Mass shell. Velocity addition. The simplest
scattering processes

The energy and momentum of free massive particles in Minkowski space le'l, as
mentioned in A.1, are of the form

-me mv®
Po=— S5 P =T, SR (1)
(1 - v2/c2) (1 - v2/c2)
where — £ = ¢pg, p, = 0L/0v™, and v* are components of the three-dimensional

velocity of the particle. The action is given by (in three-dimensional formalism)

S = FrenNAdt = — o b 1
jv H\V’ b 'lle ui,

——y

)
Lo) = —=m (1-v¥c2)2, 0 = et

The quantities (pg, p,) together form the 4-covector. The corresponding
4-vector has the form

p* = g p,, P° = pg P* = —Pq (3)

on the “mass shell”
2 2
@) - T @ = nid @)
[+ 3
or

12
_po = ..i. = ()71_202 + E (pa)z) (lete > 0).
a

The restriction of the Minkowsld metric g, to the mass shell (4) is a fixed-sign

metric with coordinates p™ or v* related by formula (1).

Tha matem~ hae tha farme
4 llw liiwll I 1140 Wiw 1U1 il
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B o ) > 2
~ g, " &P = @ - 2 @ (5)

where (p°, pl p®, p°) is defined by formula (4); a simple computation (independent
of the dimension of the space) shows that the metric (5) has the volume element

(detgup)2dp' A...Adp" = Z= dp'A...Adp" (6)
p

EXERCISE 1. Prove formuia (6). 2. Find the coordinates where we obtain the
so-called Poincaré model of Lobachevsky geometry in a unit ball (see Section 1.4),
for the metric on the mass shell.

The group of motions of Lobachevskain space coincides with the group
0*(3, 1) which is the orthochronic sub-group of the Lorentz group O(3, 1), where
the upper portion of the light cone is sent to itself. Indeed, any motion from the
group 07(3, 1) preserves the Minkowski metric, the mass shell (4) and the condition
£ > 0. It can be shown that Lobachevskian space has no other motions.

Let us consider the so-called “velocity addition law”. The accurate statement of
the problem is this: let a particle move at a velocity v = o, V2, V) relative to a

pcpnﬂn-ﬁnrhrhnn coordinate system K =(r,v,z,)in a space endowed with a

WUNTANALIRNY Oy Otwial 4 Jy

metric
P = (@ - X @™,
xo=cz, x1=x,xlz=y, x3=z.

Here v2< 2. )
Now examine the elementary Lorentz transformation, say, in an (x, f)-plane

IA termined by the velocitv v whara u ~u < ,.2\ to a new coordinate g
Wi LAdALEGAL W7 [ = Y3 'UIU\-AI’ vV g YVilwidw (354 AW YT WA AIANEELIEL (=)

What will the velocity ¥ of the particle be in the new coordinate system? By

definiton, v is the “sum” of the velocities v and v. Obviously, v and v are

non-symmetric here. Calculate the quantity ¥ (v, v). By definition
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dx = 1 @' +5 df'),
2 2 172
(l—v /c)
dt = ! (L ax' +d"),
Vs =2 0\1'2 ._2
(1-vr?) ¢
dy = dy!', dz = d7’. )

Given this, dx/dt =v', dy/dt =2, dz/dl =v3. In view of the fact that v="° = dx//dt!,
we can readily derive the formulae of velocity addition

Y =%wv).

For parallel velocities (i.e. V== 0) the result is

WiF, 7= Y
' v @)

14—

2

c

Formula (8) implies that if the particle velocity lvl = ¢, then in the new coordinate
system the velocity Ivlis also equal to ¢ in the absolute value.

This conclusion remains valid for non-parallel velocities inasmuch as Lorentz
transformations preserve the light cone.

Thus, the results of the special theory of relativity are consistent with the
well-known Michelson-Morley experiment on the invariance of the speed of lightin a
vacuum under the change to a uniformly moving coordinate system created by
material bodies (i.e. moving with a velocity v < c).

We have already said that as v /c — 0, the Lorentz transformation (7) becomes a
Galilean transformation

xX=x+vh t=1

and the velocity addition law becomes the ordinary sum of vectors. It should be
emphasized that the velocity addidon law in the theory of relativity is
non-commutative and even non-associative for non-parallel velocities.

Now let us see what effect the Lorentz transformation has upon the energy

momentum 4-vector:
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mc mv®
2,2
o™ o)™ )
1 _ 1 (D'1+£ -o)
4 YN - p),
(1 v/c )
0 _ 1 (i 11,10
p=———"—g\gP+p). ®)
(l—v 8]
For low velocities we have
0 mv2
-p = % = mc+70—+0(1/c2),
S e 5 26L0.0, v = 020, ©)
1/2
(l—v /c)
From formulae (9) and (9") we obtain
p=p +mv +0(/c),
-2
£ =¢ +p'§+£2;—+0(1/c). (10)

Thus, from the Lorentz transformations for 4-momentum we have derived the law of
energy-momentum transformation under Galilean transformations.
Now we shall view the simplest processes of relativistic particle scattering. It

is assumed that before the beginning of the process (t — — =) we had a set M of free
particles X, ... , Xy with masses my, ... , my, 4-momenta py, ..., pyy and angular
momenta My, ..., My relative to the origin. After the scattering process (1 — + =)
we obtain N free particles with masses m), ... , m}y, momenta p%, ... , ply and
angular 4-momenta M3, ... , M. Whatever the process we must have the law of



ELEMENTS OF MODERN CONCEPTS OF REAL WORLD GEOMETRY 375

conservation of total 4-momentum and angular 4-momentum (“general geometric
conservation laws™):

M N
M. = M,
=R = W

M N
ZPJ. = EP,;. an
=1 =1

All the assumptions on the character of the process must be invariant under the
Lorentz (and Poincaré) group.

EXAMPLE 1. Spontaneous decay of one in-flight particle, of mass M, into two
particles of masses my, my. Let the velocity of the primary particle be (v, 0, 0) and

let the 4-momentum of this particle have the form

0 Mc 1 My 2 3

-1 R e ————— -_n

’ F2 = - —_—
(1 - vzlc:z)l/2 (1- vzlcz)”2

e |
|

To consider the decay process, it is convenient to employ the following step-by-step
procedure.

Step 1. We change to a moving coordinate system (C-system), in which the
first particle is at rest, its 4-momentum being — p' = (Mc, 0, 0, 0).

Step 2. Consider the process in the C-system. For 4-momenta we have the
relation

p'=p'i+p2 = Mc,0,0,0),

where p; are momenta of the decaying particles, in the form

1] 'n]c mlv? ) n) nQ
—p = 1,2 » = (?l » —pl )’
: ((1 = Vflcz) (1 - vzlcz)u2
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I~ _ 2 . .2, 2\], P
Mc = mpc [\1-v{/c*) ﬁ-mc“l-vz c”)"'“. Therefore,

e Y TP TPL CTR |
UUVIUUbly, {

my + my < M provided v; # 0 or v # 0. Next, we obtain

1™ +p4™ = 0 (see Figure 94).

Figure 94. “%

Thus, the whole process is characterized by the angle ¢ (which is the slope angle of
the momenta pj* of decaying particles to the x-axis in the C-system) and by the
absolute value of the vectors

2
ZI p@ =X @l o = 1,23
o

Step 3. We return to the original coordinate system and assume that, for
example, the distribution of decaying particles does not depend on the angle ¢ (for thie
calculations we refer the reader to the book [29]).

EXAMPLE 2. Elastic scatterings of a pair of particles with masses r; and m, (i.e.

the particles themselves are assumed to remain unaffected). It is, in fact, assumed
that one particle of mass m; = M is at rest (v, = 0) while the other is incident on it

with the velocity v, = (v, 0, 0) and mass mj = m.

Step 1. We go over to the C-system, where the resultant 3-momentum is
equal to zero:

~(@1 +p2) = (€/c, 0,0, 0).

Before our transition to the C-system we had
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( me mv, )
-p = 72 ’
(1 - vi/cz) (1 - vf/cz) 2
-py = (Mc,0,0,0).

Step 2. Consider the process in the C-system. We have

py+py =0 a=123,

( mc my 2 0 0)
—P'l = 1/2 » » *
(-v3" (1-v¥®)"

= ( Mc My, . 0)
2 - 2 21/2: lf2 [ ] » .
(1-v,7c (1-v)

By virtue of the law of conséiVation of 3-momentum, after the process we obtain the
new 4-momenta pY, p'; and the equality

nx

pl +p.éu = 0.

Applying now to the law of conservation of energy, we obtain

-3, 2 - 3 . 2
Seh =X ey,
a=1 a=1
3 3
Lo’ =X e
a=1 =1

Thus, the elastic process in the C-system is characterized only by the angle ¢ — the

rotation of a pair of 3-vectors (p}™) = (P1™), p%~ = -p1™.

Step 3. As before, we return to the original (“laboratory™) system in which all
physical conclusions are drawn (see ref. [29]).

An elastic process in the C-system is considered exactly in the same manner as
in classical mechanics. The final difference is only due to the distinction between the
Lorentz and the Galllean transformations in the change to the C-system.
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A 4
ide ¥

iba

As mentioned above (see A.1), an electro-magnetic field (in a vacuum) is defined by
the so-called vector-potential A (x), more precisely, by the class of equivalent

vector-potentials
Aﬂ ~ Aa + aa‘i”

where W is an arbitrary single-valued smooth function.

Directlv obeervable are the strengthe, 1.2, a skew-cvmmetric tensor of the
strengths, 1.€. mmeinge tensor of the

A bl ] NN SwA ¥

1
-
L}

Fab = aaAb—abAa.

In pseudo-Euclidean coordinates (x?) in a space R>! we introduce the electric
(E) and magnetic (H) field strengths:

Eu. = FOw Hu.[i = Fuﬂv o, B = 1, 2, 3,
3 2 1
Hyg—>H, H;— -H°, Hy > H".
To each particle, there corresponds, beside mass, an electric charge e (either positive
or negative) with the result that particles in the ficld are affected by the force, both in

classical and relativistic mechanics (v is a three- d1mcns10na] velocity, the notation is
three-dimensional):

B
o = €Ey te [z-XH] eE +——ev H |,
c c of

where p is 3-momentum of particle before the field is on:

Po = MV™* in classical mechanics
mv® . . .
pu A in relativistic mechanics.
(1 ~v¥e )
For the Lagrangian we have

5(7) =J‘(Lfm -A x +—A o) dt,
¥

A0=¢, Xo=
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For time-independent fields
E=V¢, H=r10tA, A= (A1AA;), ¢ = A4,

A “gauge” is a choice of one or another representative in a class of equivalent
vector-potentials:

A~ A+Vy.

The most popular gauges are the following:
a) Lorentz (relativistically invariant) gauge

d;A, =0 @=0,1,2,3),

b) Coulomb gauge

Oz4, =0 (@ =123),

c) Hamiltonian gauge

Ag=0, E,=A, H=rotA.

Now we shall give particularly simple exercises from particle mechanics in the
fields £ and H.

EXERCISE 1. The motion of a relativistic particle in a constant (independent of x, y,
z, t) electric field E ='(E, 0, 0). Here H=0. '

For the classical case this is the motion in a constant field with constant
acceleration. Find the relativistic analogue of this motion — the “particle
acceleration” by an electric field up to relativistic velocities.

EXERCISE 2. The motion of a classical (and a relativistic) particle in a constant
magnetic field H = (0, 0, H); express the (Larmor) radius of the orbit (in an
(x, ¥)-plane) in terms of the energy and the magnetic field.

We leave the consideration of this to the reader (see ref. [29]).

The following elementary statements hold.
1. On switching on a magnetic field, the energy-momentum vector of a particle

is shifted by the vector-potential (see A.1):
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e 1
pa_)pa+-C'Aa =Py Py = -8
€ & E-ed.

_ 2. In particular, in the absence of an electric field the energy remains
unchanged provided that the magnetic field is constant in time: here we should take
Ap=6¢=0,A,=0,00=1,23.

An electric and a magnetic field together form a skew-symmetric tensor F,,(x)

which, as pointed out above, is dependent on a point in space. It is natural to ask the

Qo pPRoL L2 Ll el e =

following questions which require geometric solution:
a) What functions of the tensor F_, at a given point x; are invariant under

Lorentz transformations?

b) To what simplest form can the tensor be brought by a Lorentz trans-
formation?

The general algebraic rules tell us that to seek the invariants of the bilinear form
F 4, in a space endowed with a metric g,;,, we should construct the equation

PQ\) = det (Fp,—Agas) = O.

The coefficients of the polynomial P(L) are just these unknown invariants
(symmetric functions of A}, Ay, A3, A4 if det g, =% 1). In view of the skew
symmetry of the matrix F_, the polynomial P(X) acquires the form

PO = A +aA\?+b,
where
a = const - (EZ-HZ), b = const - (EH)2

(verify this!) and g, is the Minkowski metric. The invariance of the quantities

E% - H? and (EI-{)2 is beyond doubt’also for the reason that
Fu F® = FoF 5% g = (F,F) = const (E2 - H?),
Fa F.q€% = (EH) (const).

The absence of invariants other than eigenvalues A; — or the coefficients of the
characteristic polynomial — is fully analogous to the corresponding theorem in an
ordinary Euclidean space [R* for the group O(4).
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However, for the Lorentz group , due to the indefiniteness of the metric g,
the reduction of the matrix F_; to the classical block-diagonal form consisting of
2 x 2 matrices appears to be generally impossible; the amount of possible cases and
types of eigenvalues is mauch larger. Depending on invariants, we single out the

following cases.
1 :‘2 — le ie arlitrariy R <2 N A T Aarentry trancfAarmatinn rma racnlt fat a
Le £ 4T LD dlVIUGLY, AvdX 7 Us 41 &AJIVIIG WallolVililativull dlldy ivouli \ut a

given point xg) in EIlH.

2. EH =0, E2 —-H220: a) E2> H?, b) E% < H?, Here we can always
come to the form H =0 in case a) and to the form £ =0 in case b).

These cases are therefore referred to as “purely electric” or “purely magnetic™.

3. E*=H? EH = 0. Here all the eigenvalues A, are equal to zero: A; =0,
PO =24

Lorentz transformations do not change the property that [El=1Hland E L H.
This case corresponds to electro-magnetic waves propogating in one direction (say ,
along x), i.e. to vector-potentials of the form Ay = 0, Ay (x — c1), but we shall not
discuss Maxwell's equations here (see ref. [29]). The only thing worth noticing is
the dimension of the fieids and charges which is determined from the foliowing
requirements:

1) eE has the dimension of force,

2) the dimensions of E and H coincide,

3) the quantity (E® + H*)/8 has the dimension of energy density.
The total energy of the field itself (in the absence of charges) is given by the formula

E= J’(E2 + H%)/8% d°x
whence

[e] = m'2T1[37,

[E] = [H] = m'2L712 T,

Here [ ] implies the dimension of the quantity in brackets — the product of the scales
of mass m, length L and time T raised to corresponding powers. We see that the
dimensions of the fields appear to be fractional.

The simplest fields are:
1) E = const, H = const, which are constant fields; here E and H are any

.
hrae_-dimeancional vartarc:
ed A Wi WEALALWEADS WAAEL Y WAL Dy
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2) Ag=efxl,ld= X (x*)?2 A =0, a=1,2,3 (the Coulomb potential of a
point charge); il

3) A = Re (AD exp (+i (@t -k, 1)), © =clkl, AQ =const,, 4,® = 0,
% Au(o)k,‘:O, i.e. the 3-vectors (k,) and (Au(o)) are orthogonal. These are

running waves with “polarization” A©,

A. 5 The simpiest in
Recall that by the definition given in A.1, the relativistic gravitational field is simply
an indefinite metric g,y in the space of events, or equivalently, in a four-dimensional
manifold M*. The first question that naturally arises with such a definition of a
gravitational field is the question of consistency with the classical Newton theory of
gravitation. In a non-relativistic theory, gravitation is determined by a scalar field
(potential) ¢(x, y, z, ). The potential itself satisfies the (Poisson) equation

2

1 2 3
» X =X X =Y, x =2,

3
AG = 4mp, A =3, -
a=1 (Bxu)

where p is mass density. The motion of a massive particle in a field is specified by
the (Newton) equation

T = —3, 0. (1

It is noteworthy that the mass m drops out of these equations, and it is only important
that m = 0. This property unites the gravitational forces with the so-called “geometric
forces™” which are due to a lame choice of the coordinate system. For example, let a
particle move freely (without forces); let us change to a coordinate system moving
with acceleration a(t). Then the equation of motion in a moving coordinate system
assumes the form

x = -a(),

where the particle mass does not enter. Due to this, the relation between gravitation
and geometry was hypothesized long ago, but this idea assumed its ultimate shape
only in the course of the creation of the general theory of relativity, i.e. after the
appearance of the special theory of relativity where the concept of a “four-
dimensional indefinite metric™ had appeared for the first time,
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Zero-mass particles in non-relativistic theory did not interact with gravitational
fields.

In the general theory of relativity, the motion of a test particle which has no
retroaction upon the gravitational field g,,(x), is assumed to proceed along time-like
geodesic lines of the metric g_,. The motion of light particles (photons) proceeds
alnm'.r hcrht-llke or isotronic. gendesics. The namr'le is assumed to be unaffected hv

ST, VR SVLLP, pYRvete. =aat 2o S0l 2 U LNl ITRNAS

any force other than gravitational. To what procedure can we apply to compare the
Newton equation (1) with the equation of time-like geodesic in a certain metric?
We shall introduce the class of “weak” gravitational fields g, in the form
o 1 1
8 = 8 + 5N+ 0 (5), @
c c
where formally 1/c — O (c is the speed of light in a vacuum, regarded here as a formal
large parameter). The metric g(o) coincides with the Minkowski metric, the quantities
Nap) and any of their derivatives with respect to x*, ¢ should be finite. the remainder
O(1/c) should be of the order of 1/c? together with the derivatives with respect to the

coordinates x*, 1. The equation of geodesics is determined by the so-called
“Christoffel symbols” I'% :

ek A =0 3)

where

CLAIM. For the weak gravitational field (2) equation (3) of “slow” time-like
geodesics has the form of Newton's equations mod O(1/c):

%% = 0,0+ 0/c),

where

. 24 ] &
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Proof. Christoffel's formula expresses the symbols I'%,_ in terms of first derivatives
of the metric g, = gD + 1/62 gy, + O(1/c%), where g{. are constants and all the
derivatives on,,/dx™, on,,/or have zero order in 1/c. The parameter of running
through a geodesic is natural: equation (3) just involves a natural parameter

b
d@ dx 12 0
cdt = (gab-d—lT) dt, t = x/c.

From this and equation (2) we have

dt = (1-V%c2+0(1 /)R dt = di(1 + O(1/cP).

So, instead of the parameter T we can use the absolute time ¢ = x%c. Next, we have

T = %, 29ib

Taking into account the formula for Christoffel symbols, we obtain the only term
which has zero order with respect to 1/c:

I50:%2% = P+0@TIE

n.
ur

00
g, = %g‘"’ (-2 oui® = -—‘3 3 4 oarcd)
ox® 2¢” ox*

(there is no sum over a!). This, obviously, implies the assertion,
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APPENDIX 3

CRYSTALLOGRAPHIC GROUPS

Our prime concern in this appendix is the role of tensors in solid state theory; in
particular, we shall acquaint ourselves with the physical tensors of crystals and with
crystallographic groups.

We shall consider an ideal crystal, i.e. a crystalline structure which occupies an
entire three-dimensional Euclidean space or a Euclidian plane. A real crystal, of
course, has boundaries, but by way of introduction of periodicity conditions on the
boundary we shall bring our investigation to an analysis of “infinite” crystals. The
crystal is regarded as consisting of a few types of atoms fixed rigidly in space (or in
the plane) and distributed throughout space (or the plane) in a regular way. We shall
suppose, as is convenient in such cases, that a crystal contains a sub-set of atoms
defined by the following vectors: @ = ny0ty + ny0ty + N30y, Where ny, ng, n3 are
arbitrary integers and @;, O, 03 are linearly independent.

Because of the important role played by planar symmetry in nature, we shall
also dwell on planar crystalline structures. For a deeper insight into planar
symmetry and its manifestations in organic and inorganic nature, we refer the reader
to the remarkable lecture by Herman Weyl published in the book Symmetry
(Princeton, 1953).

DEFINITION 1. The latrice R of a crystal is the set of all atoms of the crystal. In
other words, we may primarily assume the lattice to be an arbitray set of points either
in R orin

In so far as the excessive generality of this definition of latttices does not allow
us to make any concrete statement concerning them, we shall appreciably narrow
down the class of lattices to be analyzed here and restrict our consideration in the
sequel to the so-called translation-invariant lattices which we are going to define a
little later. Precisely this type of lattice corresponds to real physical crystals.

A crystal lattice always contains, as a sub-set, the set of all points (atoms) with
position vectors of the form o = n; a; + ny &y + n3 &3 (or in the planar case,

@ = ny0y + natty). Here ny, ny, ny are arbitrary integers. (Figure 95).

DEFINITION 2. The vectors @, @,, 05 are called the vectors of basic translations.

The vectors o, Q,, O3 are nrrnqmna"v called the primitive vectors of the lattice, and

= 1y L UL 0I0ALY LalllAll Uie reLsliia 4O

they are always assumed to be linearly independent.
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Translation along the vector o is parallel transport in the direction of the vector
o over a distance equal to the length of this given vector lal.

REQUIREMENT. The lattice R of a crystal is customarily assumed to be sent to
itself under basic translations along o, @,, 03 and their integer linear combinations;
i.e. we require that the crystalline structure remain invariant under all translations
generated by the vectors o, 09, 3. This is one of the basic properties of real
(“infinite™) crystals,

We shall denote translations along 0., @, 03 respectively by 1y, 1o, T3. Then
any translation can be written in the form

T=ni1+nty+m.

DEFINITION 3. The lattice R is called rranslation-invariant if it is sent to itself under
an arbitrary translation of the form T = n; ) + n9 T3 + n3 13.

Translation-invariant planar lattices are defined analogously.

So, we restrict ourselves to considering only translation-invariant lattices (on
the plane or in space). Of course, the boundaries of a real crystal will be shifted, but
we shall be concerned only with the interior of the crystal (this is just the reason why
we have introduced an ideal infinite crystal into our consideration).

An important REMARK. Suppose that we are given a certain lattice R. We
shall always assume the vectors o.;, O, O3 (Or 0, 0, in the planar case) to be the
smallest vectors, translations along which preserve the crystal (i.e. the crystal slides
along itself).

DEFINITION 4. A parallelepiped with vectors o, 0, O3 as sides is called a
primitive (unit) cell of the crystal lattice.
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Figure 96 illustrates the simplest two-dimensional lattice.

Figure 96, . . . . . .

Clearly, by virtue of translation invariance, the whole crystal consists of a
union of primitive cells which underwent translation.

The simplest lattice depicted in Figure 96 is characterized by the property
that each atom (i.e. each point of the lattice) is obtained by applying translation
T =ny Ty + ny T + n3 T3 to any one of them. This fact can be formulated as follows:
the set of all translations Is transitive on the lartice. This is, however, far from being
valid for all lattices. In particular, this may not be the case for the following reason:
a crystal lattice is in general composed of several types of atoms, and so it is natural
to require that under translations atoms of one type be again sent to atoms of the same
type, and not to those points which are already occupied by atoms of a differen type.
To put it differently, the set of translations may well be not transitive on the lattice.
Such a lattice is shown in Figure 97. Here atoms of type A cannot be translated to
atoms of type B.

Therefore, in order to specify a crystal lattice completely, it is not enough to
give the set of translations. On the other hand it is clear that since the whole lattice is
a union of primitive cells, it follows that to describe the lattice completely, we should
determine, in addition to the set of translations, the position of atoms in one particular
primitive cell.
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DEFINITION 5. A lattice R (in two or three dimensions) whose atoms all are
positioned at points of the form n; &; + ny @, + n3 043 (or n;0; + Ny, in the planar
case), where ny, ns, n are arbitrary integers, is called a Bravais lattice.

We say that the ser of all translations is transitive on the Bravais lattice.
Different Bravais lattices will differ only in the shapes of their primitive cells. Any
two Bravais lattices can be transformed into one another by means of a suitable affine
transformation.

DEFINITION 6. Let X, X5, .. , Xy be all atoms positioned inside a primitive cell.
Then the vectors Xy, X5, .. , Xy (all going from the origin of coordinates of the
vertex of the primitive cell to the points X;, X, .. , Xy ) together form a basis of the
lattice, as shown in Figure 98.

CLAIM 1. A lattice is completely determined by the set of vectors of the basic
translations together with the basis for the lattice.

The proof of the claim is obvious from our defintions of basis, of translations
and from the property of translation invariance of the lattice.

WNn ockall no-nl-.‘l:nl. thhn nomancenmt hatiwrnnm thn menmactine wAf f;m 1 1anl Tnfinita
YY O dllall Lyiauvlioll UIC aiCOliIClL UCLvw L1l uIc Pl pCLqu Ul 1 1Jcal 1ii1iie
crystal and a real crystal with boundary, as say the real perfect three-dimensional

crystal depicted in Figure 99.

A /
)
&,
Figure 98.

Here Ny, N, and N3 count the numbers of primitive cells stacked along the
corresponding edges of our parallelepiped (crystal), i.e.

AB = Nyoy; BC = Ny,a,; AD = N3a;.
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We shall apply translations along vectors multiple of a;. The whole procedure
will look like this: we translate the crystal along @, slice off the layer protruding
beyond the right boundary of the crystal and glue it to the left boundary which now
has moved into the parallelepiped along the vector ;. The use of such a formal
model appears to be justified: most of the physical results remain unchanged under
this procedure, Clearly, this point of view is exactly equivalent to the consideration
of an infinite ideal crystal, (a one-dimensional crystal is merely a linear chain of
atoms in which the distance between neighbouring atoms is equal to one and the same
number). The introduction of these conditions of periodicity on the boundaries of a
crystal can be made illustrative, i.e. they can be explained geometrically. Since the
boundary of a crystal consists of two atoms numbered 1 and N, any translation of the
crystal becomes a rotation of the circle. We could, of course, believe that a
three-dimensional crystal is also glued to become a three-dimensional ring in a
four-dimensional space, but this idea does not seem natural.

With each cell there is associated, in a natural way, the concept of a symmetric
cell (not to be confused with a primitive cell!). A symmetric cell has an atom as its
DEFINITION 7. In a lattice R with the atom fixed, the symmetric cell is the set of
points of space (or the plane in the planar case) situated closer to the fixed atom than
to any other atom of the lacttice. The symmetric cell is sometimes also called the
Wigner-Seitz cell.

Figure 100 illustrates a hexagonal two-dimensional lattice on which a primitive
cell and a symmetric cell are indicated.
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Figure 100.
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The boundaries of a (two-dimensional) symmetric cell are perpendicular
bisectors of the edges of the lattice, joining the fixed atom to all its nearest
neighbours.

We now turn to transformations preserving a lattice (i.e. mapping a lattice onto
itself). Consider the group of motions of a space (or a plane), i.e. the set of all linear
transformations preserving the quadratic form ds? = (dx! )2 + ((:sz)2 + (dJc3 )2
(correspondingly, ds? = (dx')? + (dx®)?). We shall denote this group by G; (by G,
in the planar case). Any element g of the group G (or of G,) can generally be

expressed in exactlv one wav, as a composition of two transformations, of which one
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is a parallel transport T and the other is a rotation o (proper or improper, i.e. with
determinant + 1 or — 1), that is, g =Ta. i
The set of parallel transports {T} forms a sub-group T3 (Ty) in G4
(respectively, G,) which is a normal divisor in G3 (or in G,).
From among all transformations of the group G, (G,) we shall single out those
mapping a certain fixed lattice R into itself.

DEFINITION 8. The set of transformations (motions) of the group G (or G,)
realizing a self-map of a lattice R are called the space-group of this lattice, which we
shall denote by G3(R) (or respectively Go(R)).

It is clear that the set G3(R) (or Go(R)) is the group in the usual algebraic

sense.

We shall formulate all our further definitions only for the three-dimensional
case, since for the planar case the corresponding properties hold similarly.

The group G3(R) contains a sub-group T3(R) which is the group of parallel
transports (translations).

DEFINITION 9. The translation group of a crystal (i.e. of a lattice R) is the

e o Pl 5 YUY 20 B . RPN L Y . I | Ry [ SR SNy

su D-gI'OUP 1 3\[() OI U]C group U3(K), COl'lSlSU.l'lg OI au pOSSlDlC transnauons z \n:czui
that any translation of our lattice R has the form T = n;T; + nyT; + n3T3, where T;
(1 s i £3) are primitive translations generated by the basis vectors ¢, ¢y, 03). .

All lattices R under investigation are translation-invariant.

It can easily be shown that the sub-group T3(R) is normal in the group G3(R)
(this fact will, however, be of no use in the sequel). Indeed, we shall show that if
g € G3(R) and t € T3(R), then grg™! € T3(R) for any g and 1. In other words, we
have to make sure that the transformation grg~! is again a translation. However, this
property of the transformation grg™! is obvious.
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We shall assume from now on that a certain point in space, say, the “origin of
coordinates” is fixed; for example, this may be the vertex of a primitive cell from
which the vectors of primitive translations emanate. All possible rotations of a lattice
(with determinant * 1) will be considered relative to this point 0. Clearly, as the
point O we can take any arbitrary point in space. In particular, we assume all
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It is well known that any transformation g € G5 admits a unique
representativon in the form g = T (see above), where T is parallel transport and o is
rotation with det (&) =+ 1. Since G3(R) < G3, it follows that any element
g € G3(R) admits a representation of the form g = Ta (note that generally speaking
. Ta.# aT). We should also emphasize an important fact: the transformations T and
o need not necessarily belong to the group G3(R); in particular, T may not be

included as an element of the translation group of a crystal. (Figure 101).

s
] =7
group o GR
rotations i \ group of
Ny } - translations
Figure 101. g s

Figure 101 shows the group of all rotations in [R? (i.e. the group of orthogonal
matrices O(3)) in the form of two pieces, which agrees with the fact that the group
O(3) (the group of all three-dimensional orthogonal matrices) consists of two
connected components (as a topological space), namely, one (the sub-group SO(3))
composed of matrices o with determinant + 1 and the other composed of matrices o
with determinant — 1. The group of all parallel transports in R is connected (it is
described by three parameters). At the same time, the group G3(R) is discrete, i.c.
when we consider it as a topological space we see that it consists of a set of isolated
points, each point being a transformation of the lattice R. To put it differently,
discreteness of a group means that in the group there exists no transformations
arbitrarily close to the identity transformation of this group (except, of course, the
identity transformation itself).
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Thus, any element g € G3(R) has the form g =Ta. (The transformations T
and o. are reconstructed uniquely from the transformation g, i.e. from the equality
g=Ta=T'a"it is immediate that T=T", o = ¢'. Indeed, if To = T'a’, then
T = a'a!, where (T')"'T is a translation and a'a”! is a rotation. A rotation
may appear to be a translation only in the case when it is identical, which implies
T =T and ao=«') The group G; does not, however, fall into the direct product of
its sub-groups: O(3) and Tj since, generally speaking, Ta # oT.

DEFINITION 10. The set of all transformations & € O(3) such that for a certain T
(parallel transport) the transformation g = Ta belongs to the group G3(R) is called the
point group of a crystal.

In other words, @ belongs to the point group of a crystal if and only if there
exists a parallel transport T (not necessarily belonging to T5(R)) with the property
that the composition Ta is the element of the space group of the crystal. We shall
denote the point group by S3(R). This group is often referred to as the symmerry

group of a crystal (of a lattice) and its elements as symmetry operations. Recall that
the point O — the centre of rotations — need not necessarily be a point of a given
lattice R. However, we have not yet proved that the set S3(R) forms a group.

CLAIM 2. The set S3(R) is a group in the usual algebraic sense.

Proof. Let oy, 0y € S3(R). It should be proved that o, = o, - &5 also belongs
to S3(R). By the definition of S3(R), there exist T and T, such that T a,; € G3(R)
and T0, € G4(R); since G4(R) is a group, it follows that the transformation
(Ty01(To,) € G(R). Suppose that the translations T, T, are determined by
vectors xj, X and the rotations oy, &t, are determined by matrices A, A,,
respectively. Then if r is the radious-vector in a space R°, the foliowing equality
holds (T1a)r =Ar +xy; (To0y)r = Apr + xp (rotation first and then parallel
transport). From this we have (T,0,)(T20)r = AjAyr + (Ax; +x3). Thus, the
rotation O3 = O.;0l; determined by the matrix A;A, enters in the transformation
g =T303 € G3(R), where the translation Ty is given by the vector x3 = Ax; +xq,
which implies that o0, € S3(R).

Next, let a € S3(R). We should prove that ale S3(R), where o ! stands,
as usual, for the inverse ransformation. Since a & S3(R), there exists a T such that
g =To € G3(R), i.e. g(r) = (To)(r) = Ar + x. From this we come to the conclusion
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that since G4(R) is a group, it follows that g™ € G4(R), ie. (g™)(") = Ty '(r)
=Alr—Alx)=Br+y, where B=A";y =— A"\(x). Finally weare ledto o' €
S3(R). )

The associativeness of multiplication in S3(R) and the existence of a umt
element can be verified directly, and our assertion follows.

We now give an example of a planar (two-dimensional) crystal lattice R for
which there exists an element g € G;3(R) whose expression as a composition of the
form g =T has the property that T ¢ G3(R) and . ¢ G3(R). The lattice is depicted
in Figure 102.

® o o o o o o dz. @ o o o o @
. . . . . . . .
e 8 o & o @ * o 0 o o @
&
e e s _>=a L] * .
8= 0 =0 —0—0—0 =00 —0—0=0—0—0—0—9/
[ . . [ . . . .
Fig‘urc 102. o o o o o o o ¢ % o ¢ ¢ 5 o @

The reflection & € O(2) in the straight line /, obviously, does not preserve the lattice
R. Next, the parallel ransport along the vector a (note that the translation T generated
by the vector a is not a primitive translation of the lattice) does not preserve the lattice
R either. that is, neither of the transformations o and T belongs to the group G(R),

but the h'ancfnm-mhnn o=To nh\nnnclu mang thn lattice R into itself. This
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operation (transformation) g = Ta is called the glide-reflection symmetry, and the

lattice R possesses the glide-reflection symmetry. It should be emphasized once
again that the elements (transformations) of the point group of a crystal (of a lattice)
do not, generally, map the crystal (the lattice) to itself. This group is of great
importance in the theory of crystalline structure, and it is not for nothing that it is
alternatively referred to as the symmetry group of a lattice since along with the
“genuine” symmetries of the lattice it includes also those transformations which send
the lattice into itself only after a translation is applied. Clearly, the lattice depicted in
Figure 102 generates a three-dimensional lattice possessing glide-reflection
symmetry. There exist crystals which possess, in addition to this type of symmetry,
also screw, (or axial screw) symmetry. This symmetry is a composition of rotation
o € O(5) and translation T of the lattice R along the axis of this rotation. We
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recommend to the reader that he construct an example of a three-dimensional lattice
possessing an axial screw symmetry.
Another group of transformations of a lattice R is sometires considered.

DEFINITION 11. The stationary group Hi(R) of a lartice is the sub-group G3(R)
consisting of all lattice-preserving transformations which leave the origin O
motionless. (Recall that the point O is fixed.)

It is clear that H4(R) = G3(R) N O(3) since any transformation of a lattice
which leaves the point O at its original place is an orthogonal transformation, i.e. a
rotation around the point O, whose determinant may be either + 1 or — 1. Note that
the group H3(R) is not, generally speaking, a factor group of the group G3(R) with
respect to the sub-group T3(R): H3(R)/T5(R). See, for instance, Figure 103.

N

1
§o(3)

£
Figure 103. T3 ~ paallel Zransports

REMARK. The group H3(R) does not generally coincide with the symmetry group
(point group) S3(R).

CLAIM 3. The groups Hi(R), S3(R) and G(R) regarded as sub-groups in the
group G, are linked by the following relation

HyR) = S3(RYNG3R) (H3(R) c O(3)).

Proof. We shall first prove that H3(R) < S3(R) N G3(R). Let oo € Hy(R). Then o
is, in particular, a rotation (and belongs to G3(R)), and therefore we may put g =7a,
where T = E is an identical transformation (translation along a zero vector), i.e.
g = a = Eqa; whence by definition of S3(R) we have o € S3(R).
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Inversely, we shall prove that Hy(R) D S3(R) N G3(R). Suppose o € S3(R)
and o € G3(R). This means that o preserves the lattice R and, besides, is a
rotation, i.e. @ € O(3) N G3(R) and leaves the point O motionless, that is,
o€ Hy(R). The fact that o enters a certain decomposition g = To is inessential
for us now, which compleies the proof

If a lattice R is Bravais, then the groups S3(R) and H3(R) coincide. This
statement follows from the definition of a Bravais lattice.

Figure 103 illustrates all the subgroups which we have introduced into our
consideration and their interaction with one another.

The stationary group H3(R) may be said to consist of “genuine” symmetries of
the lattice, and the group S3(R) of glide symmetries,

It is not every sub-group in the orthogonal group O(3) that can be the point
group (i.e. the symmetry group) of the lattice. Translation invariance of the lattice
imposes very rigid limitations on the groups S3(R), G3(R) and H3(R). We shall
denote by H3(R), the sub-group in H;(R), consisting of proper rotations only, i.e.
H3(R)g = SO(3) N G4(R); each rotation of H3(R)ghas determinant + 1 and does not
move the point 0. As the point O we take an arbitrary atom of the lattice.

THEOREM. 1. Let R be a translation-invariant lattice and let Hy(R) be the stationary
group of the lattice. Then the group H3(R)g consists of a finite number of

transformations each of which is a rotation of the point O through an angle ¢ multiple
either of nf3 or n/2.

Proof. Suppose a. € H3(R)g is a proper rotation. Then, as is well known from
algebra, the rotation o is a rotation through a certain angle ¢ around a certain
motionless axis [ passing through the motionless point O.

Suppose II is a plane orthogonal to /, through the point Q. Each lattice R
contains a sub-lattice R consisting of points determined by vectors o =
naQly + mylty + n30i3 (see the definition of a lattice). We shall project all (atoms)

lattices R parallel to the straight line / onto the plane IT and consider all those
projections of the points which are the nearest to the point 0. We fix one of such
points A; (we find a few such points) as shown in Figure 104.

Since the lattice R, is symmetric about the point O (this is a consequence of
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point 0), it follows that along with each point B; € R, the point B’; opposite to it
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also belongs to R;. Under the rotation around / through the angle ¢ the point B; will
be sent to a point of the lattice R; (since the lattice R, is preserved by the
transformation @), i.e. the projection OA; will be sent to the projection OA, with the
angle ¢ between them. Since the vectors OB, and OB, belong to the lattice, their
difference — the vector BB, — also belongs to the lattice R; (we mean the vector
parallel to the vector BB, and starting from the point 0). From this it follows that
the length of the vector A;A; is not less than the length of the vector
OA; (10A,] =10A4,)) since the points A, and A, are separated from the point O by

the smallest possible distance.

{ 4, eﬁf
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Figure 104. 44

So, in the triangle OA A, the side A;A,is not smaller than |0A,l=10A4,|,
that is, the angle ¢ is not smaller than n/3. Applying the transformation o
successively, we obtain in the plane II a rectilinear polygon with vertices A;, Aj, A3,
ey A (where A, = A)), and since ¢ 2 n/3, we have 1 £m < 6. However, by
virtue of the symmetry of the lattice Ry, the polygon A,, ..., A, is also symmetric
about the point 0. This means that » can assume only values 2, 4, 6. Hence ¢ may
be equal to kr, kn/2, kn/3, which implies the theorem.

We now turn to a planar lattice R and the group Ho(R)g. The theorem proved
above allows us to describe completely the set of groups Hy(R), for arbitrary planar
lattices R; in other words we shall now give the list of five groups Gy, G,, G3, G4,
G such that any group H,(R), coincides with one of these five groups.

THEOREM 2. (Classification theorem in two dimensions.) Let C,, (where n=1, 2,
3, 4, 6) denote a group of n elements of the form
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(where 0 <k <n - 1), ie. the group C, consists of rotations through an angle .ZT“]‘.

about the point O. Then for any planar lattice R" its group Hy(R) coincides with one
of these groups C,(n=1, 2, 3,4, 6).

The result is immediate from the theorem proved above.

Thus, planar lattices R may possess symmetry only under five groups Ho(R),.
(It should be noted that the group C; consists only of a single identity
transformation.) The corresponding classification in the three-dimensional case gives
the list of 32 possible symmetry groups. This classification is too sophisticaied to be
presented in this book.

We shall now again return to tensors. We shall consider, for example, such a
macroscopic property of crystals as electrical conductivity which describes the
relationship between the electric field vector and the current density vector j. This

relationship is specified by the relation j; = o} &, where j = [j,}, € = {g,}, and {0%;]

is the electrical conductivity tensor of the medium. In the case where the medium is
isotropic, 0% = 68%, where © is a scalar, i.e. in this simplest case the electrical

conductivity is given by a scalar 6. In the general case {0%) is a tensor. We shall
consider the electrical conductivity tensor of a crystal described by the cubic lattice in
R3, i.e. a cubic crystal (Figure 105).

Figure 105.
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Suppose we are dealing with an ideal crystal whose lattice R fills the entire
space. Clearly, the group S3(R) of symmetries of this crystal contains, in particular
the following three ransformations:

1 0 o]
a, = 0 01

010 0
o, ={-100]; =10 ,
001 -1 0-10)

i.e. @; is arotation through nt/2 about the z-axis, o, a rotation through /2 about the
y-axis and oy a rotation through 7/2 about the x-axis. Since the lattice R goes into
itself, it follows that theses three symmeiry operations preserve the tnesor (0%,}. We
shall write this. We shall denote by A the matrix {c%}. Then A} =0;4 07! =4
forany i, 1 i £3. Calculating the matrix A}, we obtain

01]
10
00)

(o%-o% ﬂ (o! o} }
a=l-ol o -dll=lc ot o |-4
& & &) (&ad)

The group S3(R) contains three more transformations:

-1 0 O 1 0 O 8 -1 0 O
B, = 0-1 0 B, = -1 0}; =] 0 1 0],
' 0 0 1 2 o 0 -1 3 0 0 -1
i.e. B; is a rotation through x about the z-axis, B, a rotation through nt about the
x-axis and [; a rotation through & about the y-axis. The lattice goes again into itself,
which yields the relations A ; = B; A B3, 1 <i < 3; calculating the matrix A ; we
obtain

SEEELCEn
A=l o 0y -0y l=1i0 0305 |=4;
i) (g )
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whence o} = o% = 031 = 032 = 0. Calculations of the matrices A 5 and A 5 similarly
give us cj =0 for i #j, i.e. we are finally led to

(1 0 o]
A={c}=0{0 1 0},
* L0 0 1)
that is,
o = ob;

where ¢ is a scalar. We have thus proved the important statement that the electrical
conductivity of a cubic crystal is isotropic, i.e independent of direction, as is the
electrical conductivity of any isotropic medium. This result is not physically obvious
since it would be natural to expect that the conductivity of a cubic crystal in directions
parallel to the edges differs from that in the diagonal direction. We have thus
demonstrated the important (although rather elementary) application of the symmetry
group S3(R) by lowering drastically the number of independent components of the
tensor {0y }.

We shall now proceed to three-dimensional lattices. The problem of
classification and complete description of all types of the groups H3(R) and G3(R) is
much more complex than in the planar case treated above. We shall therefore not
carry out this classification in full detail but shall restrict our consideration to
answering a simpler question: What is the structure of finite groups of proper
rotations in the three-dimensional case? Since the stationary group for an arbitrary

h-apclnhnn-invnnnr;t fhrnn.ﬂimpncunnn'l lattice is diccrate’ (and, therefore, me\ it

follows that by compiling a complete list of all finite sub-groups of the group SO(3),
we shall thus estimate “from above” the list of groups H3(R), and S3(R), for three-
dimensional lattices.

We shall begin by presenting a list of finite groups of rotations of a
three-dimensional space. To this end we first consider some straight line / through
the point O and assume II to be a plane orthogonal to the straigth line / and also
passing through the origin 0. We consider in the plane IT the action of the group C,,
(the cyclic sub-group of rotations in the plane IT about the point O through the angle
2n/n). Clearly, this group becomes the rotation group of the entire three-dimensional
space about the axis I. We denote this group-also by C,. Heren=1, 2, 3, ..., the
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C,, there is another group D,, acting on the plane. The reflection of the plane Il
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relative to a certain straight line g, lying in the plane II, in a three-dimensional space
can be realized using rotation about this straight line g through an angle x. Thus,
these improper rotations of the plane can be complemented to become proper
rotations of a three-dimensional space. We shall denote this newly appearing group
by D,. The group D, will consist of the following transformations: all the
transformations from the subgroup C, and besides, the rotations by the angle & of the

whole three-dimensional space about n axes lying in the plane IT and making group

angles equal to %f-=% with one another. It should be emphasized that the

1»as well as the group C,, consists only of two elements: of identity

transformation and half turn about the only straight line in the plane I, and therefore
these two groups are isomorphic. Therefore, if we wish to make the list of different
(non-isomorphic) groups, we should eliminate the group D]. We thus arrive at the
following list: C,,n=1,2,3,..,; D'\, n=2,3,4, ...

Along with these two infinite series of discrete groups, in a three-dimensional
space there also exist a few more exotic transformation goups. Indeed, we shall
consider five regular polyhedra in a three-dimensional space, namely, cube,
octahedron, icosahedron, tetrahedron and dodecahedron. With each of these we can
associate a finite group of proper rotations sending a particular polyhedron on to
itself. In doing so, we obtain five more finite groups, some of which however
coincide. Only three of them are actually distinct, namely the groups of tetrahedron,
cube and dodecahedron. We shall consider this point in more detail. We shall
inscribe a sphere into a cube so that the sphere be tangent to the cube faces, and into
this sphere describe an octahedron whose vertices are tangent to the sphere at those
points where the sphere is tangent to the cube. It is clear that any rotation sending
the cube into itself will also leave invariant the octahedron, and conversely, for which
reason the symmeines of the cube and octahedron coincide. In exactly the same way
we establish the coincidence of the symmetry groups (i.e. proper rotation) of
dodecahedron and icosahedron. We shall denote by T, W, P the groups of
proper rotations respectively of the tetrahedron, cube (and octahedron),
dodecahedron (and icosahedron). We leave it to the reader to verify that the orders of
these three groups are, respectively, 12, 24, 60. If we consider the complete groups
of polyhedron rotations (i.e. those including also improper rotations), then the

obtalned groups T, W, P will naturally have orders 24, 48, 120. It turns out that the
rotation groups presented above fully exhaust the list of proper dlscrete groups of
rotations of three-dimensional space,
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THEOREM 3. The exhaustive list of finite groups of proper rotations in
three-dimensional space has the form C,(n=1,2,3,...),D,(n =2, 3, 4, ... ).
Here C,, is the group (cyclic) consisting of repeated applications of rotation about
some axis | through an angle 0. equal to 2n/n, where n is an integer; D, is the group
of the same rotations, together with the reflections relative to n axes lying in the plane
perpendicular to | and making an angle /2 with one another; T, W, P are the

iransformation groups preserving respectively the regular tetrahedron, cube (or
octahedron) and dodecahedron (or icosahedron).
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APPENDIX 4

HOMOLOGY GROUPS AND METHODS OF THEIR
CALCULATION

One of the most important geometric invariants of a manifold is the homology
groups which we shall define below. We have already defined the one-dimensional
homology group H;(M") as the factor group of the fundamental group over the first

Norrr o nt
WASLLILAIUELRL 2L,

Several ways to define the homology groups exist. .
To begin with, consider closed differential forms of degree k on the manifold

M" (i.e. locally we have

o= % g d'A...Ad* do = 0).

ll<...<lk

A closed differential form is called exact (or cohomologic to zero) if » = d', where
o' is the form of degree k- 1.

DEFINITION 1. The cohomology group H* (M™ [R) is the quotient group of all
closed forms of degree k with respect to the sub-group of exact forms, or
alternatively the group of equivalence classes of closed forms up to exact forms
(0 ~ wq if © — 0, =dw").

The simplest fact concerning calculation of the cohomology groups is the
following statement. |

CLAIM 1. For any manifold M™ the group H(M™; R) is a linear space of dimension
q equal 1o the number of connected pieces (components) of the manifold.

Proof. The form of degree 0 is a scalar function f{x) on the manifold. If this form is
closed, then df(x) = 0. This means that the function fx) is locally constant, i.e.
constant on each connected piece of the manifold. Closed forms of degree 0 are
merely sets of g constants, where g is the number of pieces. The statement follows
since there are no exact forms here.

If there exists a smooth map of manifolds, f: M;— M,, then there is defined

the (well-known to us) map of the forms @ f*(dw), such that d(f* ) = f* (dw).
Therefore the map of homology groups is defined to be
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*: XMy, R) —» H"M;; R),

since the equivalence classes go into one another (under the map f ¥, closed forms
remain closed and exact forms remain exact).
The following theorem holds:

THEOREM 1. Given two smooth homotopic maps

fIZMl - M2 and fz? M] - Mz,
the maps f; and fé of the cohomology group coincide:

f¥ = 5 H\M,, R) — H'OMy; R).

Proof. Suppose we are given a smooth homotopy F: M xI — M,, where I isa
segment, 1 £1<2, and F(x, 1) = f1(x), F(x, 2) =fo(x). Any form Q of degree kon
M, x I is given by

Q=w+o0,Ad, Ql,ﬂo = Wy(tp),

where , is the form of degree & containing no dr among differentials, and ®, is
the form of degree k — 1 containing no dr among differentials (local coordinates in
M, x I are always chosen to be (x!, ..., x", 1), where (x!, ..., x") are local
coordinates on M"). Let ® be any form of degree k on the manifold M,. Then

Flo)=0Q =@, + @, A dt, where locally we have

0)2 = Z a; .. i1 dxll A...A dx‘b-l,

il<...<ik__1
j
@ =X by _jd' A Adx"
jl<"'<jk

We shall define the form D Q of degree k — 1 by the following formula (locally):

a

2 - .
DQ =Y, (f a,-,__,-L(Jc,r)dr)a(x'l/\.../\dJu:""1 = rco,,dt.
'Jl ~ Jl -
1
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Obviously, D is the form of degree k — 1 on the manifold M; xI. An important
lemma follows:

LEMMA. 1. The formula
d(D(F*())) £ DA(F *(@))) = f5w) /1)

is valid, or if Q =f"(w), where @ is the form on M, and Fl.5 = f5, Fley =f;, then

N Py 3™

the formula dD($2) £ D{dS 4) =Ql_, - Ql,; is valid.

Proof. Let us calculate d(D(Q)) for any form Q on M, x I, where Q =, + @, A dt.
By the definition of d we locally have

oa, . . ;
i e . ! J
Q= Y z(r_;,ﬁ_dz)dxf/\dxlm../\dx"",
L<w<ip J 91 g
DdQ = D(dw,) + D(dwy Adr) =
ab. ; ;
- 7
=p( ¥ ¥ = E g NdZ AL NdEE
ey 4 ax"
ob. . :
Jyeerd J 7
+ X Ik e Adc AL Adx" =
jl<...<j )
, aa‘-m‘- ,'1 i
#D( X X ———=adf Adx'A...Adx )
i <.<ip p af

From this we can readily see

dDQ+ (-1 pdQ =

=z ) Ik
f1<§<f,. (5., 02 + by j, 0 D) de AL A
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Since locally

QI'=‘o = () + 0y AdD) Iy,
we are led to
dDQ + (- 1)1 DdQ = Ql,-Ql,,
which implies the first statement of our lemma. If now Q = f¥(@), then

Q. = f*,o(m) where F(x, tg) = fy: M; = M,. In particular for fo = 1, 2 the

result follows, which completes proof of the lemma.

Continuation of Proof of Theorem 1. Suppose we are given a closed form ® on M,
(i.e. dw =0). Then the form

d(f5(@) - f1 (@) = dDEF (@) £ DdF* ().

However, dF *(w) = F*(dw) = 0. Therefore, we have f3(®) —f1(®) = dDF *(w),
i.e. the difference of the forms is exact (or, the forms are homotopic). This just
means, by definition, that the homomorphisms

fi: HMy; R > HY M R),

f:. H\My; R) = HYMy; R)

coincide on equivalence (cohomology) classes. This concludes the proof of the
theorem.

DEFINITION 2. Manifolds M 1» My are called homotopically equivalent if there exist
(smooth) maps f: My — M,, g: Mg — M,, such that both the superpositions
fog: My — Mjand g o f: M; — M, are homotopic to the identity maps

M; = MiGxbx), My = M)yyby)

For example:



406 APPENDIX 4

1. Euclidean spaces R" ( or discs D" = i (x“)2 < Rz}) are homotopically
a=1

equivalent to a point. The proof consists in the fact that R" (or D) are deformed
along themselves to a point. The precise meaning of this is that the identity map
1: R —» R", where x » x, is homotopic to a constant R” — O, where Q is a point.
This fact is obvious.

2. A space without a point R \@ (or a ring between spheres of radii r, and ry)
contracts to a sphere $*, and therefore R*\Q is homotopically equivalent to the
sphere S™. For n = 2 the region R?\Q is homotopically equivalent to a circle.
Note that R\ (@, v Qy) contracts along itself to a figure-of-eight (Figure 106.) The
figure-of-eight is not a manifold, but for it we can define the cohomology groups —
they are the same, by definition, as those for the region [Rz\Q1 U Q,) by virtue of
Theorem 1.

=~ /%)

¥2 K

—7 g,

<
& %
Figure 106. Figure 107.

Generally it is possible to define these groups for all bodies K for which there
exists a manifold M" o K contracting to this particular body by assuming Theorem 1
(and Corollary 1 below) as the basic property of cohomologies:

HYM™ R) = HXK: R).

For example, for a region on a plane U, = [RZ\(QI U...uU0Qn) as abody K we
may take a bouquet of circles, as shown in Figure 107.

f .
COROLLARY 1. Homotopically equivalent manifolds M, 2 M, have identical
g
(co)homology groups.
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Proof. Consider the maps f*: HX(M,) —» H¥M,) and g*: HX(M,) - HM,).
Since the maps fo gand g o f are homotopic to the identity maps, the
homomorphisms (fe g)* = g* o f and (go f)* = fk og* are exactly identity
homomorphisms of the cohomology groups, according to Theorem 1:

1 = g¥of": H\My) — HEM)),

1 = fMeg*:HYM)) —» HROMy).

This, obviously, implies that the homomorphisms f* and g* themselves are mutually

inverse isomorphisms, i.e. ff= (g*)‘l, and the result follows.

Exactly the same sort of argument proves that the fundamental groups mn, of
homotopically equivalent manifolds coincide.

COROLLARY 2. The cohomology groups of a Euclidean space R" or of a disc D"
are the same as those of a point, i.e. HR") is a trivial group for k > 0, H*(R") = R
(a one-dimensional linear space).

This fact is occasionally referred to as the “Poincaré lemma”: locally, in a
region around any point on a manifold M", any closed form dw= 0 is exact ® = dw'.
Indeed, if we choose a disc D" in local coordinates with centre at point 3,

n
{Zl (x“—x%)zse},we can apply to the disc Corollary 2 of Theorem 1
a=

which tells us that H"‘(D") =0,k>0.
For k = 1 the Poincaré lemma is familiar to the reader from the course in

P
analysis since for 1-forms w =f; dx* we have © = dF, where F(P)= J' dx* on the
Q
path from a point Q to a point P in the disc D".

COROLLARY 3. The cohomology groups of a Euclidean plane without a point
[RZ\Q (or of a ring) are the same as those of a circle S! and are given by

HYSY = HXRE\Q) = 0, k>1,
HY(SYH = HH@E\Q) = R, k=1,
H(SYH = HOR*\Q) = R, k=0.
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To prove Corollary 3, we shall calculate the groups HYSY). Obviously, they
are trivial (we say equal to zero) if k£ > 1. Next, Ho(Sl) =R since the circle is
connected (see Claim 1). To calculate the group H'(S!), we introduce a coordinate
¢, where ¢ and ¢ + 27zn represent one point for integer n. The form of degree 1 is
specified by the equality a(¢) dd = ®, where a(¢) is a periodic function a(¢ + 2x) =
a($). We always have do = 0 since the dimension of the circle is equal to 1. When
is the form a(¢) d¢ exact?

This means that a(¢) dé = dF, where F(¢) is a periodic function. Obviously,

&
F(¢) = J' . a(y) dy + const. Hence, the function F(¢) is periodic if and only if the

condition J'Z“ a(y) dy= 0 or j ,©= 0 is satisfied.
5

Thus, the form of degree 1, ® = a(¢) d¢, on a circle is exact if an only if there
holds the condition j ,@= 0. This implies that the two forms ®; = a(¢) do
s

and ®, = b(¢) d¢ define one and the same cohomology class if and only if
J , & =j ) @2 Therefore, we obtain H'(S'; R) = R, which completes the proof of
5 5

Corollary 3.

COROLLARY 4. The cohomology group H*(M", R) of an oriented closed (say,
connected) Riemannian manifold M™ is nontrivial.

Proof. Consider a volume element Q, where (locally) we have Q =IgI"2 dx' A ...

... A dx". If the set of regions of local coordinates is chosen in accordance with
orientation (i.e. all the transformation Jacobians are posiiive), then Q is the
differential form of degree n and we have J'Mnﬂ > 0 (this is the volume of the

manifold M"). Obviously, dQ = 0 since the degrée of the form Q is n. I we had
Q = do, then b, tokes fi uld obtai w=| Q={ do=0
en by the Stokes formula we would ob nJ'aMn jM"‘ JM"

(since M" is closed and has no boundary). This is a contradiction which implies our
corollary.

REMARK. If a closed manifold M" is non-orientable (e.g. [RP?), then the group
HY(M", R) is trivial, but we shall not prove it here. In particular the volume element
do =112 &"x does not behave as a differential form under transformations with

negative Jacobian.
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We shall clarify the geometrical meaning of homology groups. If M”" is an
arbitrary manifold and w is a closed form of degree £, then its “integrals over cycles”
are defined. The exact meaning of our statement is this. Suppose M* is a closed
orientable k-dimensional manifold. By the “cycle” in the manifold M" we understand
a smooth map

M Mmn
DEFINITION 3. The period of the form ® with respect to the cycle M~ f) is the
integral J' y f"r (w).

Suppose now that N*¥1 s an arbitrary oriented manifold with boundary
I" = M*, The boundary is a closed oriented manifold (consisting, perhaps, of several
pieces). By the “film” we shall understand the map F: N**! - M™ which coincides
with fon M~

We shall make a simple asseriion.

THEOREM 2. a) For any cycle (M*,f) the period of any exact form @ = dw' is

equal to zero.

b) If the cycle (M~,f) is the boundary of the film (N**\ P), where M*is the

boundary of N¥*! and F k= [, then the period of any closed form with respect to

such a cycle (M*, f) is equal to zero.

Proof. ‘a) If @ = d', then by the Stokes formula we have

[ f @ = [ faw =] a0t = [ f@ =0

since the manifold M* has no boundary.
b) If M* is the boundary of N*! (with allowance made for orientation) and if
FIMk =f, then by the Stokes formula

[ o @ = [ dF @ = [, F@) =0
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We shall now make a statement: if the periods of a closed form with respect to

=T TR RS agianandiin*

all cycles are equal to zero, then the form is exact.
From this fact we can draw several conclusions. We shall give simple

examples.
1. If M™ = S™(a sphere), then H(S™) = 0 for k =0, n.

Proof. If k > n, then the statement is obvious immediately from the definition. If
0 <k < n and (M*, ) is an arbitrary cycle, then by Sard's lemma, the image of fiM*)
does not cover at least one point O € S". Therefore, the cycle (M", D lies, in fact, in
R"=S5"\0. We know already (the Poincaré lemma or Corollary 2) that in R" any
form is exact. Accordingly, all the pericds are zero when 0 < k < n. Consequently,
HS™) =0 when 0 <k <n.

2. fM*= IR"\(Q1 U...U @), then there exists l'indcpcndent cycles of
dimension n — 1 (these are spheres surrounding the points Qy, ... , @p. From Sard's
lemma we can readily deduce here that all the periods of the forms of degree
O <k<n-1 are equal to zero by analogy with item 1. Therefore, we have
HYR"\(Q;U...u0))=0,0<k<n-1,and next " (R"\(Q; V...L0)) =
=R-! (prove this).

3. Suppose M? is a region in R> from which we discarded a set of points
0y, -.- » @) and pairwise non-intersecting circles I'y, ..., I',.

P e Pty

) & % ~F 3 1
nére we can sce uyunca Ol QLLLICINDIVIL 1 a.uu L

a) one-dimensional cycles Ay, ... , A, linked with circles Iy, ..., I's (Figure

108);
57 57 8 RS &
$éded () ©
Figure 108. “ o N =5

b) two-dimensional cycles, i.e. spheres S%, s S% embracing points @, ...,
O, and tori T2, ..., T2 embracing circles I ..., I'; (Figure 108). The answer is
clear:

HM) = F (s independent periods)

HYM? = R™*® (I +s independent periods).
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The answer does not depend on the mutual positions of circles Iy, ... , I, (this is
already not obvious). These facts are not, however, very easily provable. It is
immediately seen that Hl(MS) = [R?, where p > 5 and HZ(M3) =R, whereg2l+s
(prove this).

REMARK. As distinct from homology groups, the fundamental group
depends strongly (due to its non-commutativity) on the position of the discarded
circles Iy, ..., I For example, let M3 = R*\I'; (Figure 109) and let M3 = R*\I',
(Figure 110). Then it turns out that nl(M:},P) is an infinite cyclic group with
generatrix a (see Figure 109). Prove it. Next Itl(M%, P) has three generatrices a, b
and ¢ (see Figure 110) and is given by some relations. Calculate these relations.

RN /—)\
(») @ r\\/ . )

FQ x\‘l——\'hl" P

Figure 109. Figure 110.

We shall now present another approach to the definition and investigation of
homology groups (simplicial and cell homologies) which allows their simple
calculation, It will not however be very easy to establish relationship between this

and the preceding approaches ( this comes within the scope of the dlfﬁcult de Rahm
theorem which we omit here).

What is a simplex? A zero-dimensional simplex is a point g A
one-dimensional simplex is a segment [0y, &;], whose boundary is a union of two
zero-dimensional simplexes: a simplex [o;] with the plus sign and a simplex [cg]
with the minus sign. A two-dimensional simplex is a triangle, [og @, &,] (Figure
111). A three-dimensional simplex is a tetrahedron, [0 o) 0, €63] (Figure 111).

By induction, if an n-dimensional simplex [og @, ... @,] is defined and lies in an

n-dimensional space R", then to construct an (n + 1)-dimensional simplex, we should
take an (n + 1)-th vertex outside this hyper-plane R" < R™! and consider the set of
all points lying on the segments which join this new vertex a,,; with points of the
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simplex [og ¢4 ... &,). The body obtained will just be an (n + 1)-dimensional
simplex.

Figure 111.

The faces of the n-dimensional simplex [0 @, ... &t,] are spanned by the
vertices [0g @ ... Oy 4], [0g0; o 0y 2 0], s [0 i O,y o O],
[oeg, ... , ©,). Thus, the i-th face is obtained by means of the removal of the i-th
vertex from the set [0 ... &t,] and is opposite to this vertex: the i-th face I'; =
[0tg O ... O;... ;) (the i-th vertex is removed). We shall ascribe to the i-th face T

the sign ( - 1)°. The oriented boundary of the simpiex [0y ... &,] has the form
n -
o[y ... O] = Zo (-1 [og o & .o 0]
=

We can write the faces of smaller dimensions formally from the simplex [ay ... &,]

by removing a certain number of any vertices.
For simplex boundaries we have

~

dlogl = 0,
dlog o] = [oy] - [ ol
olog oy o] = [0 o] — [ o €] + [ y).

Compare these formulae with the figure. Indeed, the faces enter with regular signs
(we understand here the linear combination formally — in a linear space where the
simplexes [OL,-o a,-n] themselves are basis elements). A simple but important

lemma holds.
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LEMMA 2. For an n-dimensional simplex the formula 9d[cy ... o} = 0 Is valid.

The reader may verify the lemma by a direct calculation. For example, for
n =2, we have

dlag 0y 0] = [0y o] = [ o 0] + [ 0y,

ddog oy 0] = {[ o] - [0y]) = {[ @g] =[]} + {[og] =[]} =

The situation is similar for all n. The lemma is quite natural since the boundary
of something has itself no boundary. A simplicial polyhedron (complex) is, by
definition, a set of simplexes of arbitrary dimension, with the following properties:

1) all the faces, of all dimensions, of this polyhedron together with any
simplex belong to this set;

2) two simplexes may intersect (have common points) only along a whole face
of a certain dimension and only along a single face (or one of them is a face of the
other).

We shall number in an arbitrary manner all the vertices of a simplicial
polyhedron ( a simplicial complex): o, @y, ..., 0ty. Then the simplexes are some

sub-sets of vertices within a given numeration of the form [OL,-O Ot oo a,-r].
Now suppose that G is any commutative group, where the group law is written

as summation (+).
The chains of dimension k in a simplicial complex are formal linear

combinations of the form Cy = 2 8,0, where G; are different k-dimensional
IR Prer ey et aa o a < R Py Iy —

biulplCACb V'Vﬂ.ll.CII na gTV N numeration of VEILICES of the complcx, gl dic¢ arowgary

elements of the group G.
The chain boundary is a chain of dimension k£ — 1:

= E 8; (a(f‘)-

The formula d0C), = 0 is obvious (by the lemma).
Cyecles are such chains C}, that 9C; = 0. Cycles form a group.
Cycles homologic to zero (limit cycles) are such sycles Cj, that C, = 0C,;.

DEFINITION 4. The homology group HyM, G), where M is a simplicial complex,

is a quotient group of all cycles of dimension & with respect to the cycles homologic
to zero (two cycles are equivalent if and only if C; — C'y = 9Cy,).
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Of interest are the cases G = R (real numbers), G = C (complex numbers,
G = Z (integers), G = Z, (residues modulo 2) and generally G = Z_, (residues
modulo m, especially when m is a simple number and Z_, is a field).

The conjugate objects are defined to be: the cochain Cis a linear function on
chains which associates k-dimensional simplexes with the elements of the group G:

C"(G,-) is the element of the group G,
c"(ac;,-1 +boy) = aC"(c,-i) + bC"(o'iz),

where a and b are integers.
The coboundary 5C* of any cochain C*is given by the formula

8CKo) = C*@a),

where 0; is any simplex of dimension & + 1.
The cocycle 5C*=0.
The cocycle equivalent (cohomologic) to zero ck =3¢k,

The cohomology group H*M;G) isa group of cocycles to an accuracy of

. s . Sk mEk. .k =k ok
cocycles equivaleni o zero:C =C UHC —-C =0 .

If any manifold M" is divided into simplexes and is transformed into a
simplicial complex (polyhedron), then for this manifold we can define and calculate
the homology and cohomology groups.

The differentiable simplex of dimension k is a smooth embedding (of maximal
rank) of a simplex into a manifold A" (the map should be smooth up to the boundary
of the simplex; it is preferable that the map be defined on a somewhat wider region in
RY).

We shall assumne a manifold to be rriangulated if it is divided into a simplicial
complex by means of differentiable simplexes. In this case we can define the
homology and cohomology groups of the manifold M” as those of a simplicial
complex.

We have the following (not simple) facts:

a) the homology and cohomology groups do not depend on triangulation of the
manifold (“surface”) and are homotopically invariant;

b) for G =R the cohomology groups coincide with those introduced via
differential forms.

For a finite simplicial complex (not necessarily a manifold) the Euler
characteristic introduced by Poincaré is as follows:
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if v; is the number of simplexes of dimension i in a complex, then the Euler
characteristic of the complex M is given by

i
XM =% (-1, .
20
We have the following simple theorem:

THEOREM 3. If b; (the Berti numbers) are dimensions of the homology groups
H{M; R), then the following equality holds

) =L (-D'y, =X (-1,
20 J20
Proof. A group of chains of dimension i is a linear space of dimension y; we shall

denote by Z; the group of cycles of dimension | and by B; the sub-group of cycles
homologic to zero. Obviously, we have

dim B; = ;) —dlm Z;,,,

b; = dim H'(M; R) = dimZ;- dim B; =

dim Z; - (Y;4; — dim Z;,4), 1o = dim Zp,

whence

bp—by+by=b3+.. = Y- +V2—- T3 -

and the theorem follows.

REMARK. The characteristic % (M) has already appeared above as the sum of
singularities of a vector field (or of a smooth function). This is the same quantity.

A version of the simplicial definition of homology groups are continuous (or
singular) homology groups.

Let K be any topological space (e.g. the manifold and space of all continuous
(smooth, piecewise smooth) maps of one manifold into another).

A singular simplex of dimension k is a pair (o, f), where £ ¢ — H isa
continuous (smooth, piecewise smooth) map of a usual simplex [¢ ... 0] into the
space H.
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A singular chain of dimension k is a formal linear combination C; = E 81G; s
i

where g; are, as before, elements of the group G and (5}, f;) are singular simplexes

of dimension %.
The boundary of a singular simplex is a formal expression (chain)

aC, = X 8,95, 1)

where

o = T 1@, flL).
q9 q9

Here I'y = o ... (fq ... oy} is the side of the simplex, fqu is the same map f but

restricted to the side (this is the side of a singular simplex which itself is a singular
simplex).

The singular cycle is a chain Cy, such that 9Cy = 0.

The singular boundary is a chain C}, such that C = 90Cy,;.

Singular homologies are groups H,,(M;'G) which consist, as before, of cycles
to an accuracy of boundaries,

It turns out that for manifolds (and for all simplicial complexes) singular
homology groups Hy(M; G) coincide with those which we introduced earlier (the
continual character of this definition is in a sense illusive since the number of
homology classes is the same as we had earlier).

This definition is convenient, for example, in the proof of invariance of
homology groups under homotopic equivalence and in the operations with functional
spaces.

But as far as direct calculations are concerned, all the preceding definitions are
inconvenient. We shall give another definition of homology groups (in terms of
cells).

Let M” be a manifold (or a more general simplicial complex).

A cell of dimension k is a continuous map of a disc f: D* — M", such that it is
a smooth regular (of rank k) embedding into the manifold of the interior of the disc
DF and is continuous up to the boundary.

The cell complex: A manifold will be called a cell complex if it is divided into a

k.
finite number of cells (generally, of different dimensions) f;: D ' — M" with the
following properties:
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a) each point of the manifold M" is an interior point of one (and only one) cell
of a certain dimension;
b) for any cell f: D¥ — M" the image of the boundary fl s,‘_,:S"‘1 — M gets

into the union of cells of dimensions smaller than k.
The union of all cells of dimensions smaller than k we shall call the cell

frame of dimension k — 1 and denote by K*! c M". We have K®c k! c Kic..
w CK?=M"

If we take K¥ and contract all K% to a single point (i.e. simply assume it to be
a single point), then we obtain a bouquet of spheres of dlmension ¢:

KK = ol Vel U...Uof

where /(g) is the number of cells of dimension ¢ and s, denotes the sphere S§

obtained for a g-dimensional cell by contracting its boundary to a point.
The cell chain is a formal linear combination which, as before, is giver} by

~ -— k. k < . .
“x =2 q; G;, where g; are cells of dimension .
[}

What is the boundary of a cell o7 (or of a chain)? By the definiton of cell
f: DY - M", its boundary f: S9! — M" gets, in fact, into a (g — 1)-dimensional cell
frame K%1:

£8$T1 o gL
Contracting the frame K% to a point, we obtain the map

-1 -1 fpg-2 _ g g1 1
§* — KTk = of V... Uof, .y

where each cell 5J~! has become a sphere SJ-}, and all the K91 /K*2 is a bouquet
of spheres (Figure 112) since the whole frame K%2 is assumed to be one point 8.

o
4
lm
4
4
{

]
)
Figure 112. = 2
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Let us define the quantity A, for a pair of cells 67 and 6Z1: A, is the degree of the
map f on the sphere $7! onto the summand &, of this bouquet o J~1 U ...
LU ef! | =kF1/K2

1 (g-1)
The boundary of the cell o7 is defined to be

9 _ 7-1
dg” = %‘, lao'u ,

‘where A is the degree of the map of the boundary $7! of the cell 67 onto the sphere
S9! obtained from the cell 53~ by contracting the frame K%-2 (and, for example, all
the other cells G‘[’,‘l for B # a) to a single point.

Sometimes A, may be expressed as
lu = [o% Gg-l]

and is called the incidence coefficient of the cell cg-l in the boundary of the cell 67,
Now, already for the boundary of any chain we have

- L —l - 5.’_1
aC, = ﬁ 4 Ay ;00

Ci = 3467, hyy = [0 0¥ 99C, = 0.

We now introduce the definition of cycles: 9Cy = 0, boundaries: Cy =0C},,
and homology groups Hy(M"™ G) referred to as cell groups. These homology
groups also coincide with those defined earlier.

Examples of cell complexes.

1. The sphere S”. For this sphere, the most economic cell division is as follows:

there exists one cell 6° of dimension 0, (the “vertex’’) and one cell ¢” of dimension #,

where 6" = §" - 6%. Here we have 96° =0, 36" = 0 (this is an obvious fact for all

n>1, Verfyitforn=1) '
From this we have

HyS" G) = G,
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H, (S G) = G,

Hy(S%G) = 0, k=0, n.

For G = R we obtain the same result as for differendal forms.

If we have a bouguet g of spheres S**! joined at one point, then there exists

one vertex o° and several cells 6.1, where 96,2*! = 0. The region obtained from

[R™*2 contracts to such a bougquet by discarding a set of points. We shall denote this
bouquet by K, ;*l (Figure 113). We have

HyK;*: @) = G,
H K 6) = G+G+..+G,

HK;";G) = 0, 10, n+ 1.

2. Cell division of the rorus and of the Klein bortle. The case of the torus is

depicted in Figure 114.

Here we have the following cells: o%, o}, 53, 62,
9¢® =da] =00l =0a% =0

forG =2
HO=Z, H1=Z®Z, H2=Z.
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Figure 115 shows the Klein bottle K2 The cells are: 0'?, crli, 0’%, 0’2,

3’ = 30} =80} =0, 36% = 20}

HyK%LZ) = Z, HyK% Z) = 0,

H(K%,Z) =Z+Z,

The projective plane [RP? (Figure 116). The cells are: a® o, % 9c” =0,

3.
1 ~ ~_"2 -1 - -~ —_
"T=0,00 =407, 10T =4

oo

Hy=2Z, Hy=Z5 H, = 0.

Gﬂ 5" E.’)
2 2 t =7
e’
7 2 -7
G', (=3 Sy c.,f c< G.fr 8 .Gr
«C -7 s’ o0 ! &7 G‘,q
o 3 % <z 2
Figure 115. Figure 116.

4. The orientable surface. We restrict our consideration to the case of a
cracknel (g = 2). Take an octagon (Figure 117). The cells here are o®, o}, 63, o,
3, 2. All the boundaries are equal to zero. ForG=27Z

H=2Z H=2@Z®Z®Z Hy=1Z

(the latter equality is indicative of surface orientability).

Figure 117.
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S. The projective space [RP". The cells are 0'0, 0’1, 01, e OO,
3” =0, ac! = 0, 9% = 26!, 36 =0,
3c* = 26°, .., 362! = 0, ™7 = 207!

(construct the cell division). For G=2Z

HO=Z,H]=22, H2=0,

Hj

I

N
v

x

n

0 if niseven (>0),
Z if nisodd.

6. The complex projective space CTP". The cells are a®, o ..., 0% all the
boundaries are zero. (Construct the cell division.) ForG=Z

H = = =M, =7 therest - = 0
0 = i1g iy, &£, tnerest r; = U.

For cell complexes with one vertex it is convenient to calculate the fundamental
group =; (2 manifold can always be divided into a cell complex with one vertex).

Namely, all the cells o are closed paths g, since the vertex is single. The set of
paths g,, yields the set of generatrices of the fundamental group ;.
The relation for the generatrices g, is obtained from the two-dimensional cells:

the boundary of each two-dimensional cell is a path homotopic to zero, and this is
just the' complete set of relations.

EXAMPLES.
1. RP%: thecellolisa generatrix a and the boundary of the cell 0'2, that is,
2
a‘=1.

2. The torus: the cells G}, o’% are generatrices a, b and the cell o yields the
relation aba b1 = 1 (or ab = ba).

3. The Klein bottle: the cells 0'11, 0'12 are generatrices a, b ; the cell o2 gives the
relation abab™! = 1 (or aba =b).

4. The cracknel: the cells 0'}, 6%, 0'%, c}, are generatrices g, b, c, d; the cell o*
gives the relation aba 17! cdc™! &1 = 1; we see that this group is noncommutative.

5. The figure-of-eight: here we have no two-dimensional cells; the group m; is

-~ (SISl 8 ) g wd) ¥ ase-ai22208°0 ULl

therefore free (has no relations).
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APPENDIX 5

THE THEORY OF GEODESICS, SECOND VARIATION
AND VARIATIONAL CALCULUS

We have introduced the Euler-Lagrange equations whose validity is the necessary
condition for the functional

f rs e

RN ap
J Az, z)arn 7Y

I.\

Z\{

'\
-1
]

to have, along a certain curve 7y, the minimum among all the curves beginning at a
point P and terminating at a point Q.
These equations were of the form

—-...(—--— ———_-' i= 1,...‘,",’

oz

and for any vector field ni(z) defined at points of the curve 1: Z= zi(t) the following
identity held

d e i . i
[ES(Y+En)]e=0 = [:i:ja L(z +€n, z +€n )dt]e::()'

where a£r<b and ni(a) = 'n"(b) = 0 (respectively at points P = Y(a) and @ =Y(b)).
Furthermore, we derived the equality

b

(-: L(z +en,z +en)dt) J.(- )+—-)ndr
UZ

for all n(#), where n(a) =n(d). How shall we find the condition under which the
curve {zi = z"(t)} actually gives the minimum if it satisfies the Euler-Lagrange
equation?

As is known, for the functions of many variables fix!, ..., X" the necessary
condition of (local) minimum is Bf/dx"lp =0,¢t=1,..,N, and the sufficient

condition is positiveness of the quadratic form S x’ dax' d).’ at the same point P.
ax' 2
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Therefore, to find the conditions of minimum for S(y), in the case where ¥
satisfies the Euler-Lagrange equations, we should necessarily calculate the bilinear
form (s=cond variation), analogous to the second differential, namely

whera 1 = (), ﬁ =7 () are vector fields on the curve ) and vanishing at the end-
points (@) = P and y(b) = Q.

PROPOSITION {. Ify= (40) sarisfies the Euler-Lagrange equations, the
Jollowing formula kolds

1 s (Y+A7 () + 1 n(t)] I s ﬂ’ )n dt = C (n. )8
al.‘}i A=0
p=0
where
i od o L L = FL
jt' TT’ = '&"( + T") - - .

J T a7 &' ad a7 Bz'j o a7

The proof is za.ried out by direct calculation proceeding from the formula

[373’7' +AT + ,.['F]
Mg 0
p=0

[—— [——-(Y+ M) ), =

j[— (—)+-—] ],

where L=L (z + AT}, z4 7«.7:'] ).

Now we shall turn to the case where the Euler-Lagrange equations coincide
with the equation for geodesics. It is convenient here to choose the action

b . -
S = -L gyi'¥ dr,
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rather than the length

b ..
=] (g;2'# ).

The length [ and the action $ have identical extremals (from the geometric point of
view), but the action S is more convenient for analysis.

In the two-dimensional case, in a special system of coordinates (x, y), x = 2,
y = 22, near the geodesic ¥(z), such that the line x =1, y = 0 is the geodesic Y(¢) itself,

the bilinear form Gy(ﬁ, 7) is given by

¢ A% =- (—n +K0) ) R.ar,
a dt
where K is the Gaussian curvature. Note that 8ii 1) = for 2= ¥s 7l=1, 7 2= 0,

and therefore M, = g,.j'q' =R
The minimality condition for the geodesic Y(r) suggests that the quadratic form
G_{ (M, M) be positive for all the vector fields T vanishing at the end-points (P and Q)

of the geodesic.

This implies the coroliary. On a sufficiently small interval, geodesics (among
all the smooth curves joining the same points) yield the minimum of the action
functional S(y) and therefore also of the length functional.

In a region Q of a space [R", or of a manifold M", we often have to consider an
extremum of the following form. _

Suppose we are given a class of smooth or piecewise smooth curves (e.g. the
class of curves joining two points P and Q) and a function L(x, £), where x is a point
of a manifold and £ is an arbitrary tangent vector at this point. The function L(x, £)

wr ‘l ha ~rallad a ST agrmnoian? Wa chall avamina o nn e An whara n € ¢ & h ench
YYill WU balivid a uas&ﬂlls&ajl . Y¥ W olldll VAQUILLIIV A Paul '\‘)’ YWilwivw b = 8 = Uy OUVIL

that y(a) = P and y(b) = Q, and the integral (the “action”) S(y) = f Ly @), () dt.

The question is, on which curve 7y of the given class there exists the minimum
(the extremum) of the functional S(y). For simplicity we assume that a
neighbourhood of the curve is coordinatized by local coordinates (xl, .., X" and, in
fact, the curve lies in a region of the space [R”. Then the functional of the action S(Y)
has the form

S = J: L ('@, ..., (), x"1@), .., X (D) dt.
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EXAMPLES.
1. S(y) is the length of a curve ¥ in the Riemannian metric on a manifold,

L(x, x)=(g; i),
b -
2. s =]" @ an, L=(i, ).
a
3. A function (a “potential”) U(x) is defined and L = (£, X } + U(x).
4, A differential form A, dx™ is defined and L=(x", X ) + A,X,. Then the

form 0 =A_ dx™ is called vector-potential.

If r(z) is a vector field, defined at points of a curve ¥{t), such that r(a) = r(b) =
0, then the following formula holds

b
aS(y+er d sd dL
o€ a ox ox™
Tn nortianlas (€aric tha awteaaiios fmemtha malnlacio) fae Ofad  chan aS(Y+ Ef)| N
11l partcCuidar, 1 Y is uiC SXuemium (O N Milnimuin) 101 oY), uicil __Il-‘.—O =v
ot =

for all of the fields r(z) which are equal at the end-points. We arrive at the
Euler-Lagrange equations for extreme curves Y*(¢) = x°(f), a £t < b (the necessary
condition for the minimum):

d (aL ) _d
agm™ e
According to the standard terminology

x® is velocity, EL— =P_is momentum (covector), i =f isforce, x “EL_—— L=FEis
ax® ¢ oaix* ¢ ax*

energy.

The sufficient condition for the extreme curve Y(f) to yield the minimum of the
functional S(y) among all close to its curves of the same class (i.e. among all curves
joining the same points P and Q) is given by the second variation:

2 —_ = b L. .
6. F) = LT [ghE P,
dedp =0 Jg
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(aL 5, L ;,)_321. 5 _ 0L

JVF = 2 : - el
P APy o’  afar

thesecond variation G(F,r ) being analogous to the second differential df of ordinary
functions. The sufficient condition for.the minimum follows the positiveness of the

second variation G(r , ) > O for any fields 7 (¢) formed at the 0 at the ends. We shall

not go on investigating in detail the theory of the second variation, but examine more

thoroughly the structure of the original Euler-Lagrange equations. It is relevant here

to make the following remark. We can state various variational problems. We shall
present the simplest ones.

EXERCISE 1 (thc end-points are fixed). __Find the extrema (the minima) of the
functional S(Y) = I L dt among all the piecewise smooth curves joining the points P

and Q on a complete manifold (e.g. on a closed on).

EXERCISE 2 (periodic). Find the extrema (the local minima) of the functional
S) =J' L dt among all the cyclic pathsy: §! — M™.
Y

The simplest functional is, for instance, the length of a curve y. Let the
manifold M" be closed.

In Exercise 1 we have: there is the Same numbér of homotopy classes of the
paths joining the points P and Q as there are elements of the group ®,(M"). In each
homotopy class of the paths there exists at least one (local) minimum of the length
functional on a complete (e.g. closed) Riemannian mamfold Besides minima, there
may be other extrema of the length finctional, which are also geodesics from the
point P to the point 0. _ )

In Exercise 2 we have: there are as many homotopy c¢lsses of the cyclic paths
as there are classes of conjugate elements in the group n;(M"). In each homotopy
class there exists the minimum of length, i.¢. a closed geodesic. Other extrema are
also possible, which are also closd geodesics.

It has been proved above that the extremal of the length functional

L= (g;x%) 2 coincides with that of the action functional L= g;x''%/ if we

introduce the natural parameter on the curve. These extremals coincide with the
geodesics of a single symmeitric connection compatible with the metric:
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o

dr2

+T5izi = 0.
i

Let wus also pay attention to the functional from Example 4,
L=gy X%+ A X, where Ay dx™ is the differential form (the vector-potential)).

The action functional of such a form describes the motion of particles (e.g. charged
particles) in the special (Minkowski g;-metric) and general theories of relativity. In

this case, the momentum p, = gi‘,,x"'and the Euler-Lagrange equation has the form
(verify it!)

i7u= u[ix.p'
where
o n®
Fuﬂ = =L

LFipadd = Q = do.

Thus, the forces f= dL/dx are expressed in terms of the 2-form dw = Q = (Fup)
which is called the field tensor.

EXAMPLE 5. If the metric of a three-dimensional space is Euclidean, g;; = §;; and if
Ux x,x) = T
motion of a point in a field of forces with potential U(x) = ¢/firl, r* = p (2. This

then we are dealing with the probiem from mechanics on the

results from Kepler's problem on the planet motion in the gravitational field of the
Sun (where c is always positive) as well as from the charge motion by the Coulomb
law (where ¢ may be either positive or negative). Let us pay attention to the
following fact: if L = alx’ P+ BAtrl, then there exists the similarity (homothetic)
transformation

X = Ax, t = M.

Then L A1 Lif23 = ',52, where A and It are constant numbers. However, the

AW i P LS L8 wive al

transformation L — const. » L does not alter the Euler-Lagrange equations. From
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this, we can draw a conclusion that the homothetic transformations x — Aix,
t = A3t carry integral trajectories into trajectories. This is called the “Kepler law”.
(The ratio of cubes of the linear sizes of planet orbits is equal to the ratio of squares
of the time sizes since the function x>/ remains unaltered under homothetic
transformations sending an orbit into an orbit.)

What transformations can be made on the Lagrangian without changing the
Euler-Lagrange equations? There are two types of such transformations:

a) L(x,&) — const +L(x,§) = L'(x, &),

Bf(x)

L& — LixE)+ =L"(x,&).

The Lagrangians L'(x, £) and L"(x, £) are equivalent 10 the original one.

Suppose that the Lagrangian is invariant under some transformation group of
coordinates x (the vector £ transforms as a tangent vector or a tensor of type (1, 0)). -
The precise meaning of this assumption is that the transformations of this group send
the Lagrangian L either exactly into itself or into an equivalent Lagrangian.

For example, suppose this group is one-parameter and preserves the

Lagrangian x(t) = S,(x) or x*(z) = S *(x!, ... , x™),
Se®) = S(sx)) = Se(s,(x))

and
S () = §,7x).

Consider a vector field

(PO _ o o (5D
3 =0 T A%(x) \—dt—),-o, A = (A%,

The total derivative of the Lagrangian L(x, &) along the vector field A has the
form

[ﬁ = A% EL_ BL gp a
x> P E®

Obviously,
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4 _ a4t A dE

dt _axa dt  jpe @

if we have a small ransformation S,,, then

"
l
%
+
sbn
£
2
N

& (yl My
)y

[ 4 A'\n

as% (x) [ JA®
@y B35 + (A} EP,
d g i“ﬂ " g

which implies the unknown formula for dL/td along the field A™.
The condition dL/dt = 0 means that the Lagrangian is preserved under this
group of transformations

ddA*
A% +
ax® o

aL
e @

We now retum to the Euler-Lagrange equation P e fa, where

p:;aé_'fzi, §a=x.u.

s Fe e o

Obviously, we have

al \*  0A% -5 o /AN
(Au’aio.). = axﬂxﬁafu-*-Aa(aia).

- L] & N
Since along the extremals we have (%) =p, =/ = EYCy it follows that

: : AL e dl
(Aa%) - WY =A== 0

if the vector field A* preserves the Lagrangian (i.e. dL/0t is equal to zero along the
vector field A™).
We can finally formulate
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THEOREM 1. If a one-parameter transformation group S,(x) = x(t) preserves the

Lagrangian L(x, £), i.e. % = 0 and the vector fleld A%(x) = [df’(t) ]

this one-parameter group, then the “momentum conservation law” holds

determines

@A) = (P A =

S‘
§

of the Euler-Lagrange equations (i.e. the component of momentum along

[ e A1

In principle, one vector field can always be (locally) regarded as a coordinate
on which (under the conditions of the theorem) the Lagrangian does not depend: if
x=x! ., E=EL L BN L=LGE ., X EL L., E™), then we have

(___) =- E% =0 E*=1x%, p, = const.

So long as the Lagrangian L(x, &) does not depend explicitly on time, the energy

conservation law holds (verify it!):

& _d (:f aL
T dr

.
7 —5-L) = G, -D) =

What other conservation laws do we know? For example, for the Lagrangian

12612+ U(r) = L(x,X) in a Euclidean space (say,in a three-dimensional one),

3
where r’ = h (xa)z, the transformation under which the Lagrangian is preserved
a=1

contains all rotations from SO; since U = U(r). For geodesics on the sphere 2, the
group under which the Lagrangian L =( X, X ) is preserved also contains SO, for the
Lobachevskian plane the group of motions contains SO, ; = SL(2, R)/£ 1, which is
known from the structure of the groups of motion.

Let, for example, the group be SO;. Here we have three distinct one-parameter
groups:

1) rotations around the z-axis by an angle ¢; — the group S:i),

2) rotation around the y-axis — the group S&’,

3) rotation around the x-axis — the group Sg ),
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Correspondingly, we have three vector fields X; = (X)), X, = (X3), X3 = X3).

We can always choose a coordinate system (for, example, cylindrical or spherical),
such that the angle of rotation around one axis (say, the z-axis) be the coordinate not
entering in the Lagrangian: dL/d¢, = 0. Is it possible to choose two angles ¢, ¢,

as coordinates where —a-L- = i = (3?7 From the theorem we know the laws of
a¢l 3¢2
conservation

XTpP) =0, X¥py) =0, X3py) =0

for all the three rotational groups (z-, x~, y-axes). It turns out, however, that due to
noncommutativity of the group SOj the angles ¢, and ¢ are incompatible in the
framework of one coordinate system. What is the reason for that?

For any field A, the “differentiation with respect to direction” is defined to be

daf(s
vi-a L[,
L =0

ox”

where S, is a one-parameter group generated by the vector field A. The differental

equation x * = A*(x) describes the motion of the points x*(r). It is conveneint to trace
out the motion of the functions f,(x) = {x(s)): for the functions f,(x) = f(x(z)) we
have the equation

d _ o .q

E=§X- =VAf'

We shall denote the operator V4 (which acts on the functions) by A. The equation
dffdt = A(f), where f,_q = fp(x), is readily solvable:

Fx@) = fx) = M),

2 n
At A" 2 A n
e =(1+Az+—2Tt +'"+T!'l +)

This is the operator on functions, i.e. the operator of translations along trajectories of
the vector fields A*. Indeed, we have

df (x) _d _ a

A
—— = =GN = Ale 00 } = AFR)).
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This is not surprising since for the simplest coordinate vector field e; = A (say, ona
straight line with coordinates x = x') the operator
d

A=E-

and

Al Az
e (Hh= (1+At+—t +. )ﬂx)

21
a &f r
"'"_2 asn _'

=f+te—+ .l_ g"_+
& 2 g ax”

This, obviously, the Taylor series for the quantity

fix+1 = (),

at least for all analytic functions.
Thus, the one-parameter group S; on the functions f{x) acts as & Suppose

we are given two vector fields (A*) and (B*), and the operators V4, =A and Vz=B.

? { e
We have two one-parameter groups € ¢ and ¥ (“translations™). In what case can the

fields (A%), (B*) be simultaneously included in the coordinate system where e; = (A)
and e; = (B)? Obviously, the translation along the axes x! and x? must commute:

e P = B ', This is, obviously, not the case for rotations around z- and y- axes.

It is necessary that the operations V4 and Vp commute, ie. that the theorem on
2

mixed derivatives ?zf 5= 3}' : for any function f{x) holds.
ox ox~ ox ox
Let us consider the commutator [V, Vz]. We have (calculate it)

oB“® BA“
VaVp=VaVf = VA A
(VaVp = VpVo)f o ¢, E(YBx" ax_{)

The vector field C is called the comrmutator (the Poisson bracket) of the fields A and
B. The following properties are obvious.

(Vi Vgl = —[Vs V4l

[VA: [VB: VC]] + [VC’[VA: VB]] + [VB![va VA]] = 0.
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The set of all vector fields is said to form a Lie algebra with respect to the operation

[vo w1

EXAMPLE. Rotation around the z-axis: the field X; = (X}, X3, X3); X1 = y,

X2 =rx, X? =0 or Vi =x 'E% -y ga; Similarly, making a permutation we obtain
1

the fields X, (rotation around the y-axis) and X3 (rotation around the x-axis). Verify

the formulae:

Xo, Xp] = X, a=B=Y.

We can see that there arises here a three-dimensional sub-algebra of the Lie algebra of
all vector fields (the same as the vector product). In this Lie algebra, for the group
SO we cannot choose a pair of commuting fields.

The situation is similar with the group SO, ; (for example, in the Lagrangian
for geodesics of a Lobachevskian plane). The reader can calculate the Lie algebra of
this group himself.

c . . .
This situation is more interesting for L=1E?+ 1 in a three-dimensional

space. Here in fact for all energy levels E <0 the L-preserving group appears to be
larger — not SO,, but SO,. But it is not so easy to find this group, and it does not

act in the space x3, x,, X3.
For the variational problem with a Lagrangian L(x, £) we have introduced the

energy E = §°‘-2L——L and the momentumP = —— Now we shall give some
aé" a agu
definitions.
1. A variational problem (a Lagrangian) is called positive definite if the

L
oE™ oEP
.. . . dL
2. A Lagrangian is called non-degenerate if the equation p = gﬁ- (x, £) has for

quadratic form g2 EB is positive for all (x, E).

any x a unique solution with respect to &: £* =E*(p, x).

3. Theenergy E=E® i - L of a non-degenerate Lagrangian L(x, £) is called
o>

a Hamiltonian, H(p, x), if it is expressed in terms of the variables (p, x).
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oH
Obviously, we have L =p® —— —H, and the action for the curve x(z), p(¢) is
op*
given by

b
aH
S = f (p"a—u ~H) dt.
a P

It can be verified through a direct calculation that the Euler-Lagrange equations
acquire in terms of the new variables the form

jo_ 9H
ap®
PO @
ox*

These are called the Hamilton equations.
The functional acquires the form

b b
S@) = L(pui“—H) dt = L(pudx”‘—Hdt ).

It is readily seen that the Euler-Lagrange equations for this functional in the space
(x, p), where x is a point and p is the covector at this point, are of the form (1), p,,

and x* being thought of as independent coordinates.
Let us examine the differential form

Q= -3 deAdp =d(f:p ).
a=1 « a=1 *

This form determines a non-degenerate skew-symmetric scalar product

/ N\
01 0

-10
8ij = -01
-10

. ° )

in coordinates (x, p) which we shall denote by yl, e yz", where y""1 =f, yz' =p;
The following lemma holds.
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LEMMA 1. The Hamilion equarions (1) have the form

or, in other words, the vector field O ;) has the form of the gradient (as the vector) of

the Junction H(y) in a skew-Symmetric metric defined by the form Q.

The proof consists in a direct comparison with formulae (1).
The conservation law is given by

_ y9= gpqu—iaIi-(dH dH).
ayq

Since the scalar product is skew-symmcuic, it follows that (dH, dH) = 0.
The derivative of any function f(y) has the form

Fa' L E - aram,
v

LEMMA 2. Theform Q = de Ad® = E dy ‘Ady? s preserved by virtue
of the differential equations (1): =1

Q=0

roof. To calculate the derivative of the form along the vector field (1), we shall
ake use of the fnllnwmcr facts

@ AQ) =0 AL+QAQ,

o%H
&™) =d = B dp .
@) ( ) IB + E)pmapB pB
( ) B azH
@) =-d =- - :
Bx oxP Bxaapq dp"

Therefore, wnnhtmn(yrln Adxm ;Y[dh ,A_dx”‘.l.dp A ( Yu\‘};osiqce

W W el

the outer product is skew-symmetric, as required.
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A space (x, p) with form Q we shall call a simplectic space (it has a
skew-symmetric non-degenerate scalar product given by a form Q such that dQ = 0).
For any two functions f{(x, p) and g(x, p) their commutator is

gl =(dfdg) = &7 2L FE
3 o’

01
where y#! = ¥, y% = p!, 8ge=1-10 . Obviously, we have

\.2l = -[gA
We can easily verify that the Jacobi identity holds

[fv [g! h]] + [h, [f» g]] + [g’ [hrf]] =

This means that the functions f{x, p) form the Lie algebra with respect to the

.................. MNien a £ 21e qua ..nn Lnura tha £ovmeme
Luuuuumuuu UPCI nuuu l,_l vn ulC xuubuuua, ulc rld.u.ml.uu Cl.l UOUID 11ave uiv 1utill
f=1[H,f], where
oH oH
b e 3 bl + 3
x =—[x°‘,H]=-—a, p =[H,Pa]=--—a—
op ox

and H(x, p) is the Hamiltonian. The quantity fix, p) is therefore said to be the
integral of motion if it commutes with the energy H(x, p).
The following theorem holds

THEOREM 2. Given an arbitrary one-parameter group S(y) of transformations of a

phase space y = (x, p) with the scalar product Q p dpy A dx™, the condition of

preservation of the scalar product of this group, Q =0, is equal to the condition that
(locally) the vector field

as
[ 0’) q, g =1..,

has the Hamiltonian form (1).
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Proof. The fact that equation (1) preserves the scalar product Q is proved in Lemma
2. We shall now prove the inverse statement. Suppose we are given a vector field
A7 or an operator

S A19 T (y2 9 A=
A Aayq (4 =+ )

Suppose also that the equality Q = 0 (along the field A) or A(Q) = 0 holds.
The vector field gives the equation

L A?.uu-l p- = AZOL
2 o .
By definition we have

(&™) = dA®, (dp,)" = dA™,

n
=0 =Y [(dp) Adc™+dp, A (dx™)'] =

o=1

= Y, [dA® A dx™ +dp, A dA®]

o=1
n 2a a
=3 (aA 2t A+ 94 dpT A dx™ +
o=1 oxY ap?
_ 21 Yt SN
+dp A dx¥ + dp® A dpY)
¢ o ap?

whence we obtain

dA _ - _

ax*  a® ' 9 9, at o

o

This is equivalent to the fact that the form

w = DA% gp, A% dx™

was closed: dw=0. We should find (locally) a function H(x, p) such that
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P —%f:orw:dH. Qbviously, from commutativity of the

mixed derivatives it follows that the above conditions are at least the necessary ones.
Locally, they are also the sufficient ones: w =dH(x, p), and the result follows.

Let us consider the form 2. p,, dx* = ® and the form b=f, d™+g*dp, = 2
Po, dx™) = X [p o, d™ + p (dx™)']. Since d(6 = (dw)" =Q =0, iz follows that & is

a closed form. That the form is closed 1mnhe< that locally @ = dF, where Fis a

Lhalal L LLPL013 1> LUl 1T 2 Qlal Idally

function. It can be easily verified that this function has the form

oH
F(x,p) = H- a-a—p:

(this is L expressed in terms of x and p). Upon a time shift by a small quantity Az we

shall have S,(©@) = @ + Ar &; where & = dL. From this it follows that
* [ _af oH . ®
S1@) -0 = [ddt = djo (H-pip—) dt = djo(pudx —H dv).

Thus, Hamiltonian systems determine one-parameter groups S, in phase space

(x, p), which preserve the skew-symmetric “metric” Q (and inversely) if the
Hamiltonian does not depend on time.

Canonical transformations

DEFINITION 1. A smooth transformation of a phase space, which preserves the
2-form Q is called a canonical transformation.

Ry virria af whaot hace haan caid nbhe T2 e Tamiltanian ICtarmac
U-Y YiltUw Ul wllal. 11ao WLl Dalu a.uUVC, d.ul.UuUulUua llal umiwviiiall D]chll]a

determine one-parameter groups of canonical transformations. Non-autonomous
Hamiltonian systems determine one-parameter families of canonical transformations
which do not form a group.

We shall consider an arbitrary transformation F: (p;, &) - @', ¢%), where

Pi=f2. 0 ¢ =g@g. i=1.,n @)

A function S(p', ) = S(p';, ... . Do g, ..., @) is said to be the gnenerating function
for the transformation F provided that the following equalities hold
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p. = oS i _ oS
i 3¢ g 9p; @)
The following theorem holds

THEOREM 3. If the system of equations (3) is non-degenerate and uniquely

(locaily) soluble in a neighbourhood of a cerzain point and if the transformation F
determined by this function possesses a generating function S, then this
transformation is (locally) canonical.

Proof. We have to prove the equality Q' = dp} A dq'i =Q=dp;A dq‘l. From (3) we
have

. 9? . - .
a=dE)ndf = 25 sinaf+ 25 dp; Adg' =
aq’ 3¢ o dq' op’
2 .
= as dp; Adq',
dq dp'j i
. . s i j C
(the first summand is zero since the summand ——— dg' A d¢/ depends on i and j
dg' 8¢
in a skew-symmetric way), and therefore
Q' = dp! Ad(ag) .98 dp A dp. + &’s dp: Adg' = Q
gy = A g

This completes the proof of the theorem.

EXAMPLE. A class (although not a whole) of a linear canonical transformation is
determined by a generating function S(p', ¢) of the form

S = aj-p';qi+ 172 (b'.jp'.'P}"*'C.'jqiqi)-

In the case where det (a‘;-) # 0, formulae (3) define the transformation pi(p, q),
q%(p, q) well.
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REMARK. The generating function S can be taken in a more general form. For
example, let the set of indices (1, 2, ..., n) be divided into two non-intersecting
subsets M UN=(1, 2, ..., n), M AN =. Consider a function of the form

S@um- aN: Gu-PN)

and a map p'(p, ). 4'(p. q):

n:=§._ ai=—-as__ n_:-as'__ g":ﬁ. ()
-7y ¥ 1 o 9p;

where ie M,je N.
EXERCISE. Prove that (5) determines a canonical transformation.

It should be noted that the . integrals of the Hamiltonian system
fGx.p) = [H,fl = 0 form the comesponding Lie algebra since we have

[f.gl={f.g1+1f.g'1=0 provided that f =0and ¢ =0. Of interest in particular
cases are finite-dimensional Lie algebras with respect to integrals. For
example, suppose in a three-dimensional space

IE} P 2
L(x, k) = —+— , where (%) )

This is a spherically symmetric case (here, obviously, we have the symmetry group
SO3), and therefore there exist three “angular momentum” integrals

M, =—r29 sin ¢ + ¢ sin 9 cos 0 cos ¢)

M, r2(é cos ¢ —c.b sin @ cos 8 sin ¢),

M; = Psin®6 - ).

It tums out that in this problem there exists another integral

i
ax

W‘- = [p,M]‘.'l'T
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which, together with M,, M,, M, givesrise to a corresponding finite-dimensional
Lie algebra depending on the energy level E. What is this Lie algebra for the energy
levels E<0,E=0and E>0?

We shall make another remark. The Lagrange submanifold M” < (x, p) in the
phase space (x, p) is such that the form QIMH on tangent vectors to M” is equal to
zero. We shall make the following statement (reader may verify it).

A. If such a manifold is projected regularly, without degeneracies onto the

95(x)

x-space along p, then it has the form of the graph p, = » S(x) = IPQ Do dX™,
0

where Py is a fixed point on M”, @ is any point on the manifold M" with
the coordinate x, p(x), and the integration path lies also on the manifold M™
d(p, dx™) =0.

B. For any Hamiltonian system with Hamiltonian H(x, p) the property
Q(M™()) =0 is preserved under the motion of the manifold M™(¢). For the function
S(x, #) we obtain the Hamilton-Jacobi equation (prove it):

oS oS
_? = H(x, a.),

as as
H = H(x, —) wherep = —(x).
o Y

In concluding this appendix, we shall consider Fermat (or Maupertuis) type
principles. As far back as the XVII century Fermat hypothesized that the path taken
by a light ray between any two points is always the shortest, and the time needed for
that is correspondingly the least. The speed of light in 2 medium depends generally
on the properties of the medium which change from point to point. Suppose, for
example, there is a boundary between two homogeneous media where the speed of
light is ¢; and ¢,. The Fermat principle implies (this may be verified) the law of light
refraction on the boundary between these two media (on the interface). Suppose that
the medium is isotropic. Then the trajectories of light rays are given by a
Hamiltonian in a space (x, p) with a Hamiltonian of the form H = c(x) Ipl, where H
has the meaning of the light frequency, c is the velocity at a point x and p is the wave
vector:



442 APPENDIX 5

Consider the expression § = J Py dx™ — H dr; we know that the variation 8(S) is

equal to zero along extremals. We shall consider only those variations under which
a) the energy E = H does not change,
b) the time interval does not change,
c) the beginning and the end of the path do not change.
By virtue of the law of conservation of energy, under such variations we have

55 = a[jf pudx"‘-j:Edt] = Sprudr"’

Therefore, we can seek the trajectories (for the given energy H = E) from the
Q

variational principle Sy = 0, where S = J-P Do dX. In doing so, we shall be able to

find only the trajectories y of motion, but not the velocity, since this variational

principle does not depend on parametrization; to define this variational principle well,
i.e. to eliminate dr using the relation H = E, we should express the moments p,, in

terms of x* and dx™.

dx(! p(!
EXAMPLE 1. H = c(x) Ipl = E (Fermat). Since - = —c(x) and ¢(x) Ipl =
ldcl -
we have dt =—c—orlx I =c(x) and
a pldx* E 21 E
= —— = csme — —l l.
Zpadx Y, — dx® 2ld.:tl - Cdx
Whence
Sp = . c(x) =FE I dt.

The minimum condition for Sy is equivalent, for a constant E, to the minimum

condition for the time T = J‘—-—- since E = const.

EXAMPLE 2. L(x, x)-leg,J 22— UG) or

=172 g"‘p,-pk+U(x) = E = const.
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, . ax®
Let us calculate the expression % P, dx*. Since Py=8y
P
H=1/2g, dx dx +U(x) = E
2
dar
we have
g dx’ ax* 12 AL
= (2 " a _ _ e .

Therefore, we are finally led to the conclusion that in the field of force with
potential U(x) and a constant energy E, the trajectories of motion of a point are
geodesics with respect to the new metric

gy = 2AE-Ugy

since
Q o AR
aso=5_|' p dx“=5J' QE-vg. & &) .
pC P Y

This is the Maupertuis principle. Even if g;; = 8H

i the new metric is already not
Euclidean.
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APPENDIX 6

BASIC GEOMETRIC PROPERTIES OF THE
LOBACHEVSKIAN PLANE

It turns out that some essential properties of the Lobachevskian plane can be
illustratively modelled on the surface of a three-dimensional space, called the Beltrami

surface.

We shall consider on a plane (x, y) a smooth curve I" characterized by the
property that the length of the tangent line segment between the point of tangency to a°
curve and the point at which this tangent line intersects the x-axis is constant and
equals a (Figure 118).

Ap 148 =g =const

8 z

Figure 118. &

We assume the curve to be positioned in the first quadrant of the plane. When the
point A slides along the curve ¥, the point B slides along the x-axis, and the segment
AB has a constant length equal to a. The curve Ycan be obtained mechanically. To
this end we should tie together the points A and B by an inelastic thread of length q,
and on placing A and B in the initial positions Agand By (Figure 118) begin moving
the point B along the x-axis. The point A will then draw a certain curve tangent to the
y-axis at the point A; and having the x-axis as the asymptote. We shall now find the
differential equations for the curve . From the triangle ABx (Figure 118) we have
tan ¢ =—y,, where y = y(x) is the graph of the curve yand a sin ¢ =y. From this

we obtain

’ 2 122
sing = Yz 5 or x' =_E_—_Zi)—.
(1+(v,’,))“2 g M

where x = x(y) is the graph of y. Therefore,
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. 2 21p
_ 1 2 212, _ .2 212 @ M
S e =

Thus, we have derived the explicit expression for the curve x = x(y). We shall
consider the surface of revolution formed by rotation of the curve y about the
horizontal x-axis. We obtain a surface V? referred to as the Beltrami surface or
pseudo-sphere (Figure 119). Let us find the Gaussian curvature of the Beltrami
surface. To this end we have to calculate the surface of revolution.

Figure 119.

In a three-dimensional space (x, y, z) we shall consider a surface of revolution
M? formed by rotation about the x-axis of a certain smooth curve x = x(y) (which we
shall call generating) positioned in the (x, y)-plane. On the surface of revolution
there arises a natural coordinate net formed by parallels and meridians of the surface.
This net has the property that at each point of the surface the coordinate lines intersect
at a right angle (Figure 120). Prove the following

Figure 120.

LEMMA 1. At each point of a surface of revolution the principal directions, i.e. the
directions corresponding to the principal curvatures A and A,, can always be taken
as coincident with the directions of the meridian and the parallel passing through this
point.

Using in the lemma the words “can always be assumed” we meant the
following. Recall that wnen the principal curvatures are distinct, the principal
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directions are uniquely defined. In this case they coincide with the directions of the
parallel and meridian. If the principal curvatures coincide, then any direction tangent
to the surface is principal. In particular, the mutually orthogonal directions of the
meridian and paralle] are also principal.

Proof of Lemma 1. Recall that principal directions are those and only those mutually
orthogonal unit vectors relative to which the matrices of the first and second quadratic
forms come as diagonal. The definition of the surface of revolution implies that the
first quadratic form is orthogonal in the coordinate system generated by meridians
and parallels (as coordinate lines). In the same coordinate system, the second form is
automatically diagonal. We shall consider cylindrical coordinates (R, ¢, x) in a

space, where the generatrix of the surface of revolution is given by the equation
R = R(x). Therefore, the radius-vector of the surface of revolution is

r = r(x,$) = (x, R(x) cos ¢, R(x) sin ¢)

(Figure 121). Differentiation yields rg =0, -R. sin ¢, R, cos ¢).

Z
=,
§
Y
pe ¢
Figure 121. gr 7

The normal to the surface of revolution is given by
(0, - R sin ¢, R’ cos ¢)

(+@®)"

n

This implies that the normal n and the vector ry, are orthogonal. This just means that

the second quadratic form is diagonal in the basis indicated above, which completes
the proof of the lemma.

LEMMA 2. The Gaussian curvature K of the surface of revolution formed by
rotation of a curve R = R(x) about the x-axis has the form.



GEOMLETRIC PROPERTIES OF THE LOBACHEVSKIAN PLANE 447

R"|

Xl = —_—
R(1+®Y)

The proof of the lemma is obtained by a direct calculation carried out on the
of

T
Lemrna 1.

Adaaiis

.
basis

CLAIM 1. The Beltrami surface is a manifold of a constant negative curvature ina
three-dimensional space.

Proof. Since the Beltrami surface is a surface of revolution, we can use the formula
from Lemma 2 to calculate the Gaussian curvatures. Here the function y = R = R(x)
is the inverse of the function

(a+(a _yz)/z)

2 12
a-(@ -y

2.1
x = x0) == @- )"+ 2
2
R (a2 _ Rz)m
Substituting this expression into the formula for the Gaussian curvature, we finally
come to

1
As shown above, xy ‘= - ; (a2 - yz)m, and therefore x" =

Rll - xllx L] - 1
K= i = — = const
RO+@®?) RO+ a
The minus sign is a result of the fact that the curve R = R(x) is convex down, and
therefore the principal curvatures A; and A, have opposite signs with respect to any

direction at the point. Hence, K=~ 1/a , and the result follows.

Thus in a three-dimensional space there exist three remarkable surfaces of
constant curvature.

1. A manifold of constant zero Gaussian curvature is a Euclidean plane. More
generally, we may consider a cone formed by a family of straight lines coming froma
single fixed point (the point may be either in a finite part of the space or at infinity)
and sliding along an arbitrary smooth plane curve in space. If the cone vertex is at
infinity, the surface is a cylinder.

2. A manifold of constant positive curvature is a standard sphere. As
distinguished from surfaces of type (a), the sphere is a closed manifold.
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3. A manifold of constant negative curvature is a Beltrami surface. It has a
boundary — a circle with radius a and centre at the origin. It can be shown (but we
shall not do this here) that a Beltrami surface cannot be continued outside this circle
without violation of the condition that K =— 1/a <0. A Beltrami surface is usually
completed by adding a surface symmetric to the initial one relative to the (y, z)-plane
(Figure 122). The surface obtained has a circle at the points of which the surface is
not a smooth submanifold in a three-dimensional space. It turns out that the Beltrami
surface is closely connected with the Lobachevskian plane.

I

—

Figure 122, \\,/‘_

CLAIM 2. A Riemannian metric induced on a Beltrami surface by an envelope
Euclidean metric is a Lobachevskian metric,

Proof. We shall introduce in our sphere the cylindrical coordinates (x, R , ¢), where
x=x,y=Rcos ¢, z=Rsin ¢, ie. the x-axis is the axis of rotation. The metric
induced on the surface formed by rotation about the x-axis of the curve x = x(R) has,
obviously, the form

=2
-

ds® = (dx(R))? +dR® + R*d¢® = (1 + ()% dR® + R? d¢’.

[

In our case we have x’' =— llR(a2 - Rz)l/2 (see above).
2 .52

Consequently, d.92 =2 + R2 d¢2_ We shall consider the following change

R
of variables: u = ¢/a, v=1/R. Then the metric transforms like this:
22 2 2,2
ds2 _ a: (dv2)+a—2du2= a (du 2+dv2)'

14 v v
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which implies our assertion since we have come to the standard notation of the
Lobachevskian metric in realization of the upper half-plane.

Thus, the Beltrami surface_is locally isometric to the Lobachevskian plane.
This means that we have constructed an isometric embedding (i.e. a metric-
preserving embedding) of a certain region on a Lobachevskian plane into a

al.— - B _. P e caa? —ameet Ll T PRt RpEpip L. Jue

three-dimensional Euclidean space. Which particular part of the Lobachevskian plane
admits such an isometric embedding? We shall preliminarily notice that the whole of
the Beltrami surface (now we are concerned only with that part of it which is depicted
in Figure 119) is not isometric to any piece of the Lobachevskian plane. Indeed, the
Beltrami surface is homeomorphic to a disc with a punctured point (i.e. to a ring). If
this ring were homeomorphic (with preservation of the metric) to a certain region on a
Lobachevskian plane, then an infinitely remote point of a Beltrami funnel should be
mapped into a certain finite point of a Lobachevskian plane (Figure 123).

Figure 123.

But this would contradict the fact that an infinitely remote part of a Beltrami funnel is
separated by an infinite distance from the funnel neck; i.e. from a singular circle of
radius a.

It is convenient to cut a Beltrami funnel along any of its generatrices (Figure
124). As a result, we obtain a surface which adimits an isometric embedding into a
Lobachevskian plane, in the form of a certain region.

Figure 124. :.5
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Indeed such a region in a Lobachevskian plane (we are working, for convenience,
with the Poincar€ model) is illustrated in Figure 125. This region has the form of a
curvilinear rectangle with vertices o, A, By The sides of the triangle are formed by
two parallel straight (in the sense of Lobachevsky geometry) lines coming from one
point e at the absolute. The third side of the triangle is the arc Ay By with length
equal to 2ra. This arc is a portion of the circumference (in the Euclidean sense)
tangent to the point oo at the absolute (i.c. on the boundary of the Poincaré model).
Consequently, the region (e, Ag, Bp) is an infinite band between two parallel straight
lines on the Lobachevskian plane and limited on one side to the arc Ag, By,

Figure 125. Figure 126.

On the Lobachevskian plane we shall now consider two families of coordinate
lines that form an orthogonal net (both in the Euclidean sense, and in the sense of the
Lobachevskian metric, since these two metrics differ only by a conformal factor
which has no effect upon the orthogonality of intersecting curves). One of these two
families of curves is a set of parallel straight lines (in the sense of the Lobachevskian
plane) coming from a single point == at the absolute. In the Poincaré model this is a
sheaf of circle arcs (in the Euclidean sense) going onto the absolute at right angles.
The other family of curves is a set of Euclidean circles which in the Poincaré model
touch the absolute, as shown in Figure 126.

We have obtained two families of mutually orthogonal curves. Curves of the
first family are straight lines in Lobachevsky geometry. Curves of the second family
are not straight lines in Lobachevsky geometry. They possess, however, an
important property. These lines are uniquely defined by the condition that all
“perpendiculars™ going from points of one line are parallel to one another and
intersect at one and the same point at the absolute. It can be easily proved that any
two lines of the second family are congruent in the sense that they can be mapped into
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each other through the isometry of the Lobachevskian plane, i.e. through a linear
fractional transformation.

We shall now consider an arbitrary line from the second family, i.e. a
Euclidean circle tangent to the absolute at the point e=. On this line we mark a pair of
points separated by a distance 2n. For simplicity we assume a to be equal to unity
and the radius of the circle (the Poincaré model) to which the Lobachevsky geometry
is applied also to be equal to unity. Then the band between two perpendiculars
(Ag, ) and (By, =) is isometric to the Beltrami funnel cut along its meridian (i.e.
along its generatrix). Under this isometry, the orthogonal net of meridians and
parallels on the Beltrami surface transforms into an orthogonal net of curves of the
first and second families on the Poincaré model in the band (es, Ay, B). On a
Lobachevskian plane (the same as on an ordinary Euclidean plane) there always
exists a reflection (isometry) relative to an arbitrary straight line. In particular, we
can reflect the band (s, Ag, B) relative to the straight line (es, Ag). As a result we
shall obtain a new band isometric to the initial one and, therefore, to the cut Beltrami
funnel. Again reflecting this new band (es, A}, Ag) relative to the straight line
(e, A;), we obtain a band (e, A5, A,) with the same properties etc., as shown in

Note that the reflection relative to a straight line on a Lobachevskian plane is an
isometry. Consequently, the curve from the second family through a pair of points
Ag, By will be sent to itself since any isometry which preserves the point e sends
curves to the second family again into curves of the same family. Figure 127
illustrates the result of this infinite sequence of reflections. It is clear that all the
segments A; A; ; (where 0 <i < o) have one and the same length 2%, A similar
procedure gives rise to bands (es, B;, B;_;) with the same properties. Thus, we
obtain a disc D? (Figure 127) limited to a curve from the second family (i.e. by a l
circumference) and subdivided into an infinite number of bands convergent at the
point e= at the absolute, Now we are in a position to construct a locally isometric map
of the whole disc D? onto a Beltrami funnel (already without a cut). Given this, each
band of the type (e, A;, A1), (o0, Ag, By) and (e, B;, B; ) isometrically winds
round the Beltrami funnel covering it exactly one-time. Consequently, the dlsc D?
will wind round the Beltrami funnel infinitely many times, as shown in Figure 128.
Thus, we have constructed an infinite-sheeted covering of a Beltrami surface.

The arguments above give rise to a natural question of whether or not a whole
Lobachevskian plane (and not only a part of it, e.g. the band descibed above) can be
isometrically realized in a three-dimensional space in the form of a smooth

two-dimensional surface of constant negative curvature. The answer appears to be
negative (D. Hilbert).
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Figure 128.

The generalization of this theorem is due to N.V. Efimov who shows that a
two-dimensional plane endowed with an arbitrary complete smooth Riemannian
metric with a curvature restricted from above to a negative number also admits no
global isometric embedding into a three-dimensional space.

The Lobachevskian plane is closely connected with two-dimensional closed
orientable surfaces which, as we know, are homeomorphic to a sphere with g
handles (where g is the genus of the surface), The point is that 21l such surfaces can
be represented as a quotient space of a Lobachevskian plane with respect to a certain
discrete isometry group.

DEFINITION 1. Let I'" be a certain discrete group of a Lobachevskian plane. A
subset D of the Lobachevskian plane is called the fundamental region for the group T’
provided there following conditions hold: 1) D is a closed set; 2) the union of sets
of the form (D), where Y e T coincides with the whole of the Lobachevskian plane;
3) this covering of the Lobachevskian plane by the sets y(D) is such that with a

anffiniantle crmenll malislea. .l Leomd ol ne saclfimace: malme Amnant s

auuu.dcuuy bllld.ll ucxguuuulwu Ul all a.luu.uuy PUllll. I.IICIC i.lll.clbcbl Ulll] a ﬁuuc
number of sets of the form ¥(D); 4) the image of the set of interior points of D does
not intersect the set of interior points of D under any other than the identity
transformation from the group I'.

It can be easily proved that as a fundamental region on a Lobachevskian plane
for an arbitrary discrete isometry group we can choose a convex polygon with a
finitie number of sides.

We shall now give an example of a discrete isometry group (the group of
motions) of a Lobachevskian plane whose fundamental region is a 4g-gon (with
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angles equal to m/2g) with centre at the centre of the unit circle (in the Poincaré
model) (see Figure 129).

Figure 129,

We shall divide the sides of our 4g-gon in pairs and shall consider pairs of opposite
sides. Suppose Ay, ..., Ay, are “translations” of the Lobachevskian plane under

which pairs of opposite sides exchange places (Figure 129). Each subsequent
transformation A;,; is obtained from the previous one A; by a rotation of the
“translation” direction by the angle n — nt/2g, i.e. by conjugation using the matrix B,
of rotation by the angle n— n/2g. It can be readily verified that the transformations
Al ..., Ag, are linked by the relation A; - ... Agp - A7l - ... - A3 = L.
Proceeding from this we can derive explicit formulae for matrices of transformations
Ay, ..., Ag, in realization of a Lobachevskian plane on the upper half plane. In
doing so, we shall write the transformations A, ... , Az, by means of some matrices
from the group SL(2, R).

We may assume that the motion A; (in realization on the upper half plane)
sends an imaginary semi-axis into itself. Then it has the form w — Aw, L =¢€%,
where ais s doubled leg of a triangle with angles nt/2, n/4g, n/4g (Figure 129). The
above-said leg can be easily calculated. For the quantitiy a we obtain

cos[5+c05213B _
sin B 4

The matrices Ao, ..., Ag, are obtained from the first matrix A; through its

a=2ln

conjugations using the matrix Bnie Ay=B; kel A ng' 1 where B, is the matrix

2g-1

5 around the point / (on the upper half plane).

of rotation through the angle =n

This means that
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8= . 2g8-1
COST sinm
4 4

% 2 1 -

. g-1 2g - )

—sinm COST
-7 %
And finally we are led to
4 . \ks1 | . w12 ]
A, = cosa sinqQ cos P + (cos 2) 0
—sin@ coso sin B
X
sin B
0 172
cos P + (cos 2P) J
. k-1
cos ¢ sina
% (—sina cosa)

-1

=21 - r=12.,2%

2 4’

CLAIM 3. A group with generatrices Ay, ... , A3 ¢ and with the relation
AL1Ag ... Ag, A 1'1 A;_T; = 1 is isomorphic to a group with generatrices ay, by,
. » Qg by and with the relation a\bia*by! ... ab.az'by! = 1. In particular, this

group is isomorphic to the fundamental group of a sphere with g handles (i.e. a
two-dimensional closed connected orientable surface of genus g). This surface is

obrained from the fundamental region D if on the boundary of this region we identify

points corresponding to one another under isometries Ay, Ay, ... , Azg. This implies
that on any oriented surface of genus g (where g > 1) we can determine a Riemannian
metric of constant negative curvatures. This metric is induced on the surface by the
metric of a Lobachevskian plane under the factorization described above. A
Lobachevskian plane covers a two-dimensional surface of genus g in an
infinite-sheeted and locally isometric manner.
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APPENDIX 7

SELECTED EXERCISES ON THE MATERIAL OF THE
COURSE *

Section 1.1

1. A point M is moving uniformly along a straight line ON which rotates
uniformly about a point 0. Construct the equation of the trajectory of the point M
(the spiral of Archimedes).

2. Verify that the length of a smooth curve can be calculated as the limit of the
lengths of broken lines which consist of segments joining successively a finite
number of points on the curve, the maximum length of the segments tending to zero.

3. Prove that in a Euclidean space a straight line segment has the minimal
length among the lengths of curves joining its two end-points.

4. What is the angle of intersection of curve lines given by the following
equations in Cartesian coordinates on a plane

a) Z+y =8 y = 2/2-x)
b) X2+ =8, 3 =2x
c) x* = 4y, y = 8/ + 4).

5. Prove that the length of the segment of a tangent to the astroid P+ y*B =
3, bounded by the axes of Cartesian coordinates is constant and equal to a.

rn thnt tha cnpeeenrnt wf o tnmmant ta thn tonnemt

£ Dems
U. [1UVC Ll4dl UIC dUERLLICIL Oora tallg Lt v uic Tacimx

12
_ Elna-t-(a -xz) —( _xz)m
12
a-(a —xz)

bounded by the y-axis and the point of tangency has a constant length equal to a. The
tractrix is used in constructing a Beltrami surface which models in a
three-dimensional space part of a Lobachevskian plane (to do so, we should rotate the
tractrix around its asymptote).

*)
The most difficult exercises are marked with an asterisk.
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Section 1.2

1. Prove that the family of functions u=x+siny;v=y—-1/2sinxona
Euclidean plane is a regular coordinate system.

2. Write the Laplacian operator Au = ——Z + —12 in a polar coordinate system
ox°  dy
on a plane.
3. Let Q(x) = b;jxixj, where b,-j bj-,- is a quadratic form, B(x,y) = b,-_,- Jéy' is
the corresponding bilinear form. Prove that the linear ransformation A in R”
preserves the bilinear form, B(x, y) = B(Ax, Ay) if and only if it preserves the
quadratic form, Q(x) = O(Ax) (the vectors x and y are arbitrary).

Section 1.3

1. Consider a stereographic projection of a sphere of radius R in a space R3
onto a plane passing through the centre of the sphere. The projection is defined as
follows. We join a variable point P on the sphere with its north pole and continue the
segment till it meets the equatorial plane. Then we associate the intersection point P
with the initial point P, Let the sphere be coordinatized by spherical coordinates 6, ¢
and the plane by polar coordinates r, ¢. Find the dependence between (8, ¢) and
(r, ¢) under a stereographic projection.

2. Prove that a stereographic projection of a sphere onto a plane is a conformal
map, that is, preserves the angles between the intersecting curves.

3. How shall we write the metric of a sphere after the change of coordinates
(8, &) — (r, ¢) induced by a stereographic projection?

4. Prove that under a stereographic projection of a sphere onto a plane each
fiat-cross-section of the sphere (i.e. the circle resulting from the intersection of the
sphere by the plane) is sent either into a circle or into a straight line (on the plane).

Section 1.4

1. Define the “vector product” in pseudo-Euclidean three-dimensional space of
index 1, i.e. in [R}, assuming

gxn = (gan_gﬁnl, §0n2_§2n0' glno_gonl)'

where £ = (E% EL £3), n = m%nL 1)
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a) Verify that for basis vectors ey, e, e; (where e is time-like) pairwise
vector products have the form ey X e; =— e, g X e3 =€y, €] X €3 = €.

b) Prove that X is a bilinear anti-symmetric (i.e. skew-symmetric operation and
that for it the Jacobi identity holds

Eix EaxEy) +E3x(§y xED+ Epx(E3xEp = 0.

2. Prove that in a space [R] an orthogonal complement of the time-like vector is
a space-like hyperplane. What may an orthogonal complement of a space-like
(light-like) vector be?

3. In a pseudo-Euclidean space lﬂ? consider a pseudo-sphere of real radius,
i.e. a one-sheeted hyperboloid (instead of the two-sheeted one which we considered
in Section 1.4).

a) Write the formulae of a stereoographic projection of a one-sheeted
hyperboloid onto the coordinate plane. Describe the set of points of the plane which
compose this image. b) Calculate the pseudo-Riemannian metric induced by an
envelope pseudo-Euclidean metric on a one-sheeted hyperboloid.

4. Suppose a Lobachevskian plane is realized as the upper half plane y >0 of a
Euclidean plane x, y. We shall call “straight lines” in a Lobachevskian plane the
Euclidean semi-circles with centres on the x-axis (i.e. “at the absolute of the
Lobachevskian plane) and the Euclidean half lines bearing on the x-axis and
orthogonal to it. We shall call a triangle in a Lobachevskian plane a figure formed by
three points and by the segments of “straight lines” joining these points. Prove that
the sum of the angles of a triangle in a Lobachevskian plane is always less than ©t (if
the triangle is non-degenerate).

5. Calculate the circumference on a Lobachevskian plane (as a function of its
radius measured in the Lobachevskian metric). For comparison, calculate the
circumnference on a two-dimensional sphere.

Section 1.5

1. Find the curvature of an ellipse in its vertices if its semi-axes are equal to
aand b.

2. Prove that if the curvature of a curve is identically zero, the curve is a
straight line.

3% Let S be the area between a flat curve and a secant at a distance & from a
z

tnnoant tha canant haina marallal ta tha tancant Dvnrace tha manntiéo Bm ,S,, in tormec
i geny, uic 5€Cant oCHig paraud: 10 Ui @ngint. cCXPITSS uiC quanagy il 3 in ©TaisS
h-0 h

of the curvature of the curve.
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4. A staight lin OL rotates about the point O with a constant angular veloci
®. A point M moves along the straight line OL with a velocity proportional to the
distance IOM1. Construct the trajectory described by the point M (a logarithmic
spiral).

5. A ring of radius a is rolling rectilinearly without sliding. Compose the
equation of the trajectory of a point M braced with the ring and separated from its
centre by a distance d. For d = a we obtain the so-called cycloid, for d > a a
lengthened cycloid, for d < a a shortened cycloid.

6. A circle of radius r rolls without sliding along a circle of radius R remaining

all the time outside the latter. Comnose the equation of the nath of a noint M of the

1e time outside the Compose the equation of the path of a point M of the
rolling circle (epicycloid). Do the same for a circle of radius r rolling inside a circle
of radius R.

7. Find the curve given by the vector equation r =r(t), where —ee <t < e if
r"(1) = a is a constant non-zero vector.

8. A flat curve is given by the equation r = (¢(2), £ ¢(¢)). Under what condition
will this equation define a straight line?

9. Find the function r = r(¢) knowing that in polar coordinates on a plane this
equation defines a straight line.

10. Calculate the curvature of the following flat curves:

a) y = sin x in the vertex (sinusoid),

b) x=a(l + m) cos mt —am cos (1 + m)t,

y =a(l + m) sinmt —am sin (1 + m)t (an epicycloid),
¢) y =achx/a (achain line, i.c. a curve formed by a heavy sagging chain
fixed at the end-points),

d) %2 = (@*-y%) (b +¥)? (a conchoid),

e) ?=a*cos 2¢ (alemniscate),

f) r=a(l + cos ¢) (a cardioid),

g) r=a¢ (a spiral of Archimedes),

h) r-(a cos3z, a sinst) (an astroid),

i) y-—-Incosx,

j) x=32 y=3t-rfort=1.

11. Find the curvature of the following curves given in polar coordinates:

a) r= a¢k.

b) r=at at the point ¢ = 0.

12. Find the curvature of a flat curve given by the equation F(x, y) = 0.

13. Suppose a family of curves be given by the differential equation

P(x,y) dx + Q(x,y) dy = 0. Find their curvature.
14. Natural equations of a flat curve are equations of the form: 1) k =k(l), 2)
F(k,[)=0, 3) k=k(), where [ = I(f) is the arc length (counted from a certain fixed
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point) and k is the curvature of the curve. Compose natural equations for the
following curves:

a) x=acosst, y=asin3t,
b) y=x",

¢) y=x,

d) y=lx,

e) y=achux/a,

f)y=¢€"

Section 1.6

1. For a helix r = (a cos ¢, a sin ¢, bt) find the Frenet frame, curvature and
torsion.

2. Find the curvature and torsion of the curves:

a) r=¢€(sint, cost, 1),

b) r=a(cht, shy, 1).

3. Find the curvature and torsion of the curves:

a) r= (P@12)17 2-1, 1),

b) r = (Gt=7, 382, 3t+1).

4. Prove that if the torsion x({) of a curve is identically zero, the curve lies in a
plane (i.e. the curve is flat). Find the equation of this plane in space.

5. Describe the class of curves with a constant curvature and torsion:
k({l) = const., x(I) = const.

6. Describe the class of curves with a constant torsion: (/) = const.

7. Prove that the curve r=r(f) is flat if and only if (F, r, F.) = 0, where
( , , )denotes the mixed product of the three vectors.

8. Prove that for a smooth closed curve the following equality always holds
[¢rdk+xbdn=0.

9. Prove that the Frenet formulae can be represented in the form v = [T, v],

n = [, n], b =[C, bl. Find the vector { (the so-called Darboux vector).

10. Solve the vector equation r'=[ , r] where ® is a constant vector in space.

11. Prove that the curvature and torsion are proportional (i.e. k = ¢, where
k= 0 and c is a constant) if and only if there exists a constant vector u such that
{u, v) = const.

12. Let normal planes to a curve, spanned by vectors n, b pass through a fixed
point xy. Show that the curve lies on a sphere centred at this point.
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13*. Prove that a curve lies on a sphere of radius R if and only if the following
relation holds

we
R: = %(1+£)_ ,
k (1k )?

where k is the curvature of the curve.
14. Prove that x = (”_”__’ ).
¢.r)

15. For a smooth curve r = r(/) consider a curve n(/) (where n is the normal

vector to the curve at a given point); [* is the natural parameter on the curve n(l).

Prove that dl*/dl = (i + )2,
16. Let

( 0 k@) O
A=AD=|-k) O x®|=@O.
0 -xt)h O

Let the vectors £; = r(l) be solutions of the system of equations dr;/d! = a‘:,- ri
J=1,2,3, where r(0), ry0), r3(0) is a given orthonormal frame.
a) Prove that the frame ri(f), ro({), r3(/) is orthonormal for any /.
1
b) Letr() =ro+ jo ri(l} dl. Prove that ri() = v({), rp(f) = n(¥), r3(f) = b(l),

where v, n, b are the tangent, the normal and the binormal to the curve r(/), the
curvature and torsion of this curve being equal to k(f) and x(/).

17. Let a curve lie on a sphere and have constant curvature. Prove that this
curvature is a circumference.

18%. Let r=r(}) be a time-like curve in a pseudo-Euclidean space R3 and
F?=(FH% - ()%= (P)? =1, r % being greater than zero. We introduce vectors
v, n, bassuming v="r,v" =kn, b=n xv. Prove the pseudo-Euclidean analogue of
the Frenet formulae:

VvV = kn,
n = kv-xb,
b = kn.
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19. In a pseudo-Euclidean space [R; solve the equation # = @ X r, where @ is a
constant vector.

20. Prove that the trajectories of motion of a material point in a central field of
force are flat curves.

21. A curve lying on a sphere and intersecting all the meridians of the sphere at

a mvpn ;mc:rh= is called a loxodrome. (‘nmnncp the Pnn:mnnc of a loxodrome, Find

the vectors of the Frenet frame of this curve at its arburary point. Calculate the
curvature and torsion of this curve.

22. Given a curve r = (v cos 4, v sin u, kv) with v =v(u), prove that it lies on
a cone. Define the function v(u) so that the curve intersects the generatrices of the
cone at a constant angle 6.

23. For what b value does the torsion of the helix r = (a cos t, a sin ¢, bt) have
the maximum value?

24, Prove that if all normal flat lines contain a vector e, the given line is flat.

Section 1.7

1. A two-dimensional torus in a three-dimensional Euclidean space can be
given in the form of a surface of revolution of a circle about a straight line lying in the
plane of the circle (and not intersecting it). Write the parametric equations of the
torus and the induced metric on the torus. s 2 g

2. Find the metric induced on an ellipsoid of revolution % +2 -;z
b

an envelope Euclidean metric, i.e. find the first quadratic form of the ellipsoid.

3. Find the metric induced on an ellipsoid of revolution r(u, ¢) = (p(u ) cos ¢,

p(u) sin ¢, z(u)). Verify that its meridians (given by the mnmmnc ¢ = const.) and

parallels (given by the equations u = const.) form an orthogona] net on the surface.
Find the bi-sectrices of the angles between the meridians and parallels.

4. Recall that the lines intersecting the meridians of a sphere at a given angle
are called loxodromes. Find the length of a loxodrome.

- 5. Let F(x,y, z) be a smooth homogeneous function, i.e. one satisfying the
equation F(cx, ¢y, cz) = ¢" F(x, y, z). Prove that on the conic surface F(x,y, z) =0
the metric is Euclidean outside the origin.

6. Construct the parametric equation for a cylinder for which the curve
p = p(u) is a directrix and the generatrices are parallel to the vector e.

7. Construct the parametric equation of a cone with the vertex at the tail of the
radius-vector, for which (the cone) the curve p = p(u) is a directrix.

=1 by
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8. Construct the parametric equation of a surface formed by tangents 1o a given
curve p= p(u) . Such a surface is called an involute surface.

9. Acirclex=a+bcosv, z=bsinv, 0 <b <a, rotates about the z-axis.
Construct the equation of the surface of revolution (this is a torus). Prove that the
coordinate lines (i.e. the parallels and meridians) form 2a orthogonal net on the
surface,

10. Construct the equation of a surface formed by rotation of a chain line
y = a cosh x/a about the x-axis. Such a surface is called a catenoid. Find its principal
curvatures.

11. Construct the equation of a surface formed by rotations of a tractrix

p= (a In tan (%- + %) —asint, acos t) around its asymptote. This surface is called

a Beltrami surface (pseudo-sphere). In a three-dimensional Euclidean space it
models a part of a Lobachevskian plane. Calculate its first quadratic form. Prove
that the induced metric coincides with the metric of the Lobachevskian plane.

12. A surface is called ruled if it is givén by the parametric equation r = r(u, v)
= p(u) + va(u), where p = p(u) is the vector function determining the distribution of
straight-line generatrices of the ruled surface. Construct the equation of a ruled
surface whose generatrices are parallel to the plane y = z and intersect the parabolas
y*=2px,z=0and 22 =—2px,y =0.

13. Calculate the first quadratic form of the following surfaces:

a) r=(acosucosv,bsinu cos v, c sin v) (an ellipsoid),

b) r=(vcosu,vsinu, k) (a helicoid).

14. Suppose that the first quadratic form of a surface is known to be of the
form dP? = du? + (u* + a® dv®. Calculate the angle at which the curvesu + v =0 and
u —v =0 intersect.

Section 1.8

1. Show that on a standard two-dimensional sphere, the sum of the angles of a
triangle composed of arcs of large circles is greater than x.

2. Express the sum of the angles of a triangle on a two-dimensional sphere in
terms of the area of the triangle (the triangle is composed of arcs of large circles).

3. Prove that for any Riemannian metric there exists such a local coordinate
system with respect to which the matrix of the Riemannian metric is unit at a given
point. Note that it is generally impossible to reduce the metric tensor to the unit form
simultaneously at all points of a hole neighbourhood of a point. An obsiacle te this
may appear to be a non-zero Riemannian curvature tensor.
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4. Prove that on a pseudo-sphere (i.e. on a Lobachevskian plane) the sum of
the angles of a triangle composed of segments of “straight lines’"is less than x. "Find
the relation between the sum of the angles of the triangle (on a Lobachevskian plane)
and its area.

5. A surface is given by the equation r = (u sin v, u cos v, v). Find

a) the area of a curvilinear triangie 0 Su <sinh v, 0 £v vy,

b) the lengths of the sides of the triangle;

c) the angles of the triangle.

6. Prove that the first quadratic form of a surface of revolution can be reduced,
through the appropriate choice of curvilinear coordinates, to the form di? = du® +
G (u) dv?. Perform this operation for a sphere, a torus, a catenoid and a
pseudo-sphere.

7. The system of curvilinear coordinates on a surface is called isothermal if the
first quadratic form of the surface relative to these coordinates is expressible as

di? = Alu, v) (duz + dvz). Find the isothermal coordinates on a pseudo-sphere.

8. A spherical lune is a figure formed by two large semi-circles with common
end-points (at the extremes of the dlameter) on a sphere. Calculate the area of a
spherical lune with an angle o at the vertex.

9*. The Liouville surface is a surface whose first quadratic form is

representable as dl? = ) + g(v) (du2 + dvz). Prove that a surface locally
isometric to a surface of revolution is a Liouville surface.

Section 1.10

'1. Calculate the area of a circle on:
a) a Euclidean plane,

b) a sphere,

¢) aLobachevskian plane.

2*. Let a Lobachevskian plane be realized on the upper half plane of a
Euclidean plane. As “straight lines” we should take here either Euclidean half lines
orthogonal to the real axis, or semi-circles with centres at the real axis. Let ABC be
an arbitrary triangle in a Lobachevskian plane, a, b, c— non-Euclidean lengths of
the sides BC, AC, AB and let o, [3, ¥ be the magnitudes of its angles at the vertices
A, B,C. Prove the equalities

cos ¢+ cos P cosy

0\ nno 77 -
aj LI 4 = ,

sin B sin y
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cosP+cosycosa

b) coshd = ,
siny sina
&) coshe = cosy + cos ¢ cos B '
sin o sin B
3. Prove the analogue of the theorem of sines for the Lobachevskian plane:
snha _ simhb _ sichc _ @'
sin o sin B siny sincsinBsiny’
2

where O = cos® & + cos? B + cos? ¥+ 2 cos 0. cos P cos Y- 1.

Section 1.11

1. Calculate the second quadratic form of a right helicoid x = u cos v,
=u sinv,z=av.
2. Given a surface of revolution

r(u,v) = (@), p(u) cos ¢, p(u) sin ¢), p) >0,

a) find the second quadratic form,

b) find the Gaussian curvature K at an arbitrary point of the surface. Find out
the dependence of the sign of X on the direction of convexity of the meridian.

c) calculate the curvature K in the particular case p(u) = u,

2 172
x(u) = i(aln at(a u—uz) - (az—ui)m), a>0

(a pseudo-sphere).

3. Find a surface all normals to which intersect at one point.

4. Calculate the Gaussian and the mean curvatures on a surface given by the
equation z = flx )+ g(»).

5. Prove that if the Gaussian and the mean curvature of a surface embedded in
a three-dimensional Euclidean space are identically zero, the surface is plane.

6. Prove that on the surface z =f{x, y) the mean curvature is equal to

H = div( gradf T ).
(1+ lgrad f15
7. Suppose a surface § is formed by tangent straight lines to a given curve

with curvature k(f). Prove that if the curve preserves the curvature k(/), then the
surface S preserves the metric (i.e. is changed by an isometric one).
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8. Prove that if the metric of a surface is given by di? = A%du? + B? av?,
A=A(u,v), B =B(u,v), the Gaussian curvature has the form

k=[G, + (2]

9. Prove that the only surfaces of revolution having zero mean curvature are
the plane and the catenoid. (Recall that the catenoid is obtained by rotation of a curve
y =a cosh x/a.) We mean here full surfaces, i.e. such as those on which geddesics
are infinitely continued.

10. Prove that any cylindrical surface is locally isometric to a plane.

11. Prove that any conic surface is locally isometric to a plane.

12. Calculate the second quadratic form of the surface

x=@+a®) P cosv, y=wt+ad)?sinv,
z=aln (u + W+ az)m).

13. Prove that two surfaces of equal constant Gaussian curvature are locally
isometric. In particular, any surface of constant positive Gaussian curvature is
locally isometric to a sphere. Any surface of constant negative Gaussian curvature is
locally isometric to a pseudo-sphere (a Lobachevskian plane).

14. Prove that for the metric d/? = A, v) (du® + dv?) the Gaussian curvature

2 2
can be represented in the form K = % Aln A, where A= 5847 + -537 is the Laplacian

operator (sec Exercise 8).

Section 1.12

1. Suppose a surface S is formed by tangent straight lines to a curve. Express
the Gaussian and the mean curvatures of the surface S in terms of the curvature and
torsion of the curve.

2. The direction determined by a vector a tangent to a surface is called
asymptotic if the second quadratic form on it is equal to zero, i.e. O(a, a) =0. A line
on the surface is called asymptotic if, at each point of this surface, the tangent has
an asymptotic direction. These lines are defined by the differential equation

Ldu®+2M dudv +N dv? =0, where 0 = (L M ]
S A

\l" iv j
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Find the asymptotic lines on the surface

a) z = a(xfy +ylx),

b) z = xyz

3. Prove that for asymptotic directions making a right angle to exist at a given
point on a surface, it is necessary and sufficient that the mean curvature be equal to
zero at this point.

Section 1.13

1. Let the metric on a surface have the form di? = dx? + f(x) dy?,
0 < +(x) < =. Prove that this metric can be reduced to the conformal form

di? = g(u, v) (@du? + av¥.

2*. Prove that a two-dimensional pseudo-Riemannian metric (of the type
(1, 1)) with analytic coefficients can be reduced, using the change of coordinates, to
the form dI? = A(s, x) (dP? — dx®).

3. Prove that the group of matrices SU; is homeomorphic to a standard
three-dimensional sphere.

4. Prove that the groups of complex matrices GL(n, €) and SL(n, C) are
connected sets. Prove that GL(n, [R) consists of two connected components.

Section 1.14

1. Prove that the space of positions of a rigid segment on a plane is a smooth
manifold.

2. Prove that the set of all straight lines on a plane is a smooth manifold
homeomorphic to a Mébius strip.

3. Prove that the group of matrices SO3 is homeomorphic to a
three-dimensional projective space.

4. Give an example of a smooth one-to-one map of two smooth manifolds
which is not a diffeomorphism.

5. Show that on a sphere (and on a circle) there exists no atlas consisting of
one chart.

6. Construct the embedding of a torus T" =5 x ... x S! (n times) in R™.

7. Construct the embedding of a manifold S2 x $2in R’.

8. Prove that a sphere 5" given in R**! by the equation (x!)? + ... + (z**1)
= 1 is a smooth manifold. Construct on this sphere an atlas of two charts.

9. Prove that a two-dimensional torus T2 (realized e.g. as a surface of revo-
lution in R%) is a smooth manifold. Construct on this torus an atlas of four charts.



SELECTED EXERCISES 467

10. Prove that the union of two coordinates axes on a plane is not a manifold.

11. It is possible to endow the following sets with the structure of a smooth
manifold?

a) A one-dimensional triangle on a plane (i.e. a closed broken line with three
links).

b) Two one-dimensional triangles on a p
common point.

12. Prove that an n-dimensional real projective space [RP" is a smooth (and
real analytic) manifold. Construct on this manifold an atlas of n + 1 charts.

13. Prove that an n-dimensional complex projective space CP” is a smooth
(and complex analytic) manifold.

14. Prove that the graph of a smooth function X**! =fx!, ..., x*) is a smooth
manifold and a smooth manifold in R™!.

15. Prove that the group of matrices SO, is homeomorphic to a circle and the
group O, is homeomorphic to a disconnected union of two circles.

16. Prove that the groups of matrices GL(n, R), GL(n, C) are smooth
manifolds. Find their dimensions.

17. Prove that the set of all straight lines passing through a point on the plane
is homeomorphic to a circle.

18. Prove that in the composition of two smooth maps, the Jacobian matrix is
the product of the Jacobian matrices of the cofactors.

19. Prove that the rank of Jacobian matrix does not depend on the choice of
the local coordinate system.

20. Calculate the rank of the Jacobian matrix of the map f: R? - IRZ, where
flx, yy = (x, 1).

21. Construct the explicit formulae for a smooth diffeomorphism between a
plane and a two-dimensional open disc (on the plane).

22. Prove that any smooth manifold has such an atlas that each chart is
homeomorphic to a Euclidean space.

23. Show that the stereographic projection of a sphere onto a tangent plane
from the pole opposite to the point of tangency is a diffeomorphism everywhere
except at the pole of the projection. .

" 24. 1dentify S 'and TP? (construct a diffeomorphism).

Section 1.15
1. Find geodesics on the following Riemannian manifolds:

a) a Euclidean plane,
b) a standard sphere S in R,
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c) a Lobachevskian plane given either as the Poincaré model in an open circle

2. 2,2 2 2
with the metric tr do or on the upper half plane with the metric E—%ﬁy—
a-r y

2. Letflu) >0, g(v) > 0 be smooth functions and let a be an arbitrary
constant. Prove that the level lines of the functions

24 v) J. (-2 4

Vie) —

are geodesics of the metric di? = (flu) + g(v)) (du? + dv?) given on the plane.

COMMENT. Suppose a plane on which Cartesian coordinates (u, v) are introduced

is filled with a ransparent substance having a variable refractive index A(u, v). If ata
certain point (i, vg) there exists a source of light, then the light from this source

propagates in the (u, v)-plane not along straight. lines, but along lines which are

geodesics in the conformal metric di? = Ay, v) (du® + dv?).

3. Prove that the meridians of a surface of revolution are geodesic lines.
4. Prove that the parallel of a surface of revolution will be a geodesic if and
only if the tangent to the meridian at its points is parallel 1o the axis of rotation.

5. Show that the geodesic lines of a surface with the first quadratic form
di2 = v(du2 +dv®) are represented on the (u, v)-plane as parabolas.

Section 2.1

1. Prove that the trace (spur) of the operator A = (aj- ,l.e. SpA = a‘;- does not
change under coordinate changes, i.e. is a scalar.
2. Prove that if g;; is a tensor of type (0, 2), where det (g;) # 0, then the

inverse matrix (g%), where gV gk = 8., determines a tensor of type (2, 0).

Section 2.2

1. Prove that in a Euclidean space [R" there exist no tensors of rank 3 invariant
under rotations (i.e. such that their components remain unchanged under rotations).
Prove the same for tensors of any odd rank.

2. Let there be given an arbitrary linear operator acting from the space of
tensors of type (%, s) to the space of tensors of type (p, ). What type of tensor is
this?
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Section 2.3

1. Calculate the components of the metric tensor on a plane in 2 polar
coordinate system; in R’in a)a cylindrical and b) a spherical coordinate system.

2. Assuming the gradient of a function f to be a composition of two
operations — taking partial derivatives and raising the indices — write the gradient
of the function:

a) in polar coordinates,

b) in cylindrical coordinates,

c¢) in spherical coordinates.

Section 2.4

1. Calculate the operator * on skew-symmetric rank one and rank two tensors
in two- and three-dimensional Euclidean spaces, where g; = 8

2. Calculate the operator * on skew-symmetric tcnsors of any rank in a
four-dimensional space endowed with the Minkowskian metric

+1 0
@y = -1 1
0 -1

Show that the skew-symmetric rank two tensor in a Minkowski space is determined
by a pair of quantities — a vector in [R> and a skew-symmetric tensor in R> with
respect to linear changes in the spatial part which do not affect time.

3. Express the vector product of two vectors in R® by means of :
operations on tensors and by means of the operator *.

4. Classify symmetric and skew-symmetric tensors of rank two with respect to
pseudo-rotations in Minkowski space. Compare the result with the case of Euclidean
space. (It is useful to solve this problem in the two-dimensional case.)

5. Classify tensors of rank one, two, three, four with respect to rotations in
R? and IR?’, which preserve a unit square (respectively, cube in IR3). Do the same for
orthogonal transformations preserving the square (cube).

Section 2.8

1. Prove that a connection is compatible with the metric if and only if for any
vector fields Ny, &;, £, the following equality holds
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al'] (gli gZ) = (Vq gl gZ) + (x]_’ vq E"z )

2. Prove that under an infinitesimal paralle] transport of the vector & by &x* its
components change as follows (up to small quantities of high order):

B = B -8 T 8 + 0 (18xD).

3. Suppose in a region U we are given a connection; P is a fixed point of this

region, T =T is a tangent space to IJ at this point, We shall define the map

AVEpAVis & T A P Ao @ Wiy S B W H P raise. ¥ Saifea wwilal

E:T— U. Let £ be a vector from T. We let a geodesic y(r) with the initial velocity..
vector £ from the point P and set E(E) = T (D).

a) Show that the map E is defined in a certain neighbourhood of the origin in
T and that it is a local diffeomorphism there.

b) Show that in coordinates determined by the map E all the Christoffel
symbols T% ; vanish at the point P.

4. The equation of motion of a point electric charge in a magnetic field has the

(r.r]
Irl
a circular cone.
5. Prove using geodesics, that the motion that leaves motionless a point and
the frame at this point is identical.
6. For a symmetric connection I"g-k compatible with the metric g;; prove the

validity of the identities:

fomr =a , a=const. Prove that the charge trajectory is a geodesic line of

i 1 0 i
06Tl = e (0, £ sn e
P 1 ag
b) l"‘u - -22- -S;_k .

7*. Prove that two sufficiently close points on a Riemannian manifold can be
joined by a geodesic which is locally unique (i.e. unique in a small neighbourhood
containing both points).

8. Let the metric have the form di? = g,, dr* + r* + r* d°. Prove that the line
& = ¢p coming form the centre is a geodesic.
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9. Suppose M is a surface in a Euclidean space R” & is a linear operator
projecting [R" orthogonally onto the tangent space to the surface M; X and Y are

vector fields in R”, tangent to the surface M. Prove that the connection compatible
with the metric induced on the surface M has the form

V.Y = n(ngLk)
29

Section 2.9

1. Let there be given a piecewise smooth curve (), i = 1, 2, restricting a
region U. Prove that A¢ = JU J K (g)l"2 dx! A dx? is the angle of rotation during

parallel enclosure along the curve xj(t), where K is a Gaussian curvature.

2. If this curve (see Exercise 1) consists of three geodesic arcs and if the
curvature is constant, the sum of the angles of such a geodesic triangle is equal to
n + Ko, where © is the area of this triangle, (prove it!). Consider the cases of a
sphere and a Lobachevskian plane.

3. Let &y, ..., &, be vector fields in a Riemannian (or pseudo-Riemannian)
n-dimensional space: gz={&; ;) [E,E1= c*; j & Calculate the components of
the symmetric connection I'% ; (Where ng g=T% ; &) compatible with this metric.

4*. Make parallel (counterclockwise) transport of the vector £ = (E) along

the contour of a square with side € spanned by coordinate axes ¥ Let E(e) be the
result of this enveloping transport. Prove that

5. Prove the validity of the Bianchi identity for the curvature tensor of a
symmetric connection compatible with the metric

Vo R+ ViR imet ViR i = 0.

6. Derive from the previous formula the following identity for the divergence

of the Ricci tensor: V, R, = 1288

ox
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Section 2.10

1%, Let X4, ..., X, be orthonormal vector fields in an n-dimensional

Riemannian space and let g, .., ®, be the dual basis of the 1-forms
w;(X;) = §; (all indices may be regarded as lower). Define the 1-forms ©;; and the
2-forms Q setting ;=T 05 Q= 1/2 Ryjy 0 A @ Here Vy X;=T" 5 X,
(RXp XP X;, X; ) = Ry summation is over twice repeated indices.

a) Prove that 0 = — 0.

b) Derive the following relations (i.e. structural Cartesian equations):

d(l)l' = - O)J A 0.)':",
doy = - oy A wj-Qy
dg‘l = - Qﬂ A (l)b+ ;.

Section 3.1

L . i T
1. Let o/ =d/;dxX. Derive the formula@ " A ... A® =Jj ;:_jkdx A ..
j i

A a'x".‘.’ h -i_l - k
- A dX", where J T

is the minor of the matrix (a':'-) positioned at the intersection
of rows with numbers iy, ... , i} and columns with numbers jj, ... , j- In particular,
o' A .. Ao =det (@) dxl A ... A dx

2. Find the dimension of the space of k-forms (at a given point).

3. LetX,, .., X, be linearly independent vector fields in an n-dimensional

region, and let [X;, Xj] =0. Prove that there exists (locally) a system of coordinates
(x!, ... , X" such that the field X; is tangent 0X;(x*) = 8%; 10 the i-th coordinate axis.

Section 3.2

1. Let f: 8" — RP" be a map associating a point x € S" with the straight line
through the point x and through the origin in R™!. Prove that all the values of the
map f are regular.

2. Letf: SO, — S™! assign to each orthogonal matrix its first column. Prove
that all the values of the map fare regular. Find the pre-image f~ 1.

3, Letf: U, — 5™ assign to each unitary matrix its first column. Prove that

all the values of the map f are regular, Find the pre-imagef~ 1.
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4. Prove orientability of the following manifolds: a) a torus 7%, b) a sphere
8", c) projective spaces RP?*! and CP". Prove non-orientability of the following
manifolds: a) RP?*, b) a Mdbius strip.-

5. Cut a Mobius strip along its middle line (i.e. along the circle). Is the
manifold obtained orientable? Repeat this process several times.

6. Prove that a Euclidean space contracts continuously along itself into a point.
Prove that on a sphere S”, n > 1, any two paths with coincident end-points are
homotopic (the end-points are the same, and the homotopy is motionless at the
end-points).

Section 3.6

1. Prove that by glueing together a Mobius strip and a disc along identical
diffeomorphism of their boundaries, we obtain a projective plane.

2. Prove that by glueing a Mé&bius strip into a torus, we obtain the so-called
“Klein bottle”, i.e. a two-dimensional non-orientable manifold which is also
obtainable by glueing together two Mé&bius strips (by way of identification of their
boundary circles).

Appendix 1

1. Prove that any motion of a Euclidean space is given by an affine
transformation of the form y = Ax + b, where A is an orthogonal matrix (i.e. by a
composition of rotation and translation by a constant vector b).

2. Prove that the matrix group of affine transformations in an n-dimensional
Euclidean space is isomorphic to the group of matrices of the order n + 1 of the form

A b
(0 ! ], where A is a non-degenerate n X n matrix and b is an arbitrary

n-dimensional vector-column.

Appendix 3

1. Find all symmetry groups of all regular polygons on the plane.

2*. Find all symmetry groups (groups of motions) of all regular convex
polyhedrons in three-dimensional space. Among these groups, point out those that
are non-commutative,
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1. Addition to Appendix 2

The Einstein equation for a gravitational field in the absence of matter and for all other
physical fields has the form R;; = 0, where R;; is the Ricci tensor. In the presence of
matter the Einstein equation changes. It has the universal form Rj; — 1/2 Rg;; = ATy,

______ a4 Lo FUPE S | PO S, ~11
wncrc IL = OKUL ’ U lb l.‘l-lc gra.vuauuua.l L‘(GWlUl.lh consiant, U = UUI . 10

N-m?kg?, ¢ is the speed of light in a vacuum, ¢ = 2.9979 - 10® m/s. The tensor T;
is called the energy-momentum tensor. If the “matter” is either a fluid or an
electro-magnetic field, then the following formula holds (see [1], [29])

TU_T( FF + o g F,F") (the field),

T; = @+€)yuj—pgy (the fluid).
The usual matter (“fluid”) is characterized by the 4-velocity u, pressure p and energy
density €, where € =g(p). The Maxwell equations for the electro-magnetic field
remain the same in their geometrical meaning as in the Minkowski space where the
gravitational field is trivial (see Section 2.11). If F = F,, di® A dx® is the differential
2-form corresponding to the field strength tensor, then we have (the metric and the
covariant derivatives are determined by the gravitational field) dF = 0 (the first pair of

Maxwell equations), F :_ b= fgi J, (the second pair of equations; here j, is the 4-vector
of current) or *d *F =£'g—j, where j=j dx”. So we can say that a gravitational field

is described by a pseudo-Riemannian metric on M?*, and an electro-magnetic field is

Aacrrihad oa
described by the simplest one-component gauge field (see the end of Secion 2.7),

where N =1, and the field curvature tensor R coincides with the field strength F.
Taken together, they form the geometry of a five-dimensional space, as
indicated in Example 3 at the end of Section 2.10. It is remarkable (and it was an
important discovery in the sixties and seventies) that nuclear forces and strong
interactions effective at distances of the order of 107! cm and smaller are also
described using geometric objects, namely, multi-component non-Abelian gauge
fields (connections) with groups SUj, SUy,, . . . and some other fields affected by

these connections.
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The unified theory of strong and weak interactions uses the same methods; if
not quantized, individual geometric fields do not have direct physical meaning here:
their set yields a base underlying the difficult and not at all purely geometric
quantization procedure in which there are more questions than answers. So there
appeared internal degrees of freedom corresponding to so-called quarks which are
essential only at small distances. Now we observe processes already at distances of
the order of 10717 10 10718 ¢m, i.e. deep in the nucleus. It should be noted that in all
these processes the gravitational field is not subjected to any quantization procedures
(and generally does not play a role in them). The reason is very simple — the
gravitational forces are much weaker than all other forces on these scales. They are
essential as classical, non-quantum forces at large distances: the other forces
(including electro-magnetic, due to the attraction of opposite charges only) are
effectively more short-range than gravitational ones. Gravity becomes essentially
“quantum” on a very small “Planck” scale — the characteristic unit length which can
be composed of the product of powers of three fundamental constants: The Newton
constant G (the symbol of gravity), the speed of light ¢ (the symbol of relativity)
and the Planck constant A = 6.6262 « 10~ J/Hz (the symbol of quantum theory),

] =212 F32 1033,
ipl i I [ 9 v Vllde

It should be noted here that the Planck time t,;~ 10743 5 shows (by order of

magnitude) during what time the global evolution of the Universe was determined by
purely quantum laws. The results of direct observations of experimental physics
now differ from Planck's scales by a great many orders of magnitue. The search for
indirect observational consequences for quantum-gravitational phenomena has not yet
yielded any definite results. There exists, in modern literature, a considerable
number of (sometimes mathematically very elegant) papers showing attempts to
formulate a theory interpolating nuclear, weak and quantum-gravitational processes.
Such papers are based entirely on mathematical intuitdon and shouild therefore be
regarded as purely mathematical. Who knows what physical phenomena will come
out “on the way” from nuclear to Planck's scales?

Some people (“conservatives”) think that the existing theories (string theory
and others) are too daring. There exists a serious objection to such type of theories
because the latter suggest that nothing will happen “on the way” from nuclear to
Planck’s scales. In any case, there is no need for hurry until some observational
data appears.: -

On the contrary, quite recently, there has appeared an idea that as the scales
decrease, the number of degrees of freedom necessary for a convenient
systematization of physical “events” (i.e. dimension) may change, and even the
concepts of locally Euclidean topology of space is not necessary. Although the idea
of discreteness of space in the naive sense as a lattice already does not satisfy the
intellect of theoreticians, more complicated spatial and analytic models based, for
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instance, on discrete normalizable fields of p-adic type may, perhaps, appear to be of
use. But at the present time there are no serious models of this type. These ideas
have appeared within recent decades for purely mathematical reasons, namely, due to
the evolution of topological methods of algebraic geometry towards arithmetical
discrete structures. Very many people, however, share the idea that the ensemble of
mathematical concepts, notions and methods used in contemporary physics will
surely be insufficient for the physics of the XXIst century. According to modem
considerations, the structure of the Universe on a large scale is determined only by
gravity— the other factors are now unknown. Suppose that on scales of galactic
clusters (~ 1022 cm) the Universe is approximately spatially homogeneous.

Mathematically, this is expressed by the fact that in the approximation the
space-time manifold M* (“the cosmological model™) admits the group of motions G
with three-dimensional space-like orbits (“spatial cross-sections” ¢ = const.). If,
besides, the angular distribution of matter in the Universe is approximately isotropic
at all its points, then the number of parameters of the group G should be equal to 6.
The metric should sadsfy the Einstein equation with the energy-momentum tensor of
the usual matter (fluid), where either p = 0 (“dust”) or p = €&/3 (relativistic fluid,
radiation). The solution of the equations (see [1], [29]) shows that the Universe is
non-stationary (A.A. Friedman, the early 20s).

Astronomical observations of the 30s led to the conclusion that the Universe is
actuaily expanding, the galaxies are receding , and the farther the faster. Comparing
the observational data with the solutions of the Einstein equations, we come to the
conclusion that it took the processes proceeding to the Universe up to now not more
than 10 to 20 billion years. This is a remarkable conclusion of the 30s; later it
became clear that no other observations (e.g. the age of objects of the solar system)
contradict this one. The consideration of anisotropic cosmological models in the
framework if GTR also left these conclusions unaffected and revealed the possibility
of interesting phenomena at early stages of the evolution.

The discovery of background radiation in the 70s confirmed the idea that the
Universe has been monotonically expanding for a very long time, and has changed
scales by many orders of magnitude. So, the opinion that the Universe expanded
infinitely in all the four directions is the only obvious possibility compatible with
physical laws, has been shared for no more than about three hundred years.

2. Addition to Appendix 3. On quasi-crystals

Quite recently, a new type of crystals — “‘quasi-crystals” — has been discovered
experimentally by physicists. The atoms of these quasi-crystals are positioned in R?
or [}’ in a translation-invariant manner. Their lattice R < [R™ (n =2, 3) is such that
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there exists no finite number of atoms of such that the rest could be obtalned by
integer combinations of » basis translations. Such lattices are not already determined
by crystallographic groups — discrete sub-groups of the groups of motions of R".
These lattices are described in one of the following two ways.

WAY 1. We are given a multi-dimensional crystallographic lattice R in RY, where
N> n and the physical space is positioned as a sub-space [R” = [RY perhaps in an

irrational manner. We set the radius 4 > 0 and associate with the atoms all the points
of the lattice R separated from the sub-space R" < RY by a distance smaller than d.
Their position in R® is determined by the orthogonal projection.

DEFINITION 1. A quasi-larrice R is a set of points in [R” obtained by an orthogonal

projection onto [R” from points of the lattice R lying close to R” (i.e. at a distance
smaller than d).

The choice of the number N, of the multi-dimensional lattice, of the sub-space
[R" and of the number d should be discussed in each particular case. In the most
interesting cases there exist finite symmetry groups of the lattice in RY which leave
invariant the sub-space R, (for example, fifth-order symmetry which is not realized

in ordinary crystallographic groups in R? and R’ is realized for n =3, N = 6).

WAY 2. We determine in R% orin R a finite number of convex polyherons
Ki,...Kp.

DEFINITION 2. The Penrose lattice is a partition of R" (n = 2, 3) into polyhedrons
congruent to Ky, ..., K, where two polyhedrons either have a common side, or a

common vertex, or do not intersect. The lattce itself is a set of veritces.

Not any Penrose lattice is a quasi-crystal. On a polyhedron K; we determine a

function fi(x) constant on the boundary. The partition of R" into polyhedrons

-congruent to K3, ..., K, naturally give rise to a unique function F(x) on R", equal to
the translation of f;(x) on each polyhedron.

DEFINITION 3. A Penrose lattice is said to be a quasi-crystal if for any f(x) the
function F(x) is quasi-periodic, i.e. is expansible into a Fourier series with some
finite set of basis frequencies (w, ..., Wy), /; being integers:
N
Fix) = EAI j. €XP [Zﬁizi.ﬁ‘).].
=iy =1 J 7
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The mathematical theory of quasi-crystals is still at the initial stage of its
development. It is very likely that very interesting geometrical problems exist here.

3. Addition to Appendix 5. Multi-valued functionals and the Dirac
monopole

An interesting topological situation is observed for the motion of a charged particle in
a topologically non-trivial magnetic field. Recall that the magnetic field is defined as
a skew-symmetric 2-tensor (or a differential 2-form) in a three-dimensional space R3
or in its region V c R®. We denote this form H= H_, d® Adx® (a,b=1,2, 3).
This is the spatial part of the electro-magnetic field tensor Fup(a,p=0,1,2,3),
F ., =H,, The form H is always closed: dH = 0. This allows us to introduce
locally the vector potential A = A, dx?, where H = dA, and to define the Lagrangian
and the action (see the corresponding example from Appendix 5):

L = g i%i%+eA 2% S() = [Lan.

Here e is the particle charge, the metric g, in the Euclidean case has the form
2845 = Mgy, m is the particle mass.

What is to be done if the field H is topologically non-trivial, i.e. if there exists a
two-dimensional cycle (a closed surface) @ c V such that the flux is notequal to

Zero: J.J.H #07?
[}

EXAMPLE. Suppose V= R3\0, the cycle Q coincides with the sphere 5% and
2 (x%? = 1. For a spherically symmetric “monopole” we have H* = const - X7,
H'=Hy, H,=- Hj,, H = H,,. Since the vector-potential does not exist in the

endre region V, the action functional is not defined as functional on all (e.g. closed)
trajectories ¥. We shall denote by F the set of all smooth closed parametrized curves

in the region (manifold) V. Here V may be not only a region in R, it may be any
n-dimensional manifold on which a closed 2-form H; is defined: dH =0. We shall

cover V with a set of regions V,, i.e. V =,V, with the properties that 1) for any
smooth curve y there exists a “number” x such that y lies whoily in the regien V3
2) on each region V, there globally exists a vector-potential H = dA,.

We shall denote the set of all curves ¥y < V, by F,. Obviously, we have
F =U,F,. For example, for V = R*\0 the index x can be associated with the ray /;
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from the origin to infinity. The region V, has the form V, = IR3\I,. The region V,
is contractible. Any smooth curve Yin R>\0 does not meet a single ray [, (even a
continuum). The vector-potentials A, are defined. For curves yc V, we have the
“action"

S = 4)7 (8 XO%P +eA® 29 di,
defined in the region F, of the functional space F.

LEMMA. For curves Y& F. x5 O F. x (i.e. the curves Y lie in the intersection of the

regions Y c V, 'V, ) the difference of the actions is locally constant.
1 -

Proof. Let the closed curve Y(t) depend on the parameter <, i.e. ¥, = (%, 7). For

Y C V,‘l N Vx2 we have

(x) (x)
[le(y'r)-sxz(yt)] =€ ¢ A al —Aaz)x“dt.
L

=;) (x,)
Since dA g dA "2 , the difference does not depend on t, which implies the lemma.

Thus, on all regions F of the topological space F the functionals S, are given
whose difference is locally constant. In this case, the set (S;) determines the
one-dimensional class of cohomologies [S] € H!(F; R) and we speak of
“multi-valued functionals”. In other words, the variation 65 is a closed but,
possibly, not exact 1-form on the infinite-dimensional manifold F. The requirement
of “quantization” suggests that a single-valued functional — the Feynman
“amplitude” exp [27iS(Y)] be defined on F. This implies that the class [S] should be

-integer: [S] e H\(F; Z) FHI(F; [R). In other words, the “contour integrals” of the
1-form &S on F over the contours in F should be integer.

In the above example of Dirac monopole the contour in F is a surface in R.
We arrive at the condition of “quantization of the magneic field flux” through a sphere
52 = R3. The topological analysis of this type of situation and extension to
mult-dimensional problems of field theory appeared only in the early 80s (S.P.
Novikov).
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Section 4. Addition to Section 1.12. Minimum surfaces and
boundaries between physical media

In Part I of the book we acquainted ourselves with an important concept of mean
curvature H =, +X,, where A, A, are the principal curvatures of a two-

dimensional surface M2 in [R>. The mean curvature occurs naturally in many physical
problems. As an example we shall present the Poisson theorem. Suppose a smooth
surface M2 in R? is a boundary (interface) between two media (e.g. two liquids, two
gases or between a liquid and a gas, etc.) which are in equilibrium. Let p; and p, be
pressures in the media. Then the mean curvature H of the surface M? is constant
(does not depend on the poins) and equal to h(py — p,), where the constant L= 1/h is ~
called the surface tension coefficient and py — p, is the pressure difference.

We shall apply this result, for example, to the well-known rhysical object —
soap bubbles. They occur on wire contours when the latter .. t«hen out of a soap
solution. We shall discuss two cases:

a) a closed soap film — a bubble, i.e. a film without boundary;

b) a film bounded by a wire contour.

In Case a) the film separates two media with distinct pressures (inside and
outside the bubble). As a model we can take a soap bubble blown out of a tube.
Consequently, here H = h(p; — p,) = const > 0. In Case b) the film separates two

media with equal pressures, therefore, H = const = 0. Here the gas on both sides of
the film is, in fact, one and the same medium. If we neglect gravity, then in Case a)
the condition of constancy of mean curvature implies the statement that a soap bubble
homeomorphic to a sphere is a standard sphere (of a constant radius). This is a
non-trivial theorem. Freely falling soap bubbles acquire, therefore, the shape of a
sphere. We shall concentrate our attention on Case b) of zero mean curvature. It
turns out that surfaces of zero mean curvature are locally minimum in the following
sense. Let us consider all possible small enough perturbations of the surface M.
We shall call a perturbation small if it is is small in amplitude and concentrated inside
a small region (i.e. outside a certain small ball the surface remains unchanged). We
shall call a surface locally minimum if no small perturbation of this surface decreases
its area.

THEOREM. A surface M? in R is locally minimum if and only if its mean curvature
is identically zero.

Soap bubbles pulled on contours do not decrease their area under small
perturbations. We shall write analytically the local minimum condition.
From the definition of H it follows that
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_ GL-2MF +EN
EG-F

where E du® + 2 Fdu dv + G dv? is the first quadratic form and L du? + 2M du d v +
+ N dv? is the second quadratic form of the surface. It is mentioned in Section 1.13
that on a smooth surface we can always choose (locally) conformal coordinates u, v
such that with respect to which E= G, F = 0. Consequently, in these coordinates the
condition H = 0 is equivalent to the identity L + N = 0. From this it follows that

gr  Ir

—— + — = 0, where r(u, v) is the radius-vector of the surface. Thus, in conformal
a’

coordinates Ar = 0, where A is the Laplace operator, i.e. the radius-vector of the
minimum surface is a harmonic vector-function with respect to our conformal
coordinates. Hence, the equality H = 0 can be regarded as the differential equation of
the minimum surface. We shall write it with respect to coordinates. Following
Section 1.12, we shall choose on M ? Jocal coordinates in a neighbourhood of a
regular value, such that x and y change in the tangent plane to the surface and z be
directed along the normal to the surface. We shall determine the surface locally in the
form of a graph z = f{x, y). Then the equation of the minimum surface will become
1+ Sy = 2hfify + (1 + f“’y) fa=0. We shall now give several examples.

H

EXAMPLE 1. We consider a surface formed by rotation about the x-axis of a curve
given by the equation y = a cosh x/a, where a is a constant. This curve determines
the form of a heavy sagging chain fixed at two points. The surface obtained is locally
minimum and is called a carenoid. In Euclidean coordinates x, y, z, a catenoid can
also be given in R by the equation 02(12 + _v2) = coshz(az), a = const,

EXAMPLE 2. A helicoid is given by the graph of the function z = arc tan x/fy.
Geometrically, this surface is obtained when a straight line A which intersects
orthogonally a vertical straight line B moves uniformly up this straight line B (with a
constant velocity) and at the same time uniformly rotates about the B.

EXAMPLE 3. The Sherk surface is given by the equation

1 cos
zZ=—In @ .
a cosax
z CoOsy - . . g .
where a = const, or (for a=1) ¢’ = ———. Minimum surfaces in a multi-dimensional

space can be defined as surfaces which do not decrease in area (volume) under any
sufficiently small perturbation with small support.
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EXAMPLE 4. Consider R®™ = C™ and let z = x + iy. Let g;(2), ..., g.(2) be
complex analytic functions. Then the surface given by the radius-vector

r@ = (f1(@), - s o)

where f5,,1(z) = Re 2,(2), Jop(z) =1Im 8,(2), 1 £p <m, is minimum. Thus, a
complex analytic curve in C™ regarded as a two-dimensional surface in R?™ = C™ is
a minimum surface.

Let M> = R® and let E, F, G be coefficients of the first quadratic form of the
surface, If M? is given by the radius-vector r(u, v) = (xl(u, v), xz(u, v), ©(u, v)),

k k
then we may consider the complex functions §,(z) = %J;—— i%t—’ where z=u +iv.

We can easily make sure that the following two equalities hold:
3, 3 2
> ¢ ()=E-G-2iF and ¥, lo,@)|" =E+G.
k=1 k=1

From this it follows that 1) the functions ¢y(2z) are complex analytic if and only if
x"(u, v) are harmonic functions of uz and v; 2) the coordinates u and v are conformal

a 3,
on M if and only if X, ¢ (z) =0 (the condition (1)); 3) if u and v are conformal
k=1

3 2
coordinates on M2, then the surface M? is regular if and only if ), |¢k (z)| # 0
=1

(the condition (2)). Formulae (1) and (2) were pointed out by Weierstrass.

THEOREM. Suppose the radius-vector r(u, v) defines locally the minimum surface
M%in R, u and v being conformal coordinates. Then the functions ¢,(z) are
complex analytic and satisfy the conditions (1) and (2). Inversely, let &, ¢, ¢3 be
complex analytic functions satisfying the conditions (1) and (2) in a simply-connected
domain D on a plane R¥(u, v). Then there exists a regular minimum surface given
by the radius-vectorr = (x'(u, v), x%u, v), X, v)) deflned on the domain D and

ot
wO=gr-tw

It turns out that equation (1) can be solved explicitly.

THEOREM. Ler D be a simply-connected domain in a complex z-plane and let g(z)
be an arbitrary function meromorphic in the domain D. Let the function f(z) be
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analytic in D. Suppose at those points where g(z) has a pole of order m the function
f(z) has zero of order not less than 2m. Then the functions ¢y = 1/2 f{1 - gz),

&, =i/2 1 + g*) and ¢3 =fg(3) are analytic in D and satisfy equation (1), that s,
¢% + ¢% + ¢§ =0. Inversely, any triple of functions analytic in D and satisfying the

equation &%+ &% + &% =0 is representable in the form (3), except in the case wher
1 TI YL h -] { 4 s \~J¥ ’ of Lasli g

$1=062¢,=0.
This implies the following representation for a minimum surface:

! = Rej'j(l—gz)dz+c1,
27 = Rej'tﬂl +g%) dz +c,,
27 = Rejfgdz+c3.

As an independent complex variable we can take the function g. Then for minimum

P P4

simply-connected surfaces we obtain the classical Weierstrass-Anneperi
representation

x! = Rejp(g)(l-gz)dgml,
X2 = ReJ'iF(g)(1+g2)dg+a2,
£ =ReJ'2F(g)gdg+a3,

where F(g) = 1/2 f dz/dg is called the Weierstrass function. If, for example, we set
F(g)= 1, we obtain the known minimum Annepert surface. For F=-1/2 g2 we
obtain a catenoid, for F = 1/(1 - 14g4 + gs)”2 the Schwarz surface, and for
F=1- llg4 the non-orientable Henneberg surface.

It is clear that when the boundary contour is deformed, the minimum surface
(modelled by a soap film) is deformed too. What is the character of this dependence?
What is the solution of the equation for minimum surfaces on the boundary
conditions? We shall consider for simplicity some two-parameter family of boundary
contours (i.e. a two-parameter family of deformations of a given contour). As an
example we shall take the following contour. On a standard torus T2 = $'(¢) x
S(y) we take ordinary angular coordinates ¢ and v, where I¢! < and Iyl < 7.
Then on this torus we take a union of two strips (bands) given by the inequalities 1!
<uand Iyl £v. In other words, the region Q,, is obtained by a cross-wise glueing
of two flat rings of width 2u and 2v, respectively.
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As the contour I',, we take the boundary of the region Q,, on the torus.
Changing u and v, we change the position of the contour I',, in space. The contour
I',, is homeomorphic to a circle. We fix arbitrary values of the parameters u and v
and consider all locally minimum two-dimesional surfaces with boundary I',,. From
among these surfaces we select only those homeomorphic to a disc. They are,
generally speaking, few. By calculating their areas we obtain a set of numbers
depending on u and v. For some values u and v these numbers may coincide.

We have obtained a certain multi-valued function which may be naturally called
the area function of minimum surfaces. This function is defined on the domain
where the parameters u and v vary. This domain may be regarded as a square on a
plane. We can therefore, construct the graph of this multi-valued function in R. It
illustrates the character of the dependence of the areas of minimum surfaces on the
boundary contour. Separate branches (leaves) of the multi-valued function may flow
together, may have branching points on the graph, etc. In other words, this graph
characterizes the topology of the space of solutions of the minimurm surface equation
(under variation of boundary conditions).

THEOREM. In the above example the graph of the multi-valued function of the
areas of minimum films is represented as a surface referred to as a “doverail”.

This surface and the corresponding singularity are well known in the modern
theory of singularities. It is also known that the “dovetail” can be represented as a
surface in a three-dimensional space of polynomials of the form P +a +bx+c,
which consists of points (a, b, ¢) corresponding to polynomials with multiple roots.

The appearance of this surface (and analogous ones) in the theory of minimum
surfaces is a reflection of deep topological properties of minimum surfaces
discovered of late. A systematic study of the topology of minimum surfaces
(including minimum surfaces of arbitrary dimension) has started rather recently. For

the review of the progress in this field see, for example, the books by A.T.
Fomenko, 1251 1351 and by Dao Chong Thi and A.T. Fomenko 36]. The same
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books elucidate the role of minimum surfaccs in physics, chemistry, biology, animate
nature, eftc.
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